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The Obstacle Thermistor Problem with Periodic Data

MAURI1Z10 BADII (*)

ABSTRACT - The object of this paper is the study of an obstacle thermistor problem
with a nonlocal term. Using the classical Lax-Milgram theorem, a result of Lions
and a fixed point argument we prove existence of weak periodic solutions. Fi-
nally, by means of some a-priori estimates in Campanato’s spaces, we obtain the
regularity of these solutions.

1. Introduction.

Let 2 be a bounded open set of R", n=1, with smooth boundary 0.

Forgivenw > 0,weset @ := Q x P, 2 :=0Q2 x Pand P := %denotes the

period interval [0, w] so the functions defined in @ and 2 are w-time pe-
riodic. In this paper we consider the following parabolic-elliptic system
arising from an obstacle evolution thermistor problem

(1.1) wy — A+ / G, y)uly, ydy = o(w)|Vo|* in Q,
o

(1.2) u(e,t) =0 on %,

(1.3) div(ew)Vp) = 0 in Q,

(1.4) (e, ) = po(x, 1) on X.

Here Qis the conductor and the unknowns % and ¢ are the temperature
and the electrical potential in Q, respectively. The nonlocal term
f G(x, yuly, t)dy, with G(x, y) =0, describes heat losses to the surrounding
Q
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gas while a(u) denotes the temperature dependent electrical conductivity.
Finally, the term o(u)| Vo |*represents the Joule heating in . We note that
if p € L2(P; W'2(Q)) N L>(Q), then (1.3) implies

)| Vol? = div(c(w)pVe),

in the sense of distribution.
Thus, we shall study the problem

(1.5) U — AU+ / G(x, uly, t)dy = div(c(uw)pVe) in Q,
Q

(1.6) w(@x,t)=00on 2

(1.7) div(e(u)Ve) = 0 in Q,

(1.8) o(x,t) = py(x,t), on 2.

To solve (1.5)-(1.8) we follow the approach of [1], [2] and introduce the
penalized problem

(1.9) wpt — Dy + < / G(x,y)un(y,t)dy> L,(uy) = div(e(uy)e, Ve,) in Q,
Q

(1.10) Uy (x,t) =0 on X,
(1.11) div(e(u,)Ve,) =01in Q,
(1.12) ?,(, 1) = go(x,t) on 2|

where it is assumed that [, satisfies

H, I,cCR), 0<sI,(s)<1, for all seR , I,(s)=0 if s<0 and
I,(s) — H(s) in L?, where H(s) denotes the Heaviside function.

The plan of the paper is as follows: in Section 2 we give some notations
and preliminary results. In Section 3, we consider a linearized version of
the elliptic problem (1.7)-(1.8) (see (3.5)-(3.6)) and prove existence and
uniqueness of the weak periodic solution ¢ by means of the classical Lax-
Milgram’s theorem. Next, in Section 4, we use a result due to Lions [5,
Theorem 6.1] to obtain existence and uniqueness of periodic solutions u,,
for the penalized problem (1.9)-(1.10). In Section 5, we deduce some uni-
form estimates for (u,, ¢,) and utilize a fixed point argument to obtain the
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existence of weak periodic solutions (u, ¢) of (1.5)-(1.8) by letting n — oc.
Finally, in Section 6, we establish the Holder regularity for (u, ¢). This will
be done by proving a-priori estimates in Campanato’s spaces as in [6], [7].

2. Preliminaries and auxiliary results.

Let us introduce an useful space of w-periodic functions in which we
look for solutions to our problem.

We consider the Hilbert space V := L2(P; Wé’z(.Q)) endowed with the
norm

1/2
1) ol = ( / |Vv(ac,t)|2dacdt>
Q

and its dual V* := L2(P; W~12(Q)). The duality pairing between V; and V*
shall be denoted by (.). The space V) is the closure with respect to the norm
2.1) of Cgo@) , the space of periodic functions vanishing near 2. We recall
some notations concerning the Campanato spaces.

NOTATIONS. Let Q4 := Q2 x (to,t1], 0<ty<t;. A point (x,?) € Q44
shall be denoted by z. Let B,(x) be the ball centered at x, with radius r
and let @.(z9) be the cylinder B,(xy) x (t, — 7%, to]l. Moreover, define
Qrl20, 71 := Qr(20) N Qyyr, and Qlxo, 7] := By(x9) N Q.

For 0<u<mn, the Campanato space

1/2
L2H(Q) = {uELz(Q) : ( sup r# / w2 (x) dm) <—|—oo}

20 EQr>0 Ol

is a Banach space with the equivalent norm

1/2
||”||z,,l,9[x0,r]:< sup 1/ / u?(x) dac) .

xo€R,r>0 Ol
(see [3]).

For 0<u<mn + 2, the Campanato space

1/2
Cz”‘(QtO,tl):: {u eLQ(QtO‘,tI) : sup (r‘” / u(x,t) dacdt) < +oo}.

20€Qty 1, ,7>0
o Qrlzo0,7]
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is a Banach space with the equivalent norm

1/2
HMHZ,,%QfO-tl - < sup 1 / uz(f)ﬁ,t) docdt) .

BT G
Furthermore, we need the following result

PROPOSITION A ([7]). The space £L>"*#(Qy,,) is isomorphic topologi-
cally and algebraically to C*#/ 2@y, 1), for p € (0,1).

We shall study problem (1.5)-(1.8) under the following assumptions:

H,) 06 € CR), 0<o,<0o(s)<c* for any s € R;

Hg) G € C(R?), G(x,y) =0, we set G := supg: G(x, y);

Hy) ¢, is an w-periodic bounded function with an extension ¢, to @
which satisfies g, € L>(P; W-*(Q)).

Moreover, we define the convex set
K = {v € LAP; W}A(Q)), v=0 a.e. in Q}.

The notion of weak periodic solution for our problem is the fol-
lowing

DEFINITION 2.1. A pair of functions (u, ) are a weak periodic solution to
(1.5)-(1.8) if the following conditions hold

ue kK, u e LAP;W Q) and ¢ — ¢, € Vo,

(2.2) / (v — w)dadt + / VuV @ —w)dxdt + / G, y)uly, ) —u)dydxdt
Q Q Qe

= — / a(u)pV eV — w)dxdt, for any v € K
Q

and

/ o(u)VeVédxdt = 0, for any & € V.
Q
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3. The elliptic problem.

In this section we study problem (1.7)-(1.8). Set ov(x,?):=
= p(x,t) — gola, t). Fixed w € L2(Q) with w=0, we solve the problem

(3.1) div(e(w)Vv) = —div(e(w)Ve, ) in Q,
(3.2) v(x,t) =0 on 2

We state the weak formulation of solution to (3.1)-(3.2).

DEFINITION 3.1. A function v € V} is called a weak periodic solution
of (3.1)-(3.2) if

(3.3) / oc(w)VoVedxdt = — / a(w)Ve Vidxdt, for all & € V.
Q Q

The existence and uniqueness of the weak solution v shall be obtained
by the classical Lax-Milgram theorem.
In agreement with this result, we define the bilinear form

a:VoxVO—>R

by setting

a, &) = / o(w)VoVidxdt, for any & € Vy
Q

We have

ProposiTioN 3.2. If we assume H,), then

i) a is continuous;
ii) a is coercive.

Proor. Condition i) is a consequence of Holder’s inequality. In fact

1/2
|a(v,é)|$a*</|Vv|2dacdt> 1l
Q

<[l 1€y,



150 Maurizio Badii

ii) The coercivity of a follows from

a(,v) = /a(w)|Vv|2dxdt20*HvH?,o
Q
which implies
a(v,v)

T 20Vl — o0, as [|vflyy — oo O
[llvo

In this way if Hy) holds, problem (3.3) becomes equivalent to the
problem

(34) a@, &) = (G, &)

where G € V* is the linear functional defined as follows

(G, &) = — / o)V, Vedadt, Ve € V.
Q

Now, we can state the main result of this section

THEOREM 3.3. Let H,) and H,) be satisfied. There exists a unique
weak periodic solution to (3.4).

ProOF. By the theorem of Lax-Milgram we easily conclude the ex-
istence and uniqueness of the weak periodic solution. O

Thus, for w € L?(Q), w=0 we have solved the problem
(3.5) divie(w)Ve) =0 1in Q,
(3.6) o, t) = py(x,t) on 2.

4. The parabolic penalized problem.

We consider the problem

(4.1)  wup — Duy + ( / G(x,y)w(y,t)dy> I,(w) = div(e(w)pVe) in Q,
Q

(4.2) Up(x,t) =0 on 2.
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DEFINITION 4.1. A weak periodic solution of (4.1)-(4.2) corresponding to
w, is a function u,, € Vj such that

(4.3) / Upldadt + / Vu,Vidxdt + / ( / G(x, y)w(y,t)dy)]n(w)édxdt
Q Q Q @

= — / o(w)pVeVidxdt, for any { € V.
Q

The existence and uniqueness of the periodic solution follows from a
Lion’s result (see [5, Theorem 6.1]).
For any u,, € Vi we define the mapping B : Vy — V* as follows

(Buy, () := /VunVCdacdt, for any ( € V).
Q

The set
D :={ve LAP;W,%(Q) : v e LAP; W 3(Q))}

is dense in V, because of the density of C>*(Q) c D in V4.
Let
L:D—-V*

be the closed skew-adjoint (i.e. L = —L*) linear operator defined by

(Luy, 0y == /umg’dﬂcdt, VeV
Q
It is known that this operator is maximal monotone (see [4, Lemma 1.1,

p. 318]).
The properties of B are contained in the following result.

ProposiTION 4.2. Assume H,), then
j) B is continuous;

jj) B is coercive.

ProoOF. j) The continuity of B follows from
|(Bn, O < [t Iy, €]l -
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Jj) By
<B’I/L7L7’M7L> = / |vun|2d9€dt = ||unH%/0
Q
one has
(B, )
Hun—HV: = [[ttnllyg — 00, as [[n[lyy — oo -
n

Finally, let M,, € V* be the linear functional defined by

(M, 8) = / ( / G(%y)w(?/,t)dy>ln(W)Cdﬁcdt— / a(w)pV eV {drdt,
Q ‘@ Q

then, problem (4.3) can be considered in the framework of the abstract
problems of the form

(44) Lun + Bu'ﬂ, = M’I’L

to which we apply [5, Theorem 6.1] to establish the existence and unique-
ness of the weak periodic solution.

5. A fixed point argument.

The periodicity of solutions to (1.5)-(1.8) shall be proved utilizing the
Schauder fixed point theorem for a suitable operator equation. To this
aim, let

0:S—S8

be the mapping defined by
Ow) = uy,
and
S={vel’@Q: 1]l 2 < M},

where u, is the unique weak periodic solution of (4.1)-(4.2) corre-
sponding to w. The mapping @ is well-defined. In order to prove its
continuity we will prove some crucial estimates and convergences useful
to utilize the Schauder fixed point theorem. Let w;, € L?*(Q) be a non-
negative sequence such that w;, — w and o(w;,) — o(w) strongly in L3(Q)
as k — oo. We denote by u,; and ¢, respectively, the weak periodic
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solutions of

(5.1) / Ul dt + / V. Vdxdt + / ( / G(x, yyw(y, t)dy) L, (wy){dxdt
Q Q Q Q@

= - / (W) Vo, Vidxdt, for any { € Vy
Q
and
(5.2) /a(wk)VgokVédxdt =0, for any & € V.
Q

An estimate on Vg, is achieved choosing ¢, — ¢, as a test function in (5.2).
In fact,

- / Vo, [Pdadi < / o) Vo [Pdadt — / o)V, Vpodadt
Q Q Q

1/2
sa*< / |V(pk|2docdt> ( / |V(p0|2dacdt>
Q Q

1/2

hence,

o\ 2
o
(5.3) /|V(0k|2dacdts< ) ||V(1)0||%2(Q).
Q

O«

Moreover, by the weak maximum principle we derive that
(5.4) H(ﬂkHL’C(Q) S Wo”m(Q)’

Combining (5.3) and (5.4), one has the usual energy estimate

(5.5) / |y, )P dacdt + / |V, t)*dacdt < C.
Q Q

In what follows, C stands for a generie positive constant independent of &
and n.

Thanks to (5.3), we deduce that ¢, is uniformly bounded in the V norm,
with respect to k. Therefore

¢, — ¢ in V as k goes to infinity.

Furthermore, one has



154 Maurizio Badii

Lemma 5.1. The sequence Vg, converges strongly to V¢ in
LA(P; (LA(Q))").

Proor. Taking ¢, — ¢ as a test function in (5.2), we get

/ o) |Vpy, — 9)|Pdwdt = / o(wp)V(p — p)Vodudt
Q Q

from which it follows that

o, / V(g — o)[dacdt < / oW )V (p — p)Voddt.
Q

The weak convergence of o(w;)V(p — ¢;.) to zero as k — oo leads to the
conclusion. O

Choosing u,;; as a test function in (5.1), we have
/ (Vtt et + / ( / Gla, y)wk<y7t)dy)h(wk)unk(x,t)dxdt
Q Q @

- / 60V 9Vl
Q

Applying Young’s and Poincaré’s inequalities, one obtains

% / Vb, [P et

2
/ uwk| dxdt + — / ( / wk(y,t)dy> daxdt

Q Q @

(c” ”(POHL“(Q))
+f <U > ||V<P0||L2<Q)

~ 2 w
S§/|V7ank|2dﬂcdt+(G|2f|) //\U)k(?/,t)lzdydt
Q 0@

(o* H(P0||L°°(Q))
W@ (7 1o,
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w

G|Q|’
<< / |Vuw,k|2dxdt+%[s+ / / oy, ) Py
Q 0 Q

(0 |@o ]l ¢ ))2 o*\2 2
+%(0_> 1Voollz20)-

Thus,
/ [Vt (e, 1) Pdedt < C
Q

and we infer the classical energy estimate

(5.6) / (e, 1) [Pdaedt + / [Vt (e, ) Pdedt < C.
Q Q

By virtue of (5.5), (5.6) and (5.1), u,; is uniformly bounded in the V* norm.
Therefore u,;, belongs to a bounded set of D i.e.

%kl p < C.
Thus, we can select a subsequences, still denoted by u,y, such that
Upe — Uy, in D as k — oo.

A well known result of [4, Lemma 5.1] guarantees that the sequence u,;, is
precompact in L?(Q), then

Uk — Uy, in L2(Q) and a.e. in Q.
LeEmMA 5.2. The operator @ is continuous.

Proor. From the preceding result, we have
Upe — Uy, IN LZ(Q) and a.e. in Q.
Uit — e In L2P; W HE(Q))
Vi, — YV, in LA(P; (LA(Q)")
Vo — Vo in LA(P; (LAQ)")
¢, — ¢ in V and a.e. in Q
wy, — w in LA(Q)
o(wi) — o(w) in L*(Q)
L, (wy) — L,(w) in LA(Q).
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These convergences enable us to conclude that @(wy) = u,;, converges
strongly to ©(w) = u,, in L2(Q). O
LEmMA 5.3. There exists a constant M > 0 such that

100)|| 12qy <M, for all w € L*(Q).

Proor. The assertion is obtained as above. O

Since O(L2(Q)) C D and the embedding D — L2(Q) is compact, O is a
compact operator from L2(Q) into itself. O

Our main result, is given in the next statement.

THEOREM 5.4. If H,) - Hy) are fulfilled, there exists at least one weak
periodic solution to (1.5)-(1.8).

PrOOF. As a consequence of Lemmas 5.2 and 5.3 the mapping @ is
both continuous and compact. Hence, by the Schauder fixed point theo-
rem, O has a fixed points which corresponds to a weak periodic solutions
to (1.9)-(1.12). O

As far as previously proved, we can conclude that

Ut — g in L2(P; W12(Q))
u, — u in L2(Q) and a.e. in Q.
YV, — Vu in LA(P; (LA(Q))")
Vo, — Vo in L*(P; (L*(Q))")

v, — @ inV and a.e. in @

wy, — w in LA(Q)
o(w,) — o(w) in L*(@Q)
L,(uy,) — p weak-* in L*=(Q), with 0<p<1.

These u,, are nonnegative. In fact, for { = u, , we have

(5.7 / Ui, dacdt + / Vu, Vu,, daedt + / / G, Yuny, L (w)u, (¢, dydxdt
Q Q Q Q
= / o(u,) |V, |Pu, dedt, ¥ ¢ € Vy
Q
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from which it follows that

—/|Vun|2dxdt: /a(un)|V(on|2u; dadt.
Q Q

This implies the nonnegativity of u,. Since u, =0, so is u.
Passing to the limit in

(5.8) / Uy Cdt + / Vu, Vidxdt + / / G(x, yuy(y, DI, (uy,) (x, t)dydadt
Q Q Q
= —/O'(uw)q)nV(ﬂwvcdxdt
Q

we have

(5.9) / wldadt + / VuV{dxdt + / / G(x, yuly, Ople, )¢, t)dydadt
Q Q Q @
= — / o(w)eVeldxdt, ¥ { € V.
Q

We observe that p(xg,ty) =1 if u(xg,ty) > 0 thus px, ) —u) <@ — u)
for all v=0. If we replace { with v — » in (56.9) with v € K, then (2.2) is
satisfied. O

6. Regularity.

This part of paper is devoted to the regularity of weak periodic solu-
tions (u, ) to problem (1.5)-(1.8). We will prove the Holder continuity of
(u, p) by means of some a priori estimates in the Campanato spaces.

LEmma 6.1. Let ¢, be the weak periodic solution of (1.11)-(1.12). If
0<puy<n — 2+ 26y, d € (0,1) one has

(6.1) Ve, @Olls 4.0 S ool 4,0 + Voo @

2,(/1072)+,Q)’

for a.e.t € P.

Proor. From a result of [6] we get

Ve, @Dlls .0 S @@l 0 + 1VOOll2 42070 + 02Ol (o))
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a.e. t. Since ¢y (t), Voot) € L>(Q) for a.e. t and the fact that L>(Q) is a
multiplier for L24(Q) for U1 <m, by the inclusion L2027 (Q) — L2(Q) and
(5.3) we infer that

*

ag
190, Ol = (2 ) 9060 270

for a.e. t, which implies

*
*

ag
04Ol <cloo®lige + (2 ) IVl 20

This completes the proof of Lemma 6.1. O

ProposITION 6.2. The weak periodic solutions (u,p) of (1.5)-(1.8)
belong to the space C**/2(Q).
Proor. From (6.1), one has

||V(pn(t)||2,,uo,§2 <C

for a.e. t. The definition of Campanato’s spaces gives us

(6.2) o t2) / Vo, ) dedt<C
Qlzo,7]

for all zp € @ and » > 0.

Being o(u,)p, € L*(Q) and L*(Q) a multiplier of £*(Q) if
0<u<n+ 25, then a(u,)p, Vo, € L2*(Q) and the inequality (6.2) im-
plies that

IVo,ll3,<C.

By the comparison principle, we have that the nonnegative weak pe-
riodic solution w of problem

(6.3) v, — Ay = dwv(o(uy)p,Ve,) in Q,
w=0o0n2,

is a supersolution for (5.2), so that

(6.4) 0<su,<y.

According to a result in [7, Theorem 1], we get

IVylls, <C
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for 0 < u<mn + 20 and y belongs to Cz””z(Q) (see [7, Lemma 2.6]). Because
of Proposition A, one has that y € C**/%(Q) and consequently

WL~ <C-

The boundedness of y implies that u,, € L°°(Q). Theorem 1 in [7] allows to
conclude that

(65) ||Vun||2,ﬂ S C(||0(“n)€0nv¢n\|2,ﬂ

+||In(un)</G(9€;y)un(yat)dy> ll2,u-2 + 12enlly)
Q

and the embedding of L=(Q)—L2*(Q) yields

=C.
L>@)

=c

H / L )G,y )
J 2,(u—2)*

/ G, ity Oy
Q

Thus, if 0 <u<n + 20 by (6.5), we obtain
||vu"||2,/l <C

and u,, € L2*73(Q), (see [7, Lemma 2.6]). Since we showed that u,, — u and

¢, — ¢ a.e. in Q with u,, ¢, in L*(Q), we conclude that u , ¢ € L2Q) for
1t =n + 2 + 20 Finally, by Proposition A u, ¢ € C**/3(Q) for o = % O
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