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Right Sided Ideals and Multilinear Polynomials with
Derivations on Prime Rings

BASUDEB DHARA (*) - RAJENDRA K. SHARMA (¥*)

ABSTRACT - Let R be an associative prime ring of char R # 2 with center Z(R) and
extended centroid C, f(x1, . ..,x,) a nonzero multilinear polynomial over C in n
noncommuting variables, d a nonzero derivation of R and p a nonzero right ideal of
R. We prove that: () if [d2(f(xy, ..., 2.), f(x1,...,2,)] =0forallay,...,x, €p
then pC = eRC for some idempotent element e in the socle of RC and f(xy, . . . , xy,)
is central-valued in eRCe unless d is an inner derivation induced by b € @ such that
p’=0 and bp=0; (i) if [(f@1,...,20), fx1,...,2,)] € ZR) for all
X1,...,%, € pthen pC = eRC for some idempotent element e in the socle of RC
and either f(xy, . .., ;) is central in eRCe or eRCe satisfies the standard identity
Sy(x1, 22,23, 24) unless d is an inner derivation induced by b € @ such that b2 = 0
and bp = 0.

Throughout this paper, R always denotes a prime ring with extended
centroid C and Q its two-sided Martindale ring of quotient. By d we mean a
nonzero derivation of R. For x,y € R, the commutator of «, y is denoted by
[x,¥] and defined by [x,y] =xy —yx. We denote [x,yls = [[x,y],y] =
=[x, yly — ylo,yl.

A well known result proved by Posner [17] states that R must be
commutative if [d(x),x] € Z(R) for all x € R. In [10] Lanski generalized
the Posner’s result to a Lie ideal. More precisely Lanski proved that if L
is a noncommutative Lie ideal of R such that [d(x),x] € Z(R) for all x € L,
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then char R =2 and R satisfies Sy(x1, X2, 23, 24), the standard identity.
Note that a noncommutative Lie ideal of R contains all the commutators
[21,x2] for 1,22 in some nonzero ideal of R ( see [10, Lemma 2 (i), (ii)]).
So, it is natural to consider the situation when [d(x),x] € Z(R) for all
commutators x = [x1,22] or more general case x =f(xy,...,x,) Where
f(axy,...,x,) is a multilinear polynomial. In [11] Lee and Lee proved that
if [d(f ey, ...,20), f(x1,...,2,)] € Z(R) for all &1, ...,x, in some nonzero
ideal of R, then f(x1,...,x,) is central-valued on R, except when char
R =2 and R satisfies Sy(x1, %2, 23, 24). Recently, De Filippis and Di Vin-
cenzo (see [7]) consider the situation o([d(f(x1, ..., %)), f(@1,...,2,)])) =0
for all xy,...,x, € R, where d and J are two derivations of R. The
statement of De Filippis and Di Vincenzo’s theorem is the following:

THEOREM A ([7, Theorem 1]). Let K be a noncommutative ring with
unity, R a prime K-algebra of characteristic different from 2, d and o

nonzero derivations of R and f(xi,...,x,) a multilinear polynomial
over K. If o([d(f(x1,...,2,), f(x1,...,2,)]) =0 for all xy,...,x, € R,
then f(x1,...,x,) s central-valued on R.

In case 6 and d are two same derivations, the differential identity be-
comes [d>(f(x1,..., %), f@1,...,2,)] =0 for all x1,...,x, € R. So, it is
natural to ask, what happen in cases [d>(f(x1, . . ., xy)), f@1, ..., 2,)] € Z(R)
for all xy,...,%, € R and [d>(f(xy,..., %), f(x1,...,2,)] € Z(R) for all
X1,...,%, € p, where pisanon-zeroright ideal of R. In the present paper our
object is to study these cases.

For the sake of completeness we recall some basic notations, de-
finitions and some easy consequences of the result of Kharchenko [8]
about the differential identities on a prime ring R. First, we denote by
Der(Q) the set of all derivations on Q. By a derivation word 4 of R we
mean A= didsds...d, for some derivations d; of R. For x € R, we
denote by x/ the image of x under 4, that is 24 = (--- ()% ... )% By
a differential polynomial, we mean a generalized polynomial, with
coefficients in @, of the form @(acf’ ) involving noncommutative in-
determinates x; on which the derivations words 4; act as unary op-
erations. @(xf-’j ) = 0 is said to be a differential identity on a subset T of
@ if it vanishes for any assignment of values from 7T to its in-
determinates ;.

Now let D;,; be the C-subspace of Der(Q) consisting of all inner deri-
vations on . By Kharchenko’s theorem [8, Theorem 2], we have the fol-
lowing result:
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Let R be a prime ring of characteristic different from 2. If two nonzero
derivations d and ¢ are C-linearly independent modulo D;,; and qﬁ(xfj) isa
differential identity on R, where 4; are derivations words of the following
form 8, d, 6%, 6d, d2, then D(y;;) is a generalized polynomial identity on R,
where y;; are distinet indeterminates.

As a particular case, we have:

If d is a nonzero derivation on R and ¢(m1,...7xn7m‘f,...,xg,
x‘ﬁ . ,xf) is a differential identity on R, then one of the following holds:
(i) either d € D;y;
or
(i) R satisfies the generalized polynomial identity ®(xy,...,x,,

ylv"’aynazh"'vzn)

Denote by Q ¢ C{Xj,...,X,} the free product of the C-algebra @ and
C{Xi,...,X,}, the free C-algebra in noncommuting indeterminates
Xi,...,. X,

Since f(x1, . .., x,) is a multilinear polynomial, we can write

f(ﬁ(}l, S ,acn,) =X1x2...Ly + Z Oglo(1) - - - Lon)
I+#0€8S,,

where S,, is the permutation group over % elements and any a, € C.
We denote by f%(x1,...,2,) the polynomial obtained from f(x1,...,2,)
by replacing each coefficient o, with d(«,.1). In this way we have

A(fGer, -, x) :fd(acl,...,xn)+zf(acl,...,d(xi),...,acn)
and
dz(f(oc1,..-,9€n))d(fd(%lw“’x"))er(Z f(acl,...,d(aci),...,xn)>
:fdz(%'l,...796'77/)4’Zfd(%'l,..-,d(xi),...,xn)
+Zfd(xl,”.’d(xi),___7gcn)2+;f(acl,...,d(xi),---7d(9¢i)’""x")
+Zf(xl,...,éz(xi),...,acn)
:fdz(ggl,...,xn)JrZZfd(%h--~,d(xi)»--~,9€n)

+2) flen,. . d@y), . d@)), ) Y fe . AP @), ).

i<j
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1. The case for p = R.

LEmmAa 1.1.  Let R = M (F) be the ring of all k x k matrices over a field
F of characteristic #2, b € R and f(x1,...,2,) 18 a multilinear poly-
nomial over F. If k > 2 and [[b, [, f(xy,...,x)]], f(e1, ..., 2,)] = 0 for all
®1,..., % €ER orif k>3 and [[b,[b, fx1,...,x)]), f@1,..., )] € Z(R)
for all xy,...,x, € R, then either b € F - I}, or f(xy,...,%,) is central-va-
lued on R.

ProoF. Let b = (bjj)ix- Let e; be the usual matrix unit with 1 in (z,5)
entry and zero else where. Now we proceed to show that b € Z(R) if
€ f(xy,...,x,) is non central valued on R.

For simplicity, we write f(x1,...,x,) =f(x), where x = (x1,...,2,)
R" =R x --- x R (n times). Then by assumption,

[0, [b, f@11, f()] = [6%f(x) — 2bf ()b + f()b”, f(x)] € Z(R)

for all x € R™. Since f(x1,...,%,) is assumed to be noncentral on R, by
[15, Lemma 2, Proof of Lemma 3] there exists a sequence of matrices
r=(@,...,7) in R such that f(r)=f(r,...,7,) =o0e; #0 where
0#£acF and 7 #j. Thus

[bzoceij — 2bo€6i]’b + oceijbz, O(@ij] c Z(R).

Since the rank of [b%oe;; — 2boe;;b + ae;b?, oey] is < 2, [bPoe;; — 2bae;b +
+ ae;;b%, ae;;] = 0. Left multiplying by e;;, we get 0 = e;( — 2bae;bue;;) =
= 2a2b]2ieij. Since char F' # 2, bj; = 0. For s # t, let o be a permutation in
the symmetric group S,, such that ¢(i) = s and o(j) =t. Let v be the

automorphism of R defined by «¥ = (Z quepq)w: > Epgloma(g- Then
pg P
o) =f0Y, ... r) =f(r)" = aeq # 0 and we have as above by = 0 for

s # t. Thus b is a diagonal matrix. For any F-automorphism 0 of R, b’ enjoys
the same property as b does, namely, [0, [0, f@)]], f(x)] € Z(R) for all
k

x € R". Hence, b’ must be diagonal. Write b = 3 a;;e;; then for eachj # 1,
we have =1

k
(1 +e)b(L — ) = > aijeii + (b — buey;
=1

diagonal. Therefore, b;; = b1; and so b is a scalar matrix.
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LEmMA 1.2.  Let R be a prime ring of characteristic different from 2
and f(x1,...,x,) a multilinear polynomial over C. If for any
i=1,...,m,

[fer,. .. % 20), fler,...,2,)] =0

forallxy, ... x,,2; € R, then the polynomial f(xy, . .., x,) is central-valued
on R.

Proor. Let a be a noncentral element of R. Then replacing z; with
[a, ;] we have that for any i =1,...,n

[f(xr,. .., [a,2;], ... %), f(@1,...,2,)] =0

and so

S f@r,. e, ), f@, . w,) [ =0
1=0

which implies, [a, f(x1,...,%,)]s = 0forallay, ..., x, € R.By[11, Theorem],
f(xy,...,x,)is central-valued on R.

THEOREM 1.3. Let R be a prime ring of characteristic different
from 2, d a monzero derivation of R, f(x1,...,x,) a multilinear
polynomaial over C. If

[2(fler, ... @), flar,...,x)] € Z(R) forall ay,...,x, € R,

then either f(xy, ..., x,) is central-valued on R or R satisfies the standard
identity Sy(x1, %2, X3, X4).

Proor. Let I be any nonzero two-sided ideal of R. If for every
v,y €1, [A2(fOr,. .., 1), f(r,...,7)] =0, then by [14], this
generalized differential identity is also satisfied by @ and hence by R
as well. By Theorem A, f(r,...,7,) is then central-valued on R and
we are done. Now we assume that for some 17,...,7, €1,
0 # [d*(f(ry, ..., 7)), fOr1,...,v)] € INZR). Thus I NZ([R) # 0. Let K
be a nonzero two-sided ideal of Rz, the ring of central quotients of R.
Since KN R is a nonzero two-sided ideal of R, (KNR)NZ(R) # 0.
Therefore, K contains an invertible element in R; and so Rz is a
simple ring with identity 1.
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By assumption, R satisfies the differential identity
9@, @y d@r), . .., d(@y), dP@), . . ., d2(@,))
=T @) 2D @, @), )
i

+23 f@r,. ., dG), . d@), )

i<j

Y B, ), f@, 2] T ]
i
If d is not Q-inner, then by Kharchenko’s theorem [8],
Hfdz(xl, ce ) +ZZ Fler, . i )
i

(1) +ZZf(xla'-'7yia"'7y_ja"'7x7l)

1<j
+Zf(x17~--7zi7-"7x7l)7f(x17-"ax%)]ax%+1‘|:0
i

for all x;,y;,2;,%,11 € R for 1 =1,2 ... ,n. In particular, for any i, as-
suming y1 = =% 1=¥%ir1 ==Y, =0,21 =--- =2, =0, we have

[LFT @, @) + 200, Yy s ) F 1, s @) 1] = O

and so
Hfdz(acl, )+ 23 N, i), f, x)} ,xm] =0

for all a;,y;, 2,11 € B, 1=1,2,...,n. Thus from (1), we obtain

H2Z f@1, . iy Yy )

i<j

2)
+ Z flxe,...,2,. ..,xn),f(ocl,...,acn)} ,an}— 0

for all x;,y;,2;, %41 € Rfori=1,2,... 0.

By localizing R at Z(R), we obtain that (2) is also an identity of R. Since
R and Ry satisfy the same polynomial identities, in order to prove that R
satisfies Sy, we may assume that R is a simple ring with 1. Thus R satisfies
the identity (2). Now putting y; = [b,2;] = d(x;) and z; = [b,[b,x;]] =
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= &), i = 1,2,...,n for some b¢ Z(R), where ¢ is an inner derivation
induced by some b € R, we obtain that R satisfies

[[P(f @, . .., a)), [, . @), 2] = 0.

Thus by Martindale’s theorem [16], R is a primitive ring with a minimal
right ideal, whose commuting ring D is a division ring which is finite di-
mensional over Z(R). However, since R is simple with 1, R must be Arti-
nian. Hence R = Dy, the ring of k¥’ x k' matrices over D, for some k¥’ > 1.
Again, by [9, Lemma 2], it follows that there exists a field F' such that
R C My (F), the ring of all k x k matrices over the field F, and M(F) sa-
tisfies

[[52(f(9017 o 7x7z))7f(x17 cee 7xn)]>xn+1] =0.

If k > 3,then by Lemma 1.1, we have b € Z(R), a contradiction. Thus k = 2,
that is, R satisfies S4(1, X2, 23, %4).

Similarly, the same conclusion can be drawn in case d is an @-inner
derivation induced by some b € Q.

2. The case for one-sided ideal.
We begin with the following lemmas

LEMMA 2.1.  Let p be a nonzero right ideal of R and d a derivation of R.
Then the following conditions are equivalent:

(i) d1is an inner derivation induced by some b € Q such that bp =0;
(i) d(p)p = 0.

For its proof, we refer to [2, Lemma].

LEmMma 2.2. Let R be a prime ring, p a nonzero right ideal of R,
[y, ..., x) a multilinear polynomial over C, a € R and n a fixed positive
integer. If f(xy,...,x)"a =0 for all x,...,x; € p, then either a =0 or
fpp =0

For its proof, we refer to [3, Lemma 2 (IT)].

LEMMA 2.3.  Let R be a prime ving. If [d?(f(x1,. .., x0), f(X1, ..., 2] €
Z(R) for all xy,...,2, € p, then R satisfies nontrivial generalized
polynomaial identity unless d is an inner derivation induced by b € Q such
that b> = 0 and bp = 0.
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ProOF. Suppose on the contrary that R does not satisfy any nontrivial
generalized polynomial identity (GPI). Thus we may assume that R is
noncommutative, otherwise R satisfies trivially a nontrivial GPI. Now we
consider the following two cases:

Cask 1. Suppose that d is a Q-inner derivation induced by an element
b € Q such that b? # 0. Then for any xy € p

[[b, [b, f(xo X1, ..., x0X)]], f(@oXy, ..., x0X,)] € Z(R)
that is

(8) [[bzf(x0X17 L) aon’n) - be(x0X17 L) ;xOXn)b
+f@oXa, .. ., 0 X)b%, f@oX, . .., 20X)], 20Xy 1]

is a GPI for R, so it is the zero element in Qx¢ C{Xy,..., Xu1}-
Denote Iz(p) the left annihilator of p in R. Suppose first that {1,b,b?}
are linearly C-independent modulo Iz(p), that is (ab® + b+ y)p = 0 if
and only if « =f=y=0. Since R is not a GPI-ring, a fortiori it
can not be a Pl-ring. Thus, by [13, Lemma 3] there exists xy € p
such that {b%xg,bxg, 79} are linearly C-independent. Then we have
that

[ (@oX1, . .., 20 X,) — 20f (woX1,. . ., %0 X)b
+f(.%'0X1, e 7'700X’ﬂ)b27 f(xOle e ,onn)], xOXnJrl] =0

is a nontrivial GPI for R, a contradiction.

Therefore, {1,b,b?} are linearly C-dependent modulo lz(p), that is
there exist o, 8,y € C, not all zero, such that («b? + b + y)p = 0. Suppose
that o = 0. Then f # 0, otherwise y = 0. Thus by (b + y)p = 0, we have
that (b + f1y)p = 0. Since b and b + 1y induce the same inner derivation,
we may replace b by b+ 'y in the basic hypothesis. Therefore, in
any case we may suppose bp =0 and then from (3), R satisfies
20X 41 f2(00X1, . .., 20X,)b? = 0. Since R does not satisfy any nontrivial
GPI, > =0, a contradiction.

Next suppose that o #0. In this case there exist A,u € C such
that b%xy = Abxy + uxy for all xy € p. If bxy and o are linearly C-
dependent for all x; € p, then again we obtain bp = 0 and so b = 0.
Therefore choose xy € p such that bxy and xy are linearly C-in-
dependent. Then replacing b%xy with Abxy + o, we obtain from (3)
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that R satisfies

[{0b + f*@oX, ... wXa) — 26 @oXr, . w0 X Dbf @oXi, . 0 X,)
+f@oXa, ..., 20X,)Ub + Wf Xy, ... 20X,))

— {f(%‘oXl, . ,QCQXH)()J) + ,u)f(%'()Xl, . ,90()Xn)
— 2f (X1, . .., X (00X, . . ., 20 X,)b + f2(weXy, . .., 20 X,)b* }, WOXnJrl} :

This is a nontrivial GPI for R, because the term
(Abf*oXa, . .., woX,) — 2bf (X1, . .., woX,)bf (oX1, . .., 20X,)) 20X 11
appears nontrivially, a contradiction.

CaseII. Supposethat dis aninner derivation induced by an element b € @)
such that b = 0. Thus we have that [ — 2bf (X1, ..., X)b, f(Xy,...,X,)] €
Z(R) is satisfied by p. In case there exists xp€p such that {bxy,xo}
are linearly C-independent, we have that [[ — 2bf(x¢Xq,...,20X,)b,
faxoXy, ..., 20X,)], 20X, 11]1s anon trivial GPI for R, a contradiction. Hence
{bxy, o} are linearly C-dependent for all xy € p, that is there exists « € C
such that (b — a)p = 0. Thus we have that [af2(X1,...,X,)(@ — b), X,.1] is
satisfied by p, in particular R satisfies:

[of 2 (o X1, . . ., 20X ) — b), f@oX1, ..., 20 X)] = of3(X1, ..., X)) —b)

for any xy € p. Since R is not GPI, it follows that either b = o € C, whichis a
contradiction, or o = 0 which means bp = 0, as required.

CasE III. Suppose that d is an inner derivation induced by an element
b € Q such that bp = 0. Thus we have that [ — f2(X1,...,X)b? X,41] is
satisfied by p, in particular R satisfies:

[ —P@oXy, ..., 20X b2 flaxoXy, . .., 00 X)) = PeoXq, . .., 2o X,)b

for any xy € p. Again since R is not GPI we conclude that b? = 0.

Cast IV. Next suppose that d is not @-inner derivation. By our as-
sumption we have that R satisfies

0= [[fdz(ach, X))+ 23 faXy, L d@X; + ad(X), . eX,)
23 f@Xy, ... d@X; +2d(Xy), ..., d@X; +2d(X), . .., xX,)

i<j

+3 faXy, ..., d*@X; + 2d@dX) + 2d* X)), . .., xXy), f@X,. .., 2X,)] aXn+1] .
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By Kharchenko’s theorem [8],
“fdz(och, LaX) 2 fUeXy,. . d@X; +ar,. .., 2X,)
i

+23° f@Xy,...,d@)X; +ar;, ..., d@X; +ory, ..., 2X,)

1<j

T3 f@X,. . P@X;+2d@r +as;, ., xX,).f@X, ... 2X,)] ,XM} —0

for all Xi,...,X,,7,...,%,81,...,8 € R. In particular, for » =
=7y =---=1, =0, we have

[[fdz(xXl,...,aan)—i—ZZ Xy, ..., d@X;, ..., xX,)
2y flaXy, ..., d@X;, ..., d@X;,.. .L, 90)(',,7/)—|—Zf(acX17 @)X, X)) +

i<j

+Z f(xXla sy LSy 7xX7L)7f(xXlw .- 7xX7L):|7X77,+1i| =0.
1

Hence R satisfies the blended component
[[f (s, ..., xXp), f(@Xy, ..., X)), X111 =0

which is a nontrivial GPI for R, a contradiction.

THEOREM 2.4. Let R be an associative prime ring of char R # 2 with
center Z(R) and extended centroid C, f(x1,...,x,) a nonzero multilinear
polynomaial over C in n noncommuting variables, d a nonzero derivation of
R and p a nonzero vight ideal of R. If [d*(f (1, ..., xn), f@1,...,2,)] =0
forall xy,...,2, € pthen pC = eRC for some idempotent e in the socle of
RC and f(xy, ..., x,) s central-valued on eRCe unless d is an inner deri-
vation induced by b € Q such that b*> = 0 and bp = 0.

ProoF. Suppose d is not a @Q-inner derivation induced by an element
b € @ such that b> = 0 and bp = 0.

Now assume first that f(p)p = 0, that is f(xy, ..., 2,)2x,1 = 0 for all
X1,%2,...,%,41 € p. Then by [12, Proposition], pC = eRC for some idem-
potent e € soc(RC). Since f(p)p =0, we have f(pR)pR =0 and hence
f(p@Q)pQ = 0 by [4, Theorem 2]. In particular, f(pC)pC = 0, or equivalently,
f(eRC)e = 0. Then f(eRCe) = 0, that is, f(x1, ... ,x,) is a PI for eRCe and, a
fortiori, central valued on eRCe.

Next assume that f(p)p # 0, that is f(xy, ..., 2,)x,.1 is not an identity
for p and then we derive a contradiction. By Lemma 2.3, R is a GPI-ring
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and so is also @ (see [1] and [4]). By [16], @ is a primitive ring with
H = s0¢(Q) # 0. Moreover, we may assume f(pH)pH # 0, otherwise by [1]
and [4], f(pQ)pQ = 0, which is a contradiction. Choose ag,ay,...,a, € pH
such that f(ay,...,a,)ap # 0. Let a € pH. Since H is a regular ring, there
exists 2 = e € H such that

eH =aH +agH+a1H+ - +a,H.

Then e € pH and a = ea,a; = ea; for 1=0,1,...,n. Thus we have
f(eHe) = f(eH)e # 0. By our assumption and by [14, Theorem 2], we also
assume that

[y, @), [, 20)]

is an identity for pQ. In particular [d?(f(xy,...,%,)), f(x1,...,%,)] is an
identity for pH and so for eH. It follows that, for all »y,...,7, € H,

0= [dz(f(efrl, coery), flery, ... ery)].

We may write f(xy,...,2,) =t@1,..., 1%, + A2y, ..., %,), Where ax,
never appears as last variable in any monomials of %. Let » € H. Then re-
placing 7, with »(1 — e), we have

4) 0= [dz(t(eﬁ, ... ery_1)er(l —e)), tlery,. .., er,_1)er(l —e)l.

Now, we know the fact that d(x(1 — e¢))e = —x(1 — e)d(e) and (1 — e)d(ex) =
= (1 — e)d(e)ex and so

(1 — e)d(ex(1 — e))e =(1 — e)d{d(e)ex(1 — e) + ed(ex(1 — e)) }e
=(1 —e)d(e)d(ex(1 —e))e + (A — e)d(e)d(ex(1 — e))e
= —2(1 — e)d(e)ex(1 — e)d(e).
Thus using this facts, we have from (4),
0 =1 —e)[d®(tery, ..., er,_1er(l —e)),tlerr, ..., er, er(l — e)]
=1 - e)alz(t(eﬁ7 .., ery_)er(l —e)tery, . .., er,_1)er(1 —e)
= —2(1 — e)d(e)t(ery,...,er,_1)er(l —e)d(e)t(ery, ..., er,_1)er(l —e)
—2((1 — e)d(e)t(err, . .., ery_1er)*(1 —e).

This implies
0= —2{A — e)d(e)t(ery, ... 767%,1)61"}3

that is

0= —2{(1 — e)d(e)t(er, ..., er, 1)eH)".
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By [6], 1 — e)d(e)t(ery, ..., er,_1)eH = 0 which implies
1 —e)d(e)t(erse, ..., er,_1e) = 0.

Since eHe is a simple Artinian ring and t(eHe) # 0 is invariant under the
action of all inner automorphisms of eHe, by [5, Lemma 2],(1 — e)d(e) = 0
and so d(e) = ed(e) € eH. Thus d(eH) C d(e)H + ed(H) C eH C pH and
d(a) = d(ea) € d(eH) C pH. Therefore, d(pH) C pH. Denote the left anni-
hilator of pH in H by lg(pH). Then pH = #IZ(/)H)’ a prime C-algebra
with the derivation d such that d(x) = d(x), for all x € pH. By assumption,
we have that

[az(f(x_lvvx_’ﬂ));f(x_lvax_%)] =0

for all 7, ..., %, € pH. By Theorem A, either d = 0 or f(%1, . .., X,) is cen-
tral-valued on pH.

If d = 0, then d(pH)pH = 0 and so d(p)p = 0. By Lemma 2.1, d is an
inner derivation induced by an element b € @ such that bp = 0. Then for all
x1,...,%, € p, Wwe have by assumption that

0 =[[b,[b, f(x1,...,2)]], f@1,...,2)] = —f2(x1,. .., 2,)b%

By [3, Lemma 4], either 4> = 0 or f(p)p = 0. In both cases we have con-
tradiction.

If f(%1, . ..,%,) is central-valued on pH, then pH, as well as p, satisfies
[f(x1,..., %), pi1]0y2 = 0. Then pC = eRC for some idempotent element
e € soc(RC) by [12, Proposition] and f(x1, . .., «),) is central-valued on eRCe
and we are done.

THEOREM 2.5. Let R be an associative prime ring of char R # 2 with
center Z(R) and extended centroid C, f(xy,...,x,) a nonzero multilinear
polynomial over C in n noncommuting variables, d a nonzero derivation of
R and p a nonzerovight ideal of R. If[d?(f(x1, ..., 20)), f(21, ..., 2.)] € Z(R)
forallxy, ..., x, € pthen pC = eRC for some idempotent e in the socle of RC
and either f(x1,...,x,) 1s central-valued on eRCe or eRCe satisfies
Sy, 2, 23, 24) unless d is an inner derivation induced by b € Q such that
b2 = 0 and bp = 0.

ProoOF. Suppose d is not a @Q-inner derivation induced by an element
b € @ such that b> = 0 and bp = 0.

If [f(p),plp=0, that is [f(ry,..., %), %n1)0n2 =0 for all
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21,22, ...,%ys2 € p, then by [12, Proposition], pC = eRC for some idem-
potent e € soc(RC) and f(xy, .. .,x,) is central-valued on eRCe.

So, assume that [f(p), plp # 0, that is [ f(xy, ..., %), Xyr1)2,, 2 is not an
identity for p and then we derive that eRCe satisfies Sy. By Lemma 2.3, R is
a GPI-ring and so is also @ (see [1] and [4]). By [16], @ is a primitive ring
with H = soc(Q) # 0. Moreover, we may assume [f(pH),pH]pH # 0,
otherwise by [1] and [4], [f(p@), pQlpQ = 0, which is a contradiction.
Choose a4, ...,0y12,b1,...,b5 € pH such that [ f(az,...,ay),ayi1]ay2 £ 0
and Sy(by, bg, b3, by)bs # 0. Let a € pH. Since H is a regular ring, there
exists ¢ = e € H such that

eH=a0H +aH+ - +aypoH+bH+ -+ bsH.

Then e € pH and a =ea,a; =ea; for 1 =1,....n+2, b; =eb; for
1=1,...,5. Thus we have f(eHe) = f(eH)e # 0. Moreover, by [14, Theo-
rem 2], we may also assume that

[[d*(f e, .. a0), f@r, . a)], 2]

is an identity for pQ. In particular, [d?(f(x1, . .., %)), f(x1, ..., 2,)], @py1]is
an identity for pH and so for eH. It follows that, for all »,...,7,.1 € H,

0= [[dz(f(erl, coery), flery, ... eyl ery ]

We may write f(xy,...,%,) =t@1,..., 1%, + A(X1, ..., %,), Where ax,
never appears as last variable in any monomials of 4. Let » € H. Then re-
placing 7, with (1 — e) and 7,1 with r,,.1(1 — e), we have

() 0=[[d*(tlert,. .. ery_1)er(l—e)), tery, ..., er,_Der(l—e)l, ery1(1—e)l.

Now, we know the fact that d(x(1 —e))e = —x(1 — e)d(e), (1 — e)d(ex) =
= (1 —e)d(e)ex and (1 — e)d2(ex(1 — e))e = —2(1 — e)d(e)ex(1 — e)d(e). Thus
using these facts, we have from (5),

0 =[[d®(tery, . .., er, Der(l — e)), tery, ... ery Der(l — e)l,er, 1(1 — e)]

=[d?(t(ery, ..., ern_1)er(l —e)), ter, ..., er,_1)er(l — e)ler, (1 —e)
—erp1(1 — e)[dP(ter, . .. ery_1)er(l —e)), tery, . .., er,_1er(l — e)]

= —tler, ..., er,_1)er(l — e)d?(tery,. .. er,_1)er(l — e)er,.1(1 —e)
—erp1(1 — e)dz(t(eﬁ7 .o ery_per(l —e)tlery, . .., ery,_1)er(1 —e)

=tlery,...,er,_1)er(1 — e)d(e)t(ery, ..., er,_1)er(l — e)d(e)r,,1(1 —e)
+ er, 1 (1 — e)d(e)t(ery,. .., er,_1)er(l — e)d(e)t(ery,. .., er,_1)er(l —e).



256 Basudeb Dhara - Rajendra K. Sharma

Replacing 7,1 with t(ery, ..., er,_1)er in the above relation, we get
2t(ery, ..., ery_1er((1 — e)d(e)tler,. .., ern,l)er)z(l —e)=0.

This implies
2((1 — e)d(e)t(ery, ... ,er,_1er)* =0
that is
2{( — e)d(e)t(ery, ..., e1ﬂn,1)el—[}4 =0.

By [6], 1 — e)d(e)t(ery, ..., er,_1)eH = 0 which implies
1 —e)d(e)t(erse, ..., er,_1e) = 0.

Since eHe is a simple Artinian ring and t(eHe) # 0 is invariant under the
action of all inner automorphisms of eHe, by [5, Lemma 2],(1 — e)d(e) = 0
and so d(e) = ed(e) € eH. Thus d(eH) C d(e)H + ed(H) C eH C pH and
d(a) = d(ea) € d(eH) C pH. Therefore, d(pH) C pH. Denote the left anni-
pH
pH N ly(pHY
with the derivation d such that d@) = d(x), for all x € pH. By assumption,
we have that

hilator of pH in H by Ig(pH). Then pH = a prime C-algebra

[[Ezf(xilvvm)vf(xil77x7%)]amﬂ =0

for all #7,...,%, € pH. By Theorem 1.3, either d = 0 or f(xy,...,%,) is
central-valued on pH or pH satisfies the standard identity Sy(x1, . .., %).

If d = 0, then as in the proof of Theorem 2.4, we have d(p)p = 0 and
hence by Lemma 2.1, d is an inner derivation induced by an element b € @
such that bp = 0. Thus for all r,...,r, € pH,

[A2(fCre, ... or0), fOrL, )] = —f(rr, ..., )b € C.

Commuting both sides with f(r1,...,7,), we obtain f(r,... ,1”,1)3112 =0.In
this case by Lemma 2.2, since b # 0, f(pH)pH = 0. If f(pH)pH = 0, then
[f(pH), pH]pH = 0, a contradiction.

If f(x1,...,%,) is central-valued on pH, then we obtain that

[f @1, 20), Bpg1 102

is an identity for p, a contradiction.

Finally, if S4(@7,...,%s) is an identity for pH, Sy(x1,...,24)x5 is an
identity for pH and so for pC and this contradicts the choices of the ele-
ments by, ..., bs5 € pH. Therefore, we conclude that in any case pC satisfies
a polynomial identity, hence by [12, Proposition], there exists an idempo-
tent e € Soc(RC) such that pC = eRC, as desired.
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