REND. SEM. MAT. UN1v. PADOVA, Vol. 121 (2009)

A Note on Primes Between Consecutive Powers

DANILO BAZZANELLA (*)

ABSTRACT - In this paper we carry on the study of the distribution of prime numbers
between two consecutive powers of integers.

1. Introduction.

A well known conjecture about the distribution of primes asserts that
all intervals of type [12, (n + 1)°] contain at least one prime. The proof of
this conjecture is quite out of reach at present, even under the assumption
of the Riemann Hypothesis. To get a conditional proof of the conjecture we
need to assume a stronger hypothesis about the behaviour of Selberg’s
integral in short intervals, see D. Bazzanella [3]. This paper concerns with
the distribution of prime numbers between two consecutive powers of in-
tegers, as a natural generalization of the above problem. The well known
result of M. N. Huxley [8] about the distribution of prime in short intervals
implies that all intervals [#*, (» + 1)*] contain the expected number of

12
primes for o > 5 and n — oo. This was slightly improved by D. R. Heath-

12
Brown [7] to o > 5

Assuming some heuristic hypotheses we can obtain the expected
distribution of primes for smaller values of «. In particular under the
assumption of the Lindel6f hypothesis, which states that the Riemann
Zeta-function satisfies

. 1
lo+it) < " (azz,tzz),
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for any # > 0, the classical result of A. E. Ingham [9] implies that all in-
tervals [#*, (n + 1)*] contain the expected number of primes for « > 2.

In a previous paper, see [2], the author proved that all intervals
[n*, (n + 1)*] Cc [N,2N], with at most O(B(IV, «)) exceptions, contain the
expected number of primes, for suitable function B(N, «). More precisely
the author proved that we can choose
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for ¢ > 0 and ¢ a suitable positive constant. The author proved also that,
under the assumption of the Lindeldf Hypothesis, we can choose

2) B(N,a) = (NV%2** for 1<o <2

and, under the assumption of the Riemann Hypothesis, we can choose
@3) B(N,0) = (NV/***log®N g(N) for l<a <2,

with g(N) — oo arbitrarily slowly.

In this paper we establish the upper bounds for the exceptional
set of the distribution of primes between two consecutive powers of
integers under the assumption of some other heuristic hypotheses.
The first hypothesis regards the counting functions N(¢,T) and
N*(g,T). The former is defined as the number of zeros p = ff + iy of
Riemann zeta function which satisfy ¢ < <1 and |y <7, while
N*(o,T) is defined as the number of ordered sets of zeros p; = f; + 1y;
(1 <j <4), each counted by N(g,T), for which |y; + 7y — 5 — 74| < 1. If
we make the heuristic assumption that there exists a constant T
such that

4
) N*(e,T) <<N("—T’T) GSGSI,TZTo),

as in D. Bazzanella and A. Perelli [4], then we can obtain the following re-
sult.

THEOREM 1. Assume (4) and let ¢ > 0. Then all intervals [n*, (n+1)*] C
C [N,2N1, with at most O(NY*)"*%) exceptions, contain the expected
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number of primes , where

4o+ 12 — 8V/3u ggagg
) — 16 25
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For o near 6/5 the assumption of (4) is not helpful to obtain a stronger
result than the unconditional result (1) proved in [2]. A corollary of this
theorem is Theorem 3 of D. Bazzanella [1], which states that, under the
assumption of (4), all intervals [nZ,(n + 1’1 C [N ,2N], with at most
O(N'/5+¢) exceptions, contain the expected number of primes. Recalling
that for « > 12/5 there are not exceptions, we expect to have

ozllllg/lfr ;7(0() =0
We note that the above condition is implies by the Theorem 1, but not by
the unconditional result (1).

Moreover we assume the Density Hypothesis, which states that for

every 7 > 0 the counting function N(o, T') satisfies

N(o,T) < T?1=7+ (% <o < 1),
obtaining our last result.

THEOREM 2. Assume the Density Hypothesis and (4), let ¢ > 0 and
l<a <2 Then all intervals [n* (n+1)*] C[N,2N], with at most
O((NY/ “)”‘“”8) exceptions, contain the expected number of primes, where

nla) = 22 — o).

If we assume the Riemann Hypothesis, it is known that for « > 2 there
are not exceptions and then we expect to have 7(2) = 0. Indeed, although
the assumptions of the Theorem 2 are weaker than the Riemann Hy-
pothesis, we obtain 7(2) = 0 again.

2. The basic lemma.
Throughout the paper we always assume that n, x, X and N are suffi-

ciently large as prescribed by the various statements, and ¢ > 0 is arbi-
trarily small and not necessary the same at each occurrence. The basic
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lemma is a result about the structure of the exceptional set for the
asymptotic formula

) w(@ 4 h(x) —w(x) ~ h(x) as & — oo.

Let || denote the modulus of a complex number or the Lebesgue
measure of an infinite set of real numbers or the cardinality of a finite set.
Let 6 > 0 and let A(x) be an increasing function such that x* < h(x) < « for
some ¢ > 0,

A, h) = w(x + h(x)) — wx) — M)
and
Es(X,h) = {X < <2X : |, h)| > ohx)}.

It is clear that (5) holds if and only if for every ¢ > 0 there exists X,(d) such
that Es(X, h) = (0 for X > Xy(9). Hence for small 6 > 0, X tending to co and
h(x) suitably small with respect to x, the set E5(X, h) contains the excep-
tions, if any, to the expected asymptotic formula for the number of primes
in short intervals. Moreover, we observe that

EsX,h) C Eg(X,h) if 0<d <9.

We will consider increasing functions h(x) of the form h(x) = x/+@, with
some 0< <1 and a function &(x) such that |e(x)| is decreasing,

e(x) =o(1) and e(x+y):g(x)+0( | )’
xlog x

for every |y| <x. A function satisfying these requirements will be called of

type 0.
The basic lemma provides the structure of the exceptional set Es(X, k).

LEMMA. Let 0<0<1, h(x) be of type 0, X be sufficiently large de-
pending on the function h(x) and 0<d' <6 with § — & > exp( — /log X).
If xo€ Es(X,h) then Eg(X,h) contains the interval [xo— ch(X),
xo + ch(X)] N [X,2X], where ¢ = (5 — §)0/5. In particular, if E5(X,h) # 0
then

|Ey(X, h)| >y (6 — I X).

The above Lemma is part (i) of Theorem 1 of D. Bazzanella and A.
Perelli, see [4], and it essentially says that if we have a single exception in
Es(X, h), with a fixed ¢, then we necessarily have an interval of exceptions
in Ey(X, h), with ¢’ a little smaller than .



A Note on Primes Between Consecutive Powers 227

3. Proof of the Theorems.

We define H = (n + 1)* — n* and
As(N,0) = {NY* <n < @N)/* . lw((n +1)*) —wn*) — H| > 6H}.

This set contains the exceptions, if any, to the expected asymptotic formula
for the number of primes in intervals of the type [#*, (n + 1)*] C [N,2N].

The main step of the proof is to connect the exceptional set As(N, )
with the exceptional set for the distribution of primes in short intervals and
to show that

|Es/2(N, h)|
N1-1/a + 1’

for every 6 > 0, o > 1 and h(x) = (x¥/* +1)* — 2.
In order to prove (6) we choose n € As;(N,«) and let x = n* € [N,2N].
From the definition of As(NV,a) we get

lw((n + 1)) — y(n*) — H| > 0H,

(6) |As(N, 0)| <

and then
[y + h(x)) — w(x) — h(x)| > h(x),

which implies that x € E5(N, k). Using the Lemma, with §' = §/2, we
obtain that there exists an effective constant ¢ such that

[, 2 + ch(x)] N[N, 2N] C Es/5(N, h).

Let m € A;(N, o), m > n. As before we can define y = m* € [N,2N] such

that
[,y + ch(ININ,2N] C E;/o(N, k).

Choosing ¢ <1 we find
y—x=m"—n">m+1)"—n">ch(x),
and then
[, 2 + ch(@)] N [y,y + ch(y)] = 0.

Hence (6) is proved, since for every n € As(N,«) and x = n*, with at most
one exception, we have

[x,x + ch(x)] C [N,2N].

Now we can conclude the proof of the theorems providing a suitable
bounds for the measure of the exceptional set Es/ (N, k).
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If we consider x € E;/2(N,h) we get
(e + h(x)) — yix) — h(x)| > N-V/=
and then
|Esj2(N, )| N4/

< / (e + () — wlx) — ho)|* de
() E5/2(Nh)

2N
< / W@ + h@) — (@) — h@) + 2@ de,
N

for every X(x) such that
1-1/o
logN -~

2r) <

Now we use the classical explicit formula, see H. Davenport [5, Chapter 17],
to write

N log2N
) w + W) — p) — hx) = — MZ:T a’cy(x) + 0 (%) ,

uniformly for N < x < 2N, where 10 < T < N, p = [ + iy runs over the
non-trivial zeros of {(s) and

1+ h@)/xy —1

c,(®) = )
Let
©) T = NV/*log®N,
and then
(10) ¢(2) < min (N‘l/“, ﬁ) :

Follow the method of D. R. Heath-Brown, see [6], we find a constant
0<wu <1 such that
lel/ot

Z xc,(x) € +—,
[YIST, p>u log N
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obtaining

lel/ac
w(x + h(@) — yx) — h(x) = — Z x’c,(x) + O( ) )

[YI<T. f<u log N
and then, from (7), we have
2N 4
(11) |E5(N, h)|N*4/* « / > e, (@) de
N |ﬂ§7\ﬂéu

To estimate the fourth power integral we divide the interval [0, %] into
O(1In N) subintervals I;, of the form

L[k k1
#~ |logN’ logN|’

and by Hélder inequality we obtain
4

4
Z e, ()| < lngNZ Z x’c)(x)
[YI<T, p<u k| 7I<T, Bl
and then
2N 4
(12) / Z a’c, ()| dr < N*4* " max N*M(q, T),
N | PIST pu o=
where
1
Mo, T) = .
ﬁgﬁ; 1+ y1+ 72— 3 — 4l
[P1I<T ey |<T

It is not difficult to prove that
M(o,T) < N*(g,T)log N,
see [6], and then from (11) and (12) this yields
|Es5/2(N, )| < N 3% max NY*N*(a,T).

The assumption of (4) then implies

4
(13) |E52(N, h)| < N-3-1/xt (m<aXN"N(a, T)) :
a<U



230 Danilo Bazzanella

Using the Ingham—-Huxley density estimate, asserting that for every v > 0
we have

T3(1-0)/@—0)+v % << 2
(14) N(@o,T) <« '
TS(lfa)/(Safl)Jrv ?1 <g< 1

see [10, Theorem 11.1], we obtain an upper bound that for o« > 48/25 attains
its maximum at ¢ = 3/4, and so we get

3 7
(15) |Bsjo(N, 1) < N-31eNA B 5) o« Nas e,
From (6) and (15) we can conclude
7
|E 52N, )| Nosté
|As(N, )| < W +1x NI 1x

<Nom e m(E-o) +e

for every 6 > 0 and o > 48/25.
For 27/16 <« <48/25 the above bound attains its maximum at
g =2 — /3/0 and then we have

- 11
(16) |Es/(N, h)| < N-371/*"(N°N (7, T))4<< N8Bt
Thus, from (6) and (16), we deduce

11
E N,h N5+?78 3/o+e
| 5/2(7 )|+1<< i
N1-1/a N1-1/a

< N4+%78 3/u+e < (Nl/a)(4oz+12—8\/?;)+z:.

AN, o) <

for every J > 0 and 27/16 < « < 48/25, and then Theorem 1 follows.
In order to prove Theorem 2 we imitate the proof of Theorem 1 up to
equation (13) and then we write

4
|Es/o(N, h)| < N-3-1/%te (m<ax N°N(o, T)> .

Recalling that under the assumption of the Density Hypothesis we have

T21-0)+v 5 <o < %
an N, T) < '
T91—0)/(To—1)+v E <og<1

14 —
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for every v > 0, we thus obtain an upper bound for the exceptional set. For
every 1<a < 2 such a bound attains its maximum at ¢ = 1/2, and so we
obtain

|Es/2(N, )| < N~371/*(N2N(1/2, T))4<< NB/2-1te
The above bound and (6) imply that

E N’h N3/9¢—1+8
BopN. 1y

AW, ) < 7 N

<« N¥r2+e (Nl/a)(4—206)+8.

This concludes the proof of Theorem 2.
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