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Local Structure of Brill-Noether Strata
in the Moduli Space of Flat Stable Bundles

ELENA MARTINENGO (*)

ABSTRACT - We study the Brill-Noether stratification of the coarse moduli space of
locally free stable and flat sheaves of a compact Kéhler manifold, proving that
these strata have quadratic algebraic singularities.

1. Introduction.

Let X be a compact complex Kéihler manifold of dimension ». Let M be
the moduli space of locally free sheaves of Ox-modules on X which are
stable and flat. It is known that a coarse moduli space of these sheaves can
be constructed and that it is a complex analytic space (see [Nor] or [LePoi]
for the algebraic case). Moreover the following result, proved in [N] and
[G-M88], determines the type of singularities of this moduli space:

THEOREM 1.1. The moduli space M has quadratic algebraic singu-
larities.

In his article [N], Nadel constructs explicitly the Kuranishi family of
deformations of a stable and flat locally free sheaf of Ox-modules £ on X
and he proves that the base space of this family has quadratic algebraic
singularities. Whereas the proof given by Goldman and Millson in [G-M88]
is based on the study of a germ of analytic space which prorepresents the
functor of infinitesimal deformations of a sheaf £. They find out this ana-
lytic germ and prove that it has quadratic algebraic singularities.
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This paper is devoted to the local study of the strata of the Brill-Noe-
ther stratification of the moduli space M and in particular, in the same
spirit as Theorem 1.1, to the determination of their type of singularities.

In section 2 we study an equivalence relation between germs of analytic
spaces under which they are said to have the same type of singularities. We
prove that this relation is formal (Proposition 2.14) and that the set of
germs with quadratic algebraic singularities is closed under this relation
(Theorem 2.16).

In section 3 we introduce the Brill-Noether stratification of the moduli
space M, we are interested in. The subsets of this stratification are defined
in the following way. We fix integers h; € N, for all : =0...%n, and we
consider the subspace N(k...h,) C M of stable and flat locally free
sheaves of Oy-modules on X, with cohomology spaces dimension fixed:
dim H' = h;, for all i =0...%n. Our aim is to study the local structure of
these strata N'(hy ... h,), proving the following

THEOREM 1.2 (Main Theorem). The Brill-Noether strata N (hg ... hy)
have quadratic algebraic singularities.

In sections 3 and 4, we define and study the functor Def? of in-
finitesimal deformations of a stable and flat locally free sheaf of Ox-
modules £ on X, such that H'(X, &) = h; for all i = 0...%, which preserve
the dimensions of cohomology spaces.

In section 5, we find out another functor linked to Def? by smooth
morphisms and for which it is easy to find a germ which prorepresents it.
Then the Main Theorem follows from the formal property of the relation of
having the same type of singularities and from the closure of the set of
germs with quadratic algebraic singularities with respect to this relation.

2. Singularity type.

Let An be the category of analytic algebras and let An be the category
of complete analytic algebras. We recall that an analytic algebra is a C-
algebra which can be written in the form C{x; ...x,}/I and a morphism of
analytic algebras is a local homomorphism of C-algebras.

DEFINITION 2.1. A homomorphism of ringsw : R — S is called formally
smooth 1if, for every exact sequence of local Artinian R-algebras:
0—1—B— A — 0 suchthat I is annihilated by the maximal ideal of B,
the induced map Homg(S, B) — Homp(S, A) is surjective.
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We recall some facts about formally smooth morphisms of analytic al-
gebras, which we use in this section. We start with the following equiva-
lence of conditions (see [Ser], Proposition C.50):

ProrosiTiON 2.2. Let w: R — S be a local homomorphism of local
Noetherian C-algebras conteining a field isomorphic to their residue field
C. Then the following conditions are equivalent:

-y is formally smooth,
- Sis isomorphic to a fO'r"mal power series ring over R,
- the homomorphism Vs R — S induced by v s formally smooth.

Furthermore, we recall two Artin’s important results (see [A], Theorem
1.5a and Corollary 1.6):

THEOREM 2.3. Let R and S be analytic algebras and let R and S be
their completions. Let y : R — Sbea morphism of analytic algebras, then,
Jor all n € N, there exists a morphism of analytic algebras v, : R — S,
such that the following diagram is commutative:

R 7/} n S Tn, S / mg

Id Id

RLSHS/WL )

COROLLARY 2.4. With the notation of Theorem 2.3, if in addition w
induces an isomorphism y : R — S, then v, is an isomorphism, provided
n> 2

Using these results, we can prove the following

PROPOSITION 2.5.  Let R and S be analytic algebras and let R and S be
their completions. Let i : R — S be a smooth morphism, then there exists
a smooth morphism R — S.

Proor. By Thereom 2.2, there exists an isomorphism ¢ : R[[ac]] — S’,
Corollary 2.4 implies that there exists an isomorphism ¢: R{x} — S,
which is obviously smooth by Theorem 2.2. Thus the morphism
¢oi:R— R{x} — S is smooth. O
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To complete our study of analytic algebras, we prove the following

PROPOSITION 2.6. Let R and S be analytic algebras, such that

- dimcmg/mf = dimcmg/m% and
- R{z1,...,an} = S{#r1,...,2u}, for some N and M,

then R and S are isomorphic.

Proor. The first hypothesis implies that, in the isomorphism
R{z,...,2n} =2 S8{#1,...,2u}, N = M. Moreover, proving the proposition
by induction on N, the first hypothesis makes the inductive step trivial.
Thus it is sufficient to prove the proposition for N = 1.

Let R =C{xy,...,2,}/1 and S = C{yy,...,yn}/J be analytic alge-
bras, with I C (xq,...,2,)° and J C (yl,...,ym)z. Let ¢: C{e}{=}/I —
— C{y}{z}/J be an isomorphism and let y its inverse. Let ¢(z) =
=0z + By) +1(y,2) and let w(z) = az + b(x) + c(x,2), where o,a € C are
costant, f3, y, b and c are polynomial, y and ¢ do not contain degree one
terms and, with a linear change of variables, we can suppose that ¢ and w
do not contain constant term.

If at least one between « and a is different from zero, then the thesis
follows easely. For example, if o # 0, the image ¢(z) satisfies the hypoth-
esis of Weierstrass Preparation Theorem and so it can be written as
#(z) = (z + W(y)) - u(y, 2), where u is a unit and (y) is a polynomial. Then ¢
is well defined and induces an isomorphism on quotients: ¢ : C{x}/I —
— C{yHz}/J - @+ hy) = Cly}/J.

Let’s now analyse the case o« = a = 0. Let v: C{x}{z}/I — C{x}{z}/I
be a homomorphism defined by v(x;) = «;, for all 7, and v(z) = z + b(x). It is
obviously an isomorphism and the composition ¢ o v is an isomorphism
from C{x}{z}/I to C{y}{z}/J, such that ¢ o v(z) contains a linear term in
z, thus, passing to the quotient, it induces an isomorphism Cla}/I =
=~ C{y}/J. O

Now we consider the following relation between analytic algebras:

RxS iff IR—S formally smooth morphism,

let ~ be the equivalence relation between analytic algebras generated
by . We define another equivalence relation:

R~S iff R{x;...x,} =2 S{y1...yn} are isomorphic, for some n and m.

The relation = is the same as the relation ~. Infact, if R ~ S, there exists a
chain of formally smooth morphisms R — T « Ty — ... — T, < S, that,
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by Theorem 2.2 and Corollary 2.4, gives an isomorphism R{x} = S{y},
then R ~ S. Viceversa, if R ~ S, there exists an isomorphism R{x} = S{y}
which is formally smooth, thus we have the chain of formally smooth
morphisms R — R{x} — S{z} — Sand R ~ S.

We consider the following relation between complete analytic algebras:

RxS8 iff 3R —S8 formally smooth morphism,

let ~ be the equivalence relation between analytic algebras generated by .
We define an other equivalence relation:

R =S iff R[[ml R | = S’[[xl ...2xy]] are isomorphic, for some » and m.

As before, the relation = is the same as the relation ~. Furthermore, the
equivalence relation ~ on completions of analytic algebras coincides with
the relation ~ between the analytic algebras themselves, because obviously
the two relations = and ~ are the same.

The opposite category of the category of analytic algebras An° is called
the category of germs of analytic spaces. The geometrical meaning of this
definition is that a germ A° can be represented by (X, x, «), where X is a
complex space with a distinguished point « and « is a fixed isomorphism of
C-algebras Oy, =~ A. Two triples, (X,z,2) and (Y,y, §), are equivalent if
there exists an isomorphism from a neighborhood of « in X to a neigh-
borhood of y in ¥ which sends « in ¥ and which induces an isomorphism
Ox @ = OYAy-

Let (X, x) and (Y, y) be germs of analytic spaces, given by the analytic
algebras S and R respectively, let ¥ : (X,x) — (Y, y) be a morphism of
germs of analytic spaces and let v : B — S be the corresponding morphism
of analytic algebras.

DEFINITION 2.7. The morphism ¥ : (X,x) — (Y, y) is called smooth if
the morphism v : R — S s formally smooth.

We consider the following relation between germs of analytic spaces:
X,x)x(Y,y) iff T X,2)— (Y,y) smooth morphism

and we define ~ to be the equivalence relation between germs of analytic
spaces generated by the relation «. It is obvious that the relation ~ defined
between germs of analytic spaces is the same as the relation ~ defined
between their corresponding analytic algebras. As in [V], we give the fol-
lowing
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DEFINITION 2.8. The analytic spaces (X, x) and (Y,y) are said to have
the same type of singularities if they are equivalent under the relation ~.

Our aim is to prove that the property that two germs of analytic spaces
have the same type of singularities is formal, that is that it can be con-
trolled at the level of functors.

In all this paper we consider covariant functors F : Artc — Set from
the category of local Artinian C-algebras with residue field C to the ca-
tegory of sets, such that 7(C) = one point set. The functors of this type are
called functors of Artin rings. In the following we recall some basic notions
about these functors.

Let F be a functor of Artin rings. The tangent space to F is the set
F(Cle]), where C[e] is the local Artinian C-algebra of dual numbers, i.e.
Cle] = Clxl/ (¢®) . It can be proved that F(C[e]) has a structure of C-vector
space (see [S], Lemma 2.10).

An obstruction theory (V,v,) for F is the data of a C-vector space V,
called obstruction space, and, for every exact sequence in the category
A?"tc,:

e:0—I—B—A—0,
such that I is annihilated by the maximal ideal of B, a map
Ve : F(A) — V ®c¢ I called obstruction map. The data (V,v,) have to satisfy
the following conditions:

— if & € F(A) can be lifted to F(B), then v,(&) = 0,
— (base change) for every morphism f : e; — ey of small extensions, i.e.
for every commutative diagram

e : 0 I B Aq 0
lf[ i./B lf/x
€2 : 0 Iy By As 0

then v,,(f4() = (Idy ® f)(v, (£)), for every & € F(Ay).

An obstruction theory (V,v,) for F is called complete if the converse of
the first item above holds, i.e. the lifting of & € F(A) to F(B) exists if and
only if the obstruction v,(&) vanishes.

For morphisms of functors we have the following notion of smoothness:

DEFINITION 2.9. Letv : F — G be a morphism of functors, it is said to be
smooth if; for every surjective homomorphism B — A in the category Avtc,
the induced map F(B) — G(B) xgu) F(A) is surjective.
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Let F be a functor of Artin rings, a couple for F is a pair (4, &), where
A € Artc and & € F(A). A couple (4, &) for F induces an obvious morphism
of functors, Hom(A, —) — F, which associates, to every B € Art- and
¢ € Hom(A4, B), the element ¢(¢) € F(B). -

We can extend the functor F to the category Art- of local Noetherian
complete C-algebras with residue field C by the formula /f A =
= lgn FA/m™). A procouple for F is a pair (4, &), where A € Art- and

e F (A). It induces an obvious morphism of functors: Hom(4, —) — F.

DEFINITION 2.10. A procouple (A, &) for a functor F is called a pro-
representable hull of F, or just a hull of F, if the induced morphism
Hom(A, —) — F 1s smooth and the induced map between tangent spaces
Hom(A, Cle]) — F(Cle]) is bijective.

A functor F is called prorepresentable by the procouple (A, &) if the
mduced morphism Hom(A, —) — F is an isomorphism of functors.

The existence, for a functor of Artin rings F, of a procouple which is a
hull of it or which prorepresents it is regulated by the well known
Schlessinger conditions (see [S], Theorem 2.11). Moreover a functor which
satisfies the two of the Schlessinger’s conditions (H1) and (H2) is said to
have a good deformation theory. We do not precise this concept, because all
functors that appear in the following are functors with a good deformation
theory and all the ones involved in the proof of the Main Theorem have
hull.

With the above notions, we can state the following Standard Smooth-
ness Criterion (see [Man99], Proposition 2.17):

THEOREM 2.11. Letv:F — G be a morphism of functors with a good
deformation theory. Let (V ,v,) and (W, w,) be two obstruction theories for
F and G respectively. If:

- (V,v.) is a complete obstruction theory,
— v 18 mjective between obstructions,
— v 1s surjective between tangent spaces,

then v is smooth.
For morphisms between Hom functors the following proposition holds
(see [S], Proposition 2.5):

PROPOSITION 2.12. Let y: R — S be a local homomorphism of local
Noetherian complete C-algebras, let ¢ : Hom(S, —) — Hom(R, —) be the
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morphism of functors induced by y. Then g% is smooth if and only if S is
1somorphic to a formal power series ring over R.

We consider the following relation between functors:
FxgG iff 3IF—G smooth morphism

and we define ~ to be the equivalence relation generated by .

DEFINITION 2.13. The functors F and G are said to have the same type
of singularity if they are equivalent under the relation ~.

Now we want to link Definitions 2.8 and 2.13 in the case the functors
considered have hulls. Let 7 and G be two functors with hulls, given by the
germs of analytic spaces (X, ) and (Y, y), defined by the analytic algebras S
and R respectively. If (X, x) ~ (Y, y), or equivalently, if R ~ S, there exists
a chain of smooth morphisms of analytic algebras S «— 71 - To «— ... = R
that induces a chain of smooth morphisms of functors F « Hom(S ,—) —
— Hom(Ty, —) — Hom(T%», —) ... Hom(R, —) — G, by Propositions 2.2 and
2.12 and by definition of hull, thus 7 ~ G. For the other implication we need
the following

PROPOSITION 2.14.  Let F and G be two functors with hulls given by the
germs of analytic spaces (X, x) and (Y, y) respectively and let ¢ : F — G be
a smooth morphism. Then there exists a smooth morphism between the
two germs (X, x) and (Y, y).

Proor. Let S and R be the analytic algebras that define the germ
(X, 2 =0)and (Y, y = 0) respectively. By hypothesis, we have the following
diagram:

F ¢ G

1,

Hom(S, —) - 2, Hom(R, —)

where, by definition of hull, « and § are smooth morphism and they are
bijective on tangent spaces. Then, by smoothness, there exists a morphism
q5 Hom(S —) — Hom(R —) that makes the diagram commutative. By
hypothesis on «, f and ¢, it is surjective on tangent spaces and it is injective
on obstruction spaces. Thus ¢ is a smooth morphism, by the Standard
Smoothness Criterion (Theorem 2.11).
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The morphism c:ﬁ determines uniquely an homomorphism i : R — S,
which is formally smooth, by Propositions 2.2 and 2.12. Now, by Proposi-
tion 2.5, there exists a formally smooth morphism w: R — S and so a
smooth morphism between the germs (X, x) and (Y, y). O

Now, if F ~ G, there exists a chain of smooth morphisms of functors
F «— Hy — Hg « ... — G. Then H; necessary have hulls, we indicate with
T; the complete analytic algebra that is an hull for H;. By Proposition 2.14,
the chain of smooth morphisms of functors gives a chain of smooth
morphisms of complete analytic algebras S—T,—Ty—..—R,thus
S= R S0, as we have observed, S ~ R and (X,x) ~ (Y, y).

Now we return to germs of analytic spaces and we concentrate our
interests on quadratic algebraic singularities.

DEFINITION 2.15. Let X be a complex affine scheme, it is said to have
quadratic algebraic singularities if it is defined by finitely many quadratic
homogeneous polynomials. Let X be an analytic space, it is said to have
quadratic algebraic singularities if it is locally isomorphic to complex af-
fine schemes with quadratic algebraic singularities.

For germs of analytic spaces we want to prove the following

THEOREM 2.16. Let (X,0) and (Y, 0) be two germs of analytic spaces
and let ¢ : (X,0) — (Y,0) be a smooth morphism. Then (X,0) has quad-
ratic algebraic singularities if and only if (Y,0) has quadratic algebraic
singularities.

We need the following

LeEmma 2.17.  Let (X,0) and (Y, 0) be two germs of analytic spaces and
let ¢:(X,00— (Y,0) be a smooth morphism. Let X C CN and let
H = {x e CN | h(x) = 0} be an hypersurface of CV, such that:

- dh(0) #0

- TH 2 T¢10),

then: ¢y : X NH,0)— (Y,0) is a smooth morphism.
Proor. Let (X,0) and (Y,0) be defined by C{xy,...,2,}/I and

C{y1,...,ym}/J respectively. Since ¢ is smooth, Ox is a power series
ring over Oy, i.e. Oxo = Oyof{ts,...,ts}, for some s.
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Let X’ = X N H be the intersection, then Ox o = Oxo/(h). If g cor-
responds to & by the isomorphism Ox = Oyo{t1,... ¢}, then Ox g =
= Oyvg{tl, S ,ts}/(g).

The hypothesis di(0) # 0 becomes dg(0) # 0, that implies that there
exists an indeterminate between y; and ¢;, such that the partial derivative
of g with respect to this indeterminate calculated in zero does not vanish.
Moreover, the hypothesis TH % T¢71(0) implies that this indeterminate
must be one of the ;, for example ¢-.

Thus, using the Implicit Fun(ition Theorem, we obtain Oy =
>~ Oyolts, .-, ts}/(@) = Oyolts,... . t;,..., s} and ¢|y, is a smooth
morphism. O

Now we can prove Theorem 2.16:

Proor. We start by assuming that (Y, 0) has quadratic algebraie sin-
gularities, so (Y,0) is defined by the analytic algebra C{y1,...,¥m}/J,
where J is an ideal generated by quadratic polynomials. Since ¢ is smooth,
we have Ox o = Oyof{ts,...,ts} = Cl{y1, ..., yn}{t, ..., ts}/J, for some s,
and X has quadratic algebraic singularities.

Now we prove the other implication. Let C{xi,...,x,}/I and
C{y1,...,Ym}/J be the analytic algebras, that define the germs (X, 0)
and (Y,0) respectively, where I is an ideal generated by quadratic
polynomials. We can assume that ¢ is not an isomorphism, otherwise

the theorem is trivial. Since ¢ is smooth, Oxo = Oyo{t1,...,ts}, for
some s > 0.
Now we can intersect X C CIN with hyperplanes /1, . .., ks of Civ , Which

correspond, by the isomorphism Oxg = Oyo{ti,...,ts}, to the hyper-
planes of equations ¢; = 0,...,t; = 0 of C};"* and we call the intersection
X'. Then (X', 0) has quadratic algebraic singularities. Moreover, by Lemma
2.17, ¢ restricted to (X', 0) is a smooth morphism and it is bijective because
Oxr = OX,()/(hl, v hg) 2 Oy_(){tl, e ,ts}/(tl, vy b)) 2 OY70. Thus (Y,0)

has quadratic algebraic singularities. O

This theorem assures that the set of germs of analytic spaces with
quadratic algebraic singularities is closed under the relation ~ and so it is a
union of equivalent classes under this relation. Moreover we know that the
relation ~ defined between functors with hulls is the same as the relation ~
defined between their germs. Thus is natural to introduce the following
definition for functors:



Local Structure of Brill-Noether Strata etc. 269

DEFINITION 2.18. Let F be a functorwith hull the germ of analytic space
(X, x). It is said to have quadratic algebraic singularities if (X, ) has
quadratic algebraic singularities.

This definition is indipendent by the choice of the germ of analytic
space which is a hull of F, because the isomorphism class of a hull is un-
iquely determined.

3. Brill-Noether stratification of M.

Let X be a compact complex Kéhler manifold of dimension » and let M
be the moduli space of locally free sheaves of Ox-modules on X which are
stable and flat. In the first part of this section we concentrate our interests
to the study of subspaces of the moduli space M, defined globally as sets in
the following way:

DEFINITION 3.1. Let h; € N be fixed integers, for allt =0...n, we de-
fine: _
Nhy...hy) ={E € M |dimH' X, &) = h;}.

N

It is obvious that, for a generic choice of the integers h; € I\, the sub-
space N'(hy .. . hy) is empty, from now on we fix our attention on non empty
ones.

Let £ € M be one fixed stable and flat locally free sheaf of Ox-modules
on X and let 2; = dim H/(X, £). Let U — M x X be the universal Kuranishi
family of deformations of £, parametrized by the germ of analytic space M,
which is isomorphic to a neighbourhood of £ in M (see [N] for the con-
struction). Let v : M x X — M be projection, thus, for all £ € M, we have
v 1(&) =~ X and Ul ey =U|g = g.

Now let’s define the germ of the strata N(hy...h,) at its point €.
Since, for all i =0...n, the function £ € M — dimH/(X, &) € N is up-
per semicontinuos, for Semicontinuity Theorem (see [Hart], Theorem
12.8, ch.III), the set U; = {£ € M | dimH(X,&') < h;} and the inter-
section U= (| U;={ eM|dimHX,E)<h; fori=0...n} are

1=0...n

open subsets of M.
Foralli=0...n,let

Ni(&) = V(Fy, 1(Rv.U) = {£ € M | dimRYv.U ®o,, k(E) > h; — 1}
be the closed subschemes of M defined by the sheaf of ideals F;ZZ,I(R’L'V*L{),
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which is the sheaf of (#; — 1)-th Fitting ideals of the sheaf of Oy-modules
Riv,U.Let N(&) = () Ni(€) be the closed subscheme of M given by the

1=0...m
intersection of the previous ones.

DEFINITION 3.2. The germ of the strata N(hy...hy,) at its point € is
given by:

UNNE ={&'e M | dmH'X, &) < by, Vi=0...n}n (| VE},1Rv.10).
i=0...n

REMARK 3.3. We observe that the support of the germ of the strata
N(hg...hy) at &, defined in 3.2, coincide with a neighbourhood of £ in the
set given in definition 3.1. Infact, for the Theorem of Cohomology and Base
Change (see [Hart], Theorem 12.11, ch.III), we have R"v.U ®q,, k(') =
~ A"(X,£), then the condition which defines N,(£) becomes
dim H*(X,&") > h,, and the ones which define the intersection U N N,,(€)
become dim H"(X,E&') = h,, and dimH'(X,E) < h;, for all i =0...n — 1.
Applying iteratively the Theorem of Cohomology and Base Change, we
obtain UNN(E)={& € M | dimH(X, ") =h;, for i =0...n} as we want.

Now we prove the following:

PROPOSITION 3.4. The germ of the strata N(hg ... hy) at £ is the base
space of a Kuranishi family of deformations of £ which preserve the
dimensions of cohomology spaces.

ProoF. Let F be alocally free sheaf of Oy x-module on T x X which is
a deformation of the sheaf £ over the analytic space 7' that preserve the
dimensions of cohomology spaces. If the morphism ¢ : 7' — M such that
(9 x Idy)"U == F, whose existence is assured by the universality of {, can be
factorized as in the following diagram:

F = (g x 1dx)U U
l Id v \L
Tx X — M x X
h;I(TX\ -~ _ N TiXIdx

(N(hohn)ﬂM)XX7

then f% (g X IdX)*Z/[% (h/ X IdX)*(/L X IdX)*Z/[ = (h X IdX)*u'(N(hohn)ﬂM)XX
and the restriction of & to (M (kg ...h,) N M) x X satisfies the universal
property.
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Let’s analise the pullback via the map g of the sheaf of ideals Fi.(Riv.U),
for i = 0...n, which defines locally N'(hy ... h,) N M. Since Fitting ideals
commute with base change, for all i and k we have ¢*(Fp(R'v.U)) =
= Fi(g*R'v.U). Let’s consider the diagram:

F = (g x Idx)U

|

u

|

gXIdX

T x X Imgx X CMxX
: :
T J Img C M;

using the Theorem of Cohomology and Base Change, since for all
i=0...n the functions & € Img c M — h'(X,&) € N are costant, we
have Fi(g*Riv,U) = F.(Riu, (g x Idx)'U) = F.(R'u, F), and since F is a
deformation which preserves the dimensions of cohomology spaces, the
sheaves R'u,F are locally free and so the Fitting ideals F,(R'u,F) are
equal to zero. Then g*F}.(R'v.U{) is equal to zero, as we want. O

In the following part of this section we study infinitesimal deformations
of £ that preserve the dimensions of its cohomology spaces, explaining this
condition and defining precisely the deformation functor associated to this
problem.

DEFINITION 3.5. A deformation of the sheaf £ on the manifold X
parametrized by an analytic space S with a fixed point s is the data of a
locally free sheaf £ of (Oxyg)-modules on X x S and a morphism & — &
inducing an isomorphism between &'|x, , and €.

Let n: X xS — S be the projection, then, for all s €S, S’|n,1(s> =
= E'lyys = &, is alocally free sheaf on X and so it makes sense to calculate
the cohomology spaces of these sheaves, H/(E)).

By the Theorem of Cohomology and Base Change, the condition that, for
all7 € N, dim Hi(é';) is costant when s varies in S, is equivalent to the con-
dition that, for all i € N, the direct image Riz.£ is a locally free sheaf on S,
and in this case we have that the fibre R'z,£ ® k(s) is isomorphic to H i(é"s).

DEFINITION 3.6. An infinitesimal deformation of the sheaf £ on the
manifold X over a local Artinian C-algebra A with residue field C is the
data of a locally free sheaf E4 of (Ox ® A)-modules on X x Spec A and a
morphism E4 — & mducing an isomorphism E4 R4 C =2 E.
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In the case of an infinitesimal deformation £4, we can replace the
condition that the dimensions of the cohomology spaces are costant along
the fibres of the projection 7 : X x Speec A — Spec A, with the condition
that the direct images Rin,£4 are locally free sheaves, and in this case we
have isomorphisms Rin,.£4 ® C = H'(£). We observe also that H () =
>~ Rin,E4(Spec A).

Our aim is to study this type of infinitesimal deformations of the sheaf
€ on X and the functor associated to them, defined in the following

DEFINITION 3.7. Let Def g : Arte — Set be the covariant functor de-
fined, for all A € Artc, by:

Def2(4) = {5A

E4 1s a deformation of the sheaf & over A
Rin.E4 is a locally free sheaf on Spec A for all i € N

We note that, since N'(%g...h,) is a moduli space, the functor of de-
formations of the sheaf £ which preserve the dimensions of cohomology
spaces is prorepresented by N (k... hy).

To give now two equivalent interpretations of Def 2, which are useful in
the following, we start by defining a deformation of a C-vector space V
over a local Artinian C-algebra A which is the data of a flat A-module V4,
such that the projection onto the residue field induces an isomorphism
Vi ®a C =2V, Itis easy to see that every deformation of a vector space V
over A is trivial, i.e. it is isomorphic to V' ® A.

If £4 is an infinitesimal deformation of £ over A, it belongs to Def g(A),
as defined in (3.7), if and only if it is such that H(E,) are free A-modules,
that is the same as flat A-modules since A is local Artinian, and
Hi(Ey) @4 C =2 H(E). Thus we have the two following equivalent defini-
tions for the functor Def?:

DEFINITION 3.8. The functor Def g 1s defined, for all A € Artc, by:

Def%(A) = {gA

Ea 1s a deformation of the sheaf & over A
Hi(E) is a deformation of H'(E) over A for all i€ N

or equivalently by:

(1) DeflA)= {5A

E4 1s a deformation of the sheaf & over A
H(E,) is isomorphic to H(E) @ A for all i € N
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4. Definition of Def? using DGLAs.

We are interested in the study of the functor Def{ and in this section we
link it with the theory of deformations via DGLAs.

We start with some reminds about this theory. Let L be a differential
graded Lie algebra (DGLA), then it is defined a deformation functor
Defy, : Arte — Set canonically associated to it (see [Man99], section 3).

DEFINITION 4.1. For all (A, my) € Art, we define:
MCL(A)

~gauge

Def,(4) =

where:
1
MCLA) = {ac eL'®my | dm+§[ac,ac] = 0}
and the gauge action is the action of exp (L° ® my) on MCr(A), given by:

e wc-aH—Z(([aJrl), x] — da).

We recall that the tangent and an obstruction space to the deformation
functor Def;, are the first and the second cohomology spaces of the DGLA
L, HY(L) and H%(L). Moreover the deformation functor Def}, is a functor
with good deformation theory and, if H'(L) is finite dimensional, it has a
hull, but in general it is not prorepresentable.

If the functor of deformations of a geometrical object X is isomorphic to
the deformation functor associated to a DGLA L, then we say that L
governs the deformations of X.

Let y: L — M be a morphism of DGLAs which respects the DGLA
structures of L and M, then it is defined a deformation functor
Def, : Art- — Set canonically associated to it (see [Man07], section 2).

DEFINITION 4.2. For all (A, my) € Artc, we define:
MC,(4)

~gauge

Def (A) =

where:

MC,(A)= {(96‘, e’ e (L'@my) xexp(M°@my) | de+ %[ac, x]=0,e"  y(x) = 0}
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and the gauge action is the action of exp (L° @ my) x exp (M~ ® my) on
MC,(A), given by:

(€, e?™) x (2, %) = (¢! x 2, e?™ee V),

To write the tangent space and an obstruction space of a deformation
functor associated to a morphism of DGLAs, we start by recalling that, if
x L — M is a morphism of DGLAS, the suspension of the mapping cone
of y is defined to be the complex C = L' & M'! with differential 5(l, m) =
= (dpl, x() — dpym).

Then the tangent space to the functor Def, is the first cohomology
space of the suspension of the mapping cone of the morphism y, H*(C,), an
obstruction space of Def, is the second cohomology space, H%(C,), and the
obstruction theory for Def, is complete.

Moreover Def, is a functor with good deformation theory and, if H(C,) is
finite dimensional, it has a hull, but in general it is not prorepresentable.

We also observe that every commutative diagram of differential graded
Lie algebras

f

HH

L
@) lx l"
I I

M —

induces a morphism between the cones C, — C, and a morphism of functors
Def, — Def,, for which the following Inverse Function Theorem (see
[Man07], Theorem 2.1) holds:

THEOREM 4.3. If the diagram (2) induces a quasi isomorphism
between the cones C, — C,, then the induced morphism of functor
Def, — Def, is an isomorphism.

Now we return to our situation, so let X be a compact complex Kéhler
manifold of dimension » and let £ be a stable and flat locally free sheaf of
Ox-modules on X, with dim H'(X,€) = h;, for all i = 0. .. n.

Let AY™(End &) be the DGLA of the (0, x)-forms on X with values in
the sheaf of the endomorphisms of £. It can be proved the following result
(see [F], Theorem 1.1.1):

PROPOSITION 4.4. The deformation functor Def ,o.) (End &) 1s 1somorphic

to the functor of deformations of the sheaf &, Def. The 1somorphism 1is
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given, for all A € Artc, by
Def A% (End ) A) — Defe(4)
r — ker(d+x)

Let (A(€),d) be the complex of the (0, ¥)-forms on X with values in
the sheaf £ with the Dolbeault differential and let Hom*(AS?’*)(S),Agg'*)(E))
be the DGLA of the homomorphisms of this complex.

We recall that a deformation of a complex of vector spaces (V?,d) over a
local Artinian C-algebra A with residue field C is a complex of A-modules
of the form (V' ® A,d,), such that the projection onto the residue field
induces an isomorphism between (Vi ® A, d,) and (V, d).

It is easy to prove the following result (see [Man05], pages 3-4):

ProrosiTiON 4.5. The deformation functor DefHom*(Ag(().*)(g) A0y U

isomorphic to the functor of deformations of the complex (Ag?‘*>(5),5),
Def 0., 5)- The tsomorphism is given, for all A € Artc, by:
@),

DefHom*(Ag'*)(E)A;?‘*)(E))(A) — Def(Ag?,*)(E),é)(A)
. — AP ®A,I+).

Let y : Ag?"*) (End€&) — Hom*(Agg’*) (6’),A§?’*)(€)) be the natural inclusion
of DGLAs and let Def, be the deformation functor associated to y. Let
(") € MC,(A), for A € Artc. Since x € AYV(End &) ® m, satisfies the
Maurer-Cartan equation, it gives a deformation £4 = ker(0 + x) of £ over
A. While e € exp (HomO(AE?’*)(S),AE?’*)(S)) ® ny) gives a gauge equiva-
lence between y(x) = x and zero in the DGLA Hom*(A$"(£), A0 (£)).
Thus e” is an isomorphism between the two correspondent deformations of
the complex (Ag?’*)(é'), 0) or equivalently e” is an isomorphism between the
cohomology spaces H'(£4) and H/(E) ® A, for all i € N. Thus:

Def,(A)

&4 is a deformation of the sheaf £ over A }

_ 1 . : . .
= {(EA J4)| 1" is the isomorphism fi : Hi(€4) — H'(€) © A for all i € N [

Now let @ be the morphism of functors given, for all A € Art., by:
&: Def,(4) — Deng_-)(Enda(A)

(@, ") —

with the above geometric interpretations of the functors Def, and
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Def A% (Bnd ¢ (A), the morphism @ is the one which associates to every pair
(€a,fy) € Def,(A) the element £4 € Def A9 (End 5)(A). Thus we have the
following characterization of Def? using DGLAs point of view (see [Man07],
Lemma 4.1).

PROPOSITION 4.6.  The subfunctor Def? is isomorphic to the image of

the morphism @ : Def, — Def joo g4 ¢y
X

5. Proof of the Main Theorem.

This section is devoted to the proof of the Main Theorem. With the
above notations

THEOREM 5.1 (Main Theorem). The Bvill-Noether strata N (hy ... hy)
have quadratic algebraic singularities.

ProoF. The local study of the strata AN'(h . .. h,) at one of its point &,
corresponds to the study of a germ of analytic space which prorepresents
the functor Def?. Our proof is divided into four steps in which we find out a
chain of functors, linked each other by smooth morphisms, from the functor
Def 2 to a deformation functor for which it is known that the germ of analytic
space that prorepresents it has quadratic algebraic singularities. Then, we
conclude, using properties proved in section 2.

First Step. We prove that the morphism @ : Def, — Def? is smooth.
Then, given a principal extension in Artc, 0 —J — B % A —0, and an
element (£4, fjl) € Def,(A), we have to prove that, if its image £4 € Defg(A)
has a lifting 5 € Defg(B), it has a lifting in Def,(B).

Since €4 € Defg(A) and &g € Defg(B), their cohomology spaces are
deformations of H'(E) over A and B respectively and so H(Ey) =
~ H(€) ® Aand H'(Ep) =~ H(E) ® B. Thus H'(Ep) is a lifting of H(£4) and
it is a polynomial algebra over B. It follows that in the diagram

. ) 1 .
Hi(Ep) — H(E4) —= HI(E) @ A

T T~ {B\ T B=Id ®a
B

H'(&)® B

EN
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there exists a homomorphism f} : H{(€g) — H(§) ® B, which lifts f;. Then
also the following diagram commutes:

H'(€)

/\

Hi(Ep) —2> H(E)® B
N

and so f}, is an isomorphism, for all i € .

Second Step. Since X is a Kéhler manifold and £ is a hermitian sheaf,
the operators 85, adjoint of O¢, and the Laplacian Og = 8565 + 6585 can
be defined between forms on X with values in the sheaf £. Let

(O *) (€) = ker g be the complex of (0, *)-harmonic forms on X with values
in € and let Hom' (HYI(E), HYP(€)) be the formal DGLA of the homo-
morphisms of this complex.

Also for the sheaf End & the operator 8;‘3nd ¢» adjoint of Ornde, and
the Laplacian Ogpae = aEndgaEnd g+8End <OEnae can be defined. Let

HY *)(End &) = kerOgnae be the complex of the (0, *x)-harmonic forms
on X with values in End¢&.

Siu proved (see [Siu]) that, for a flat holomorphic vector bundle £ on a
Kihler manifold X, the two Laplacian operators O and (. coincide. Then
a (0, x)-form on X with values in £ is harmonic if and only if it anhilates 0,
which is well defined because L is flat.

Since End € is flat, these facts imply that the complex H&?’*)(End Eisa
DGLA with bracket given by the wedge product on forms and the com-
position of endomorphisms.

Moreover, we can define a morphism Q: H;?‘”(End &) —
— Hom* (H(O *)(5),H§?’*)(5)). Every element xc¢ Ag?’*)(End & gives
naturally an homomorphism Q(x) from Ag?’*)(é’) in itself, defined locally
to be the wedge product between forms and the action of the en-
domorphism on the elements of £. If we defined it on an open cover of
X on which both the sheaves £ and End& have costant transition
functions, when x € H(O *)(End &) and Q(x) is restricted to the harmonic
forms Hg(() *)(5) it gives as a result an harmonic form. Let

HEP(End £) — Hom (HY(E), HY()) be the DGLAs morphism
just deflned and let Defy be the deformation functor associated to it.

We want to prove that the two functors Def, and Def,, are isomorphic.
Then we consider the following commutative diagram:
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AL (End €) H\P*) (End €) HE (End &)
ix n l()
* * B * *
Hom* (A0 (), A9 (€)) M* —"— Hom* (K" (), H{™)(€))

where M* = {p € Hom*(A$7(£), AL7(©) | p(HYY(©) € HEP(©)}.

The morphism f is a quasnsomorphlsm infact it is injective and
cokerf = Hom*(A$7(£), AL(£))/M* = Hom (AL (£), AV () /HL(€))
is an acyclic complex. Then « and f induce a quasnsomorphlsm between the
cones C, — C, and so, by the Inverse Function Theorem (Theorem 4.3), an
isomorphism between the functors Def,, — Def,.

Also the morphism J is a quasiisomorphism, infact it is surjective and
its kernel is kerd = {y € Hom"(AL(€),AL7(©E) | p(HY(€)) = 0} that
isomorphic to the acyclic complex Hom*(Agg'*)(é') / H?’*)(S),Agg’*)(é’)). Then
y and J induce a quasiisomorphism between the cones C,, — Cg and so an
isomorphism between the functors Def,, — Defo.

Third Step. Let Hx(End £) be the DGLA equal to zero in zero degree
and equal to H&?"*)(End £) in positive degrees, with zero differential and
bracket given by wedge product on forms and composition of en-
domorphisms.

Let Q:HY?(End&) — Hom (HE(€), HYY(E) be the DGLAs
morphism deflned as in the previous step and let Def be the deformation
functor associated to it.

The inclusion Hx(End€&)— Hx(End&) and the identity on
Hom(H 08, H(O *)(€)) induce a morphism of functors ¥ : Def — Defo.
We note that the morphism induced by ¥ between the cohomology spaces
of cones of Q and Q respectively is bijective in degree greater equal than 2
and it is surjective in degree 1. Thus, using the Standard Smootheness
Criterion (Theorem 2.11), we conclude that ¥ is smooth.

Fourth Step. Let’s write explicitly Defy. The functor MCgp, for all
A € Art, is given by:

MC4(A)

— {(aﬂ,ea) e (L' @ my) x exp(M° @ my) | d +%[m,x] =0,¢" % Qx) = O}

where L* = HY"(End €) and M* = Hom"(H{ (), H™(£)). Since the
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diffegential in the DGLA ﬂ;?’*)(Epd £) is zero and since the equation
e”* Q(x) =0 can be written as Q(x) =e¢ *x0 =0, we obtain, for all
A € Art:

MCp(A) = {x cker @ @ my | [x,2] = 0} x exp (Hom (HF (), HY () ® my).

Moreover exp (Hy”(End &) @ my) x exp (dHom ™ (H{(€), HY (€)@ my)
is equal to zero, thus there isn’t gauge action. Thus, for allA € Art., we have:

Def5(A) = {x e ker Q @ myu | [, 2] = 0} x exp (Hom (K (&), HY(£) @ ma).

Since Q is a DGLAs morphism, ker Q is a DGLA and it is defined the de-
formation functor Def, . associated to it. Now, for all A € Art., we obtain:

Def5(A) = Def, ., 5(4) x exp (Hom’(HY(&), HY(£)) @ my).

ker

The DGLA kerQ has zero differential, so the functor Def, .5 is pro-
represented by the germ in zero of the quadratic cone (see [G-M90], The-

orem 5.3): 5
X={xe ker'Q | [, 2] = 0},

that has quadratic algebraic singularities. Then also the functor Def, is
prorepresented by a germ of analytic space with quadratic algebraic sin-
gularities.

Conclusion. Since now we have constructed smooth morphisms be-
tween the functor Def? and the functor Def 5:

~

smooth = . smooth
Def? Def < ——Defq<—— Defg .
1SOMmMorpnism

By Proposition 2.14, there exists a smooth morphism between the
germs of analytic spaces which are hulls of the two functors Defg and Def .
Moreover, by Theorem 2.16, since the germ which is a hull of Defy has
quadratic algebraic singularities, the same is true for the hull of Defg.

REFERENCES
[A] M. ARTIN, On solutions to analytic equation, Invet. Math., vol. 5 (1968),
pp. 277-291.
[F] K. Furaya, Deformation theory, homological algebra and mirror sym-

metry, Geometry and physics of branes (Como, 2001), Ser. High Energy
Phys. Cosmol. Gravit., IOP Bristol (2003), pp. 121-209.



280 Elena Martinengo

[G-M88] W. GOLDMAN - J. MILLSON, The deformation theory of representations of
Sfoundamental groups of compact Kdihler manifolds, Publ. Math.
LH.E.S., 67 (1988), pp. 43-96.

[G-M90] W. GOLDMAN - J. MILLSON, The homotopy invariance of the Kuranishi
space, Illinois Journal of Math., 34 (1990), pp. 337-3617.

[Hart] R. HARTSHORNE, Algebraic Geometry, Graduate text in mathematics, 52
(Springer, 1977).

[LePoi] J. LE POITIER, Lectures on wvector bundles, Cambridge studies in
advanced mathematics, 54 (Cambridge University Press, 1997).

[Man99] M. MANETTI, Deformation theory via differential graded Lie algebras,
Seminari di Geometria Algebrica 1998-1999, Scuola Normale Superiore
(1999).

[Man05] M. MANETTI, Differential graded Lie algebras and formal deformation
theory, notes of a course at AMS Summer Institute on Algebraic
Geometry, Seattle, (2005).

[Man07] M. MANETTI, Lie description of higher obstructions to deforming sub-
manifolds, Ann. Scuola Norm. Sup. Pisa, (5), Vol. VI (2007), pp. 631-659.

[N] A. M. NADEL, Singularities and Kodaira dimension of the moduli space
of flat Hermatian-Yang-Mills connections, Comp. Math., 67 (1988), pp.
121-128.

[Nor] A. NORTON, Analytic moduli of complex vector bundles, Indiana Univ.
Math. J., 28 (1979), pp. 365-387.

[S] M. SCHLESSINGER, Functors of Artin rings, Trans. Amer. Math. Soc., 130
(1968), pp. 205-295.

[Ser] E. SERNESI, Deformation of algebraic schemes, Springer, (2006).

[Siu] Y. T. Siu, Complex-analyticity of harmonics maps, vanishing and
Lefschetz theorems, J. Diff. Geom., 17 (1982), pp. 55-138.

[V] R. VARIL, Murphy’s law in algebraic geometry: badly-behaved deforma-
tion spaces, Preprint, arXiv: math.AG/0411469.

Manoseritto pervenuto in redazione il 7 luglio 2008.



