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Relative Spectral Norm on Algebraic Numbers

ANGEL POPESCU (*) - SOBIA SULTANA (¥%*)

ABSTRACT - Let K be a subfield of Q, a fixed algebraic closure of Q, the field of
rational numbers. Let Gx = Gal(Q/K) be the absolute Galois group of K. For
any x € Q, we consider the K-spectral norm: |||, = max{|c(x)| : ¢ € Gg}. Let
e be the conjugation automorphism of Q and let C(G) be the Banach algebra of
all continuous mappings defined on the compact group Gg with values in C. Let
Csym(Gx) be the Banach algebra over K of all symmetric functions of C(Gg). Here
K =R or C is the completion of K relative to the usual absolute value |.|. A
function f is said to be symmetric if f(éos) =e(f(0)) for any ¢ € Gx (when
e € Gg). Let Qg be the completion of Q with respect to ||.|| . In this paper we
prove that Qg = Coyn(Gx) if € € Gk and Qg 22 C(Gk) if € ¢ Gi. These last iso-
morphisms are K-isomorphisms of Banach algebras. We give some other
properties of the closed subalgebras of C(Gk) in connection with some subfields
of algebraic numbers.

1. The notion of a spectral norm on the algebraic number field was in-
troduced by A. Popescu, N. Popescu and A. Zaharescu in [13]. This is a
norm ||.|| on Q, a fixed algebraic closure of Q, the field of rational numbers,
defined by # — ||| = max{|o(®)| : ¢ € Gal(Q/Q)}. The completion Q of
Q relative to this norm is a ring with zero divisors but with some interesting
arithmetical and topological properties (see [8], [10], [11] and [13] — [17]).
The main property of Q is that the absolute Galois group G = Gal(Q /Q) of
Q acts continuously on it, which is not the case of C (only the identity e and
the conjugation automorphism ¢ of G act continuously on C). So that, if we
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want to get information on G by its action on different topological spaces, a
good candidate is Q. Such type of researches were also done for the local
absolute Galois group G, = Gal(Q,/Q,), where Q, is a fixed algebraic
closure of the p-adic number field Q, (see [4], [9], and [12]). Some ideas of
these researches come directly or indirectly from [2], [3].

In a letter to the first author [19], Prof. A. Zaharescu had the idea to
generalize the usual spectral norm ||| to a K-spectral norm on O :

x— ||| = max{|o(@)| : ¢ € Gx = Gal(Q/K)},

where K is an arbitrary subfield of Q.

In this paper we study the completion Qg of © with respect to the K-
spectral norm defined above. Since the techniques of [13] - [17] are
sometimes not useful in this new frame, we introduce some new ones. Let
C(Gg) be the C-Banach algebra of all continuous mappings defined on the
compact group Gx = Gal(Q/K) (relative to its Krull topology) with values
in C (with its usual absolute value topology). An element f € C(Gg) is said
to be symmetric (only in the case when ¢ € Gg) if f(ea) = e(f(0)) for any
o € Gg. If e ¢ Gg we cannot define such a notion. Let Cyy,,(Gk) be the K-
subalgebra of C(Gk) which consists of all symmetric mappings of C(Gk).
Let L be the topological closure in Qg of a subfield L of Q, L S K, with
respect to ||.|| . In Theorem 1 and Remark 2 we prove that if K C R N Q,
then Q x is isomorphic and isometric with Cyn(Gg) as K—algebras If
KZRNQ (ie.e¢ Gg), then QK is isometric and isomorphic as C-alge-
bras with C(Gg) (Theorem 2). In Theorem 3 we prove that always
QK[z] = C(GK) where ¢ is the constant function f(g) =1 = v—1 for any o
in Gg. So qo(QK) has the codimension 1 or 2in C(Gg). Here ¢ : O — C(Gx),
is the following map: ¢(x) = ¢,, where ¢,(0) = o(x) and @ is the unique
extension by continuity of ¢ to Qk. In Theorems 4, 5 and 6 we obtain
analogous results as in Theorems 1, 2 and 3 for a subextension L/K of
(,2 /K. Theorem 7 is the direct generalization of Theorem 2.2 of [13], namely
LK = K[ac] for any K ¢ L ¢ Q and for an x € LK (a generalization of the
primitive element theorem from the classical field theory). In Lemma 2
and Corollary 2 we give a general Archimedean frame for the classical idea
of Krasner (Krasner’s Lemma) [1] or [7]. We apply this new ideas to prove
that if f, g are locally constant and nonconstant mapping from C(Gg) such
that g is “sufficiently close” to f, then C[f] C C[g] (see Theorem 8). Then
we apply this last result in order to get some information on the closed K-
subalgebras of C(Gk) (see Corollary 3, Proposition 2 and Proposition 3).

2. Let Q be the rational number field and let C be a fixed complex
number field, © c C. Let Q be the algebraic closure of Q in C and let K,
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Q c K c Q be a fixed subfield of Q. If [K : Q] < oo, usually K is called an
algebraic number field. In this paper we call any subfield of O an algebraic
number field. Let Gx = Gal(Q/K) be the absolute Galois group of K. We
denote by G = Gal(Q/Q) the absolute Galois group of Q. G is a compact
totally disconnected group relative to the Krull topology on it [1]. The Krull
topology on G C G is exactly the topology of G induced to Gg. If G is
finite, the Krull topology becomes the discrete topology.
Let us fix a tower of subfields:

K=KycKicKyc..cK,c...cQ,

such that all extensions K,,/K are normal and finite and U ,K,, = Q. Then
the Galois groups H,, = Gal(Q/K,), n = 0,1,2, ... are closed and open and
form a fundamental system of neighborhoods of the identity automorphism
e of Gg. Let denote by |.| the usual absolute value on C. For any
o € Gg, x — |o(x)| = |2/, is an Archimedean absolute value on Q. Let € be
the conjugation automorphism of Q. If € € Gk then |.|;, = |.|,. So any two
automorphisms o, 1 € Gk give rise to one and the same topology on Q (|.|,
and |.| . are dependent) if and only if ¢ = eu. For any x € Q one considers:

lc]| x = max{|o(®)| : 0 € Gk}.

It is not difficult to prove the following result.

LEMMA 1. The map x — ||z g is @ norm on Q and (Q,||.||x) is @ K-
normed algebra, i.e.:

i) ||lz||x = 0 if and only if x = 0, for any x € Q,
i) [loyllx < lzllgllylg for any x,y € O,
i) [l +yllx < lallx + lyllx. for any 2,y € O,
iv) |ox||x = ||||®]| g, for « € K, x € Q, and
v) |[1flg =1.

We call this norm the K-spectral norm on Q. It extends to Q the usual
absolute value of K. In general, in ii), one has no equality. For instance, if
K=0Qand x=1+v2,y=1-v2€Q, then |loy|x =1# 1+ V2P =
= |1+ V2||g|l1 — V2| . Taking count of the Artin-Schreir theory [6] we
see that the K-spectral norm x — ||a(x)|  is an absolute value on Q equal
to the usual absolute value if and only if K is a “real closed” subfield in O,
i.e. if K(i) = Q. In this last case Gx = 7 and this case is the only case
when Gy is finite. Let @K be the completion of Q relative to the K-spectral
norm. The topological closure K of K in Qg is R or C whenever K ¢ RN Q
or not. Hence K is dense in C (relative to |.|) if and only if K ¢ R N Q. In
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general Qg has zero divisors. It is a field if and only if K is a “real closed”
supﬁeld in Q. In all the other cases @K has zero divisors. But always @K is
a K-Banach algebra.

Let us now consider the C-Banach algebra

C(Gg)={f :Gg — C | f continuous},

with the usual sup-norm: || f|| = sup{|f(0)| : ¢ € Gg}. Since Gg is a com-
pact group, this last quantity is always finite. For any o € Q one defines :

(7 GK - ‘\(2 (pa(o-) = O'(OC).

The map ¢, has only a finite number of values namely, the image of ¢, is the
orbit of o (relative to Gg), i.e. the set of all conjugates of « in Q. If
o€ K, ¢,(0) = o for any o € Gg. So we can embed K into C(Gg) by asso-
ciating to « € K, the constant map ¢, in C(Gg).

PROPOSITION 1. The map ¢ : O — C(G) defined by p(a) = ¢,, ¢,(0) =
= a(a) is an tsometry and a K-algebramorphism. So it is a K-embedding of
(Q, ||l x) mnto (C(G ), || ID-

Proor. It is clear that ¢, + o5 =0,.5 0,05 =0, and g, =g,
for any «,f€Q and A€ K. Now |«fx =max{|o()|:0¢c Gg} =
= sup{|¢,(0)| : ¢ € Gk} = ||¢p,|| and the proof is complete. O

For some later applications we fix o € O and a gy € Gg. We are going
to describe ¢, (oo(@). If « € K, ¢, (00(®)) = Gk. If o ¢ K, let us take
L = K(x) ¢ Q and let us consider H;, the corresponding subgroup of L:
Hy, = {u € Gk : u(2) = o}. Then ¢, (a(x)) = aoHy, the left coset of 7y in
Gg/H|. Since Hj, has the index m = degko, Hy, is closed and open in
Gk. Hence ooHj, is also closed and open. It follows that ¢, is a
continuous map which has the same value on each o¢;H, where
Gg =eH; UoeHy U...Ua,Hj, is the partition of Gg, corresponding to
the left classes of Gg/Hj,.

COROLLARY 1. There is one and only one isometry and K- algebra
morphism g which extend by continuity ¢ to Qx : o(f) = hm 0 g, where
feOkf= hm oy, relative to ||.||x and o, € O, m =1,2,.

REMARK 1. Since ||o(a)||x = ||#/|x for any ¢ € Gk and « € Q, any
o € Gk is a continuous automorphism of Q relative to ||.|| ;. This is the main
reason to consider the K-spectral norm on Q instead of usual absolute
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value |.|. If {o, },, is a Cauchy sequence in Q relative to ||.||, then {a(x,)},

is also a Cauchy sequence in O relative to the same norm. So the element

o(A = lim «,) = lim o(x,) does exist in Qg. We denote it by a(A4). If
n—oo n—00

fo Mfin C(Gg) then [|f]| = Tim || ful, so [[o(A)]|x = [|Alx for any A & Qx.

Moreover ||Al|x = 1}HI§C||awz||K-

Sometimes we identify Qg with its image #(Qx) in C(Gxk).

DEFINITION 1. (see also [13]). Assume thate € Gg. Amap f : Gg — C
is said to be symmetric if f(é0) = f(0), where f(o) is the usual conjugate of
f(0)in C and ¢ is any element of Gk.

The K-subalgebra of all symmetric maps of C(Gg) is denoted by
Csym(Gg). It is closed in C(Gk), so it is a K-Banach subalgebra of C(Gg).

THEOREM 1. Let K be a proper subfield of R N Q. Then Qg is K-iso-
morphic and isometric with Cgyn(Gg).

PROOF. Since € € G in this case (€ € Gk if and only if K ¢ R N Q), we
can use the same technique as in [13]. However we prefer here a direct
proof, which could be useful in other future researches. First of all we must
remark that ¢,, for any « € Q, is a symmetric continuous map. Since any
& € Qg is a limit of «, € Q with respect to |.llx, one has that ¢, — ¢,
in C(Gg), where ¢,(0) = o(x) (see Remark 1). One can use the fact that
the conjugation automorphism € is continuous relative to |.| on C. So
(nlg{)lo 0., )(€0) = E(T}ggo 0, (0)) = ?ZILIEC 0., (0), i.e. 9, € Coym(Gg). We prove
now that any element f of Cy,,(Gk) can be approximated by “algebraic
numbers” ¢,, where x € Q. Let f be in Coym(Gg) and let ¢ > 0 be a small
positive real number. Let H be a finite index subgroup of Gg, € ¢ H and
such that if Gy = c1H U ... Uo,,H, g1 = e, is the corresponding partition
of G into left cosets, one has |f(o) — f(w)| < § whenever o, u € o;H for an
1€{1,2,...,n}. Let us write 1; = f(g;),fori =1,2,... n. Since ¢ € Gg we
can divide o7, . .., gy, into two classes relative to the subgroup {e,e}:

{0'17~--,0'm} 2{0'1,...,O't,0't+1 250'1,...,0'2,5:@0'75}, m =2t

Since f(es;) =f(0),j=1,2,...,t, one has that i, =14, for any
h=1,2,...,t. We focus only on the points 1;,4s,...,4 in the com-
plex plane C. Since K # RN Q, the codimension of K in RN Q is oo
(see Artin-Schreier theory [6]). So one can take a subfield L of
Q,LO>K,[L:K]=1>t. We can enlarge L to L' C Q such that
i=+v—1eL’ and L' /K be a normal extension. So this last L’ is dense in C.
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We can find x1,%2,...,% € L' such that |ai(aci)—/1i|<§,i: 1,2,...,t.

One can now use the Approximation Theorem (see [1]) to find x € L/

g
3 2

foranyi=1,2,...,t But [ec;(x) — 1;| < gimplies that

such that [ — 23], = |o3(x) — gy(a;)| <

2¢
2¢ 3

|ai(oc)—},i|<§ for all ©=1,2,...,m. Let us take ¢ € G and choose

Jje€{1,2,...,m} such that |f(0) — 4| < g Then |f(0) — gj(x)| <e for this j.

We can enlarge L' such that H = Gal(Q/L’) be good enough for our & > 0.
Then ¢ € g;H means that o(x) = g;(x) because x € L'. So |f(0) — a(x)| <e
or |f(o) — ¢,(0)| <& for any ¢ € Gg. Hence ||f — ¢, || <e for an x € Q and
the theorem is completely proved. O

for any 1 = 1,2,...,t. This means

that \oi(x) — ﬂz‘ <

REMARK 2. If K = RN O, then Gg = {e,e} because O = (R N Q)().
So C(Gk) =C xC and Ceym(Gg) =C = {(a,0) | € C} c C x C. But
Qg = R[i] = C. Hence Theorem 1 is true even if K=RnNQ. If
KcRNQand [RNQ:K]<oo, then [Q : K]<oo and K would be real
closed in Q. Then Q = K@) =(RNQ)®% and [Q: K]=[Q: RNQ]=2
which implies K = R N Q (see Artin-Schreier theory [6]).

THEOREM 2. Let K ¢ RN Q be a subfield of Q. Then Qg is isometric
and isomorphic as a C-algebra with C(Gg).

ProoF. In fact K Z RN Q means that e ¢ Gg. So the ideas of [13]
cannot be applied in this case. But in this case K is dense in Q and in C. Since
any continuous function f : Gx — C can be uniformly approximated by
locally constant functions with a finite number of values, one has only to prove
that such a map g : Gg — C, g(0) = 4; for any o € g;H,1 € {1,2,...,m},
where Gx = o1HUao,HU ...Ua,H, o1 = e, [Gk : H] = m, is a partition of
G relative to a closed and open subgroup H of Gk, can be approximated by
elements ¢,., with € Q. Let ¢ > 0 be a small real positive number such that

DU,e)={yeC:ly—Al<e},i=1,2,....m

be a disjoint set of balls centered in 4;. Since K is dense in C, we can
take x1,2,...,%, € K and x; ED()LZ-,%) for all 1=1,2,..m. Let
L={yecQ:uly)=y foranyuc H} be the fixed field of H. Since

e¢ Gg, {01,02,...,0n} give rise to independent absolute values
on L. We use now the Approximation Theorem [1] and

oy oy -5l
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find « € L such that

e — @i, = |oi(®) — oi()| < % for anyi=1,2,...,m.
But ¢;(x;) = «; because x; € K, so we get

|ai(x)—xi\<g,i:1,2,...,m

This last inequality together with |x; — 4;| < = 1mp1y

loi(x) — ;| <e for any 1 =1,2 ... m.

Let us take e Gg and je{1,2,...,m} such that ue€g;H, then
u(@) = gj(x) and g(w) = 4. Hence |p,(1) —g()|<e for anyu € Gk, so
llp, — g]l <e for an « € Q and the proof of the theorem is complete. O

THEOREM 3. Let K C RN Q be a subfield_of Q (€€ Gg). Then
C(Gg) = (;)K[z] where 1 is the constant function (o) =1 = V-1 1 for any
o€ Gg. o

This is an isomorphism of R - algebras. If on Qgl[i] we consider the
componentwise topology induced by Qg, this last isomorphism is also
homeomorphism.

Proor. Theidea of the proofis the same like in [13]. For any f € Gg we
consider:

Ref(0) + Ref(@0) Imf(0) — Imf(eo)

file) = - _ '

where Re(a +ib) = a and Im(a +ib) = b. It is not difficult to see that
fi,.fo € Coym(Gg) and f = fi + ife. 0

The following three theorems are the natural generalizations of Theo-
rems 1, 2 and 3. We do not give the proofs of these theorems here because
the ideas of the proofs are the same like those used to prove the above last
three theorems.

THEOREM 4. Assume € € Gg and let L C Q, such that L/K be a sub-
extension of O/K. Let Lk be the completion of L relative to the K-spectral
norm. Let H = {c € Gg : o(x) =« for all x € L} be the subgroup of Gg
which fixes L. Then the natural embedding ¢y : L — C(Gg/H), where
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Gg/H is the quotient topological space of the left classes of H in G,
o) = @, whgre 0,(cH) = a(x) can be extended to a K-isomorphism and
isometry ¢y : Lxk — Csym(Gg /H).

THEOREM 5. If'e ¢ Gk, then the same isomorphism and isometry like
that in Theorem 2, give rise to a K-Banach algebra isomorphism (iso-
metry) Lg = C(Gg/H).

THEOREM 6. Ife € Gk, then the same isomorphism and isometry like
that in Theorem 2, give rise to a K-Banach algebra isomorphism (iso-
metry) C(Gg/H) = Lgli]

Theorem 2.2 of [13] can be rewrite in this new general context. We do
not prove it because the ideas of the proof are the same like in [13].

THEOREM 7. ForanyL C 0O, KcLcQLg has a topological generic
element w, i.e. LK = Klx]. In particular, there exist z € Qg such that
Ok = K[z

This last result can be considered as a generalization of the classical
primitive element theorem from field theory. It will be useful for future
research on the structure of the group Autcom(QK)

3. Let K be a subfield of Q and let C(Gg) be the C-Banach algebra of all
continuous functions defined on Gx = Gal(Q/K), with values in C. For any
f € C(Gg) one denotes by w(f) = inf{| f(o) — f()]| : f(o) # f(Ww), 0,1 € Gk}
or o(f) = 0if f is a constant function. It is easy to see that w(f) > 0if and
only if f has a finite number of distinct values and at least two (f is not
constant). Here is a Krasner type lemma [1] for C(Gg).

LEmmA 2. Let f,g € C(Gg) such that fis a locally constant map and

w(f) > 0. Let us assume that ||f — g||< %f) and that g(o) = g(u) for
o, € Gg. Then f(a) = f(w).

ProoF. Let us suppose that f(o) # f(w). Then w(f) < |f(o) —f(w)] <
<1f (@) —g@)|+|9(w) — f(W)] <2|| f — g]| <w(f), a contradiction. So f(s) =
= f(w.

O

Using this result one can obtain an Archimedean version of Krasner
Lemma [1] for Q.
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COROLLARY 2. Let o, € Q, a¢ K such that |lo— fl|x < g’

o) = inf{|o; — o] : o # 0} and o, ; are all the conjugates of o = o in Q
over K. Then K(x) C K(f5).

where

Proor. Let ¢, and ¢ be the corresponding locally constant maps
in C(Gg) of o and f respectively (¢,(0) = o(a), ¢ € Gk, ete.). Then
w(p,) =inf{|o(e) — u(@)| : o(e) # (@), 0,10 € Gg } = (o). Since ||¢, — pg]| =
-~ w(p,)
= o= Bl <23
= ,(0) = p,(1). Let us take ¢ = e, the identity of Gx. This last implication
becomes u(f) = fi = wla) = o or u € Gal(Q/K(f)) = 1 € Gal(Q/K(w)), i.e.
K(a) C K(p). O

we can apply Lemma 2 and obtain that ¢4(0) = ¢z(1)

This last result can be generalized as follows.

THEOREM 8. Let f,g be two locally constant maps in C(Gg) with
a(f) > 0 (f not constant). Let Q C C be a subfield of C such that f(o) and
g(o) € Q for all 0 € Gg. We assume that Hf—g||<%f). Then Q[f]
C Qlgl in C(Gg). Here Q[f]1= {ap+arf +...+arf | ap,aq,...,a; € Q}
and fi(o)=Lf @] for any oe€Gg and 1€ N. Moreover, if

If =gl < %min{w(f),w(g)} and if w(g) > 0, then Q[f1= Qlg]

Proor. Since Gk is a compact group f and g have a finite number of
values. Let m be the number of distinct values of ¢:g(g1) = 11,
9(oe) = A2, ..., 9(op) = Ay € Q. Then we can solve the linear system of m
equations and m unknowns Ay, A1,...,Ap_1:

flo) =Ag+ A +Asd®+ ..+ Ay ™!

flog) = Ay +Aile +A2)V22 + ... -‘rAm,lﬂzm_l

f(o'm) =Ao+Aiin +A2)~m2 + ... +Am71j~mWL71

The determinant 4 of the system is equal to H‘(li — ) #0. So

A ) . 1<J
Ai:jeQ for all i=0,1,...,m —1. Now, if g(g) =g(s;) for an

1=1,2,...,m, then f(c) = f(0;) (see Lemma 2) for the same 7. Hence, for
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these {4;},7=1,2,...,m we can write:
f(o) = Ag + A19(0) + A2g%(0) + ... + Ay1g™ (o), ie.
f=A0+A1g+A* + ... +Ay_19™", or

f € Qlg]. Therefore Q[ f]1 C Q[g]. The last statement is simply obtained be
changing f and g, one to each other. O

COROLLARY 3. Let B be a C-subalgebra of C(Gk) and let f be a
nonconstant locally map in B, the topological closure of B in C(Gg). Then
feB

PROOF. Since Bis densein B, let g be in B such that || f — g|| < — (f)
Theorem 8 we obtain that C[f] c C[g] C B, i.e.f € B. D

PROPOSITION 2. Let K C L C Q be subfields of the algebraic closure of
Q. Let Qy be the K-spectral closure of Q and let Ly C Qg the topological
closure of L in Qg (relative to the K- spectral norm). Then Lx NQ = L.

ProOF. Let € LgnQ. If x €K, then xeL. If x¢ K, then
o(x) = min{|x; — x;| : 2; # x;} where x; are all the K-conjugates of x = x;

in Q, is not zero. Let y € L such that ||x—y||K<Q Then K(x)

C K(y) c L (see Corollary 2). Hence x € L and so LK NQ=0L. O

We recall that the mapping ¢ : O — C(Gg), defined by ¢(x) = ¢,., where
¢,(0) = a(x) for any x € Q and ¢ € G, is an isometric K-embedding of Q
into C(Gg).

PRrROPOSITION 3. Let A be a closed K-subalgebra of C(Gk). Then
AN p(Q) is a subfield of p(Q).

ProoF. Let B=ANg(Q) and let x € B\{1}. Since Q C B we may
suppose that ||z||; <1. Since C(Gg) is a Banach algebra over C (see [5] or
[18]) and because A is closed, the series 1 +x+a®>+... =y € A. But

1

Y= i so 1 — ¢ is invertible in B (because in ¢(Q) it is !). So we just

proved that for any « € B, x # 1, 1 — « has an inverse in B. Let m be a
maximal ideal of B andletz # 0, 2z € m. Thenz = 1 — (1 — z) has an inverse
in B,i.e. m = B, thus B is a subfield of ¢p(Q). O

Propositions 2 and 3 can be viewed as the first steps to a Galois theory
in Qg.
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