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Analytic Solutions of Second Order Nonlinear Difference
Equations all of whose Eigenvalues are 1

MamI SUZUKI (*)

ABSTRACT - For nonlinear difference equations, it is difficult to obtain analytic so-
lutions. Especially, when all the absolute values of the equation are equal to 1, it
is quite difficult.

We consider a second order nonlinear difference equation which can be
transformed into the following simultaneous system of nonlinear difference
equations,

2+ 1) = X@@), y(®),
y(t+1) = Y(x@®),y@),

where X(x,y) = ix + Y. cyx'y/, Y(x,y) = oy + . dyx'y and we assume
=2 [AVES)

some conditions. For these equations, when |1;] # 1 or |Jz| # 1, we have ob-

tained analytic solutions in earlier studies. In the present paper, we will prove

the existence of an analytic solution and obtain analytic solutions of the differ-

ence equations for the case 1; = 1o = 1.

1. Introduction.

We start by considering the following second order nonlinear differ-
ence equation,

(1.1)

w(t + 1) = Uu), v(?)),
vt + 1) = V), v@)),

where U(u, v) and V (u, v) are entire functions for « and v. We suppose that the
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14 Mami Suzuki
equation (1.1) admits an equilibrium point (u*, v*) : uy U, ")

' L T Vi v*) )°
We can assume, without loss of generality, that (u*, v*) = (0, 0). Furthermore
we suppose that U and V are written in the following form

wt+1)\ _ M u(t) n Ur(u(®), v())

vt +1) v(t) Vitu@®),v(@)) )’
where Uj(u,v) and Vi(u,v) are higher order terms of % and v, and M is a
constant matrix. Let 41, /2 be the characteristic values of the matrix M. For

some regular matrix P determined by M, put (Z) =P Z) , then we can

transform the system (1.1) into the following simultaneous system of first
order difference equations (1.2):

1.2) a(t + 1) = X(a(), y(®)),
. yit+1) = Y(x@®), y@),

where X (x, ) and Y (x, y) are supposed to be holomorphic and expanded in a
neighborhood of (0, 0) in the form

X, y) = e+ Y ey =+ Xy, y),

=2
(13) L
Y@, y) =lay+ Y dge'y’ = oy + Ya(a,y),
i+j=2

or

X, y) = e+y+ Z c;jxiyj = Jx + Xi(x,y),

=2

(1'4) HJ/ Qg /

Y(r,y) = iy + Z dya'y =2y + Yi(@,y),

+j=2

where, in the second case, A = 11 = Jo.

In this paper we consider analytic solutions of difference system (1.2).
In [9] and [8], already, we have obtained general analytic solutions of (1.2)
in the case |44| # 1 or |12| # 1. However in the case |1;| =|42| =1, it is
difficult to prove the existence of analytic solution or obtain an analytic
solution of the equation. For a long time we have not been able to treat
equation (1.2) under the latter condition.

For analytic solutions of nonlinear first order difference equations,
Kimura [2] has studied the cases in which one eigenvalue is equal to 1,
furthermore Yanagihara [10] has studied the cases in which the absolute
value of the eigenvalue is equal to 1. Here we shall study analytic solutions
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of nonlinear second order difference equations in which the absolute values
of the eigenvalues of the matrix M are both equal to 1.
As an example of the equation (1.3), we consider the following “popu-
lation model”
u(t + 1) — oult)
ou(t)

where o« =1+ 7 > 0, f > 0 are constants,  is the net (births minus death)
endogenous population growth rate. This model was proposed by Prof. D.
Dendrios [1], and may be transformed into a system as in (1.2). In [6], we
have investigated properties of a solution assuming its existence when
o = 1,i.e.» = 0. However if both eigenvalues of the equation are equal to 1,
i.e. under the condition » = 0, the existence of a solution of the model is not
established. In the next paper, we will show a solution of the population
model in the case r = 0.

Moreover we have studied some economic models in the form (1.2), but
we had to exclude the case |1;| = |12| = 1. For example, in [7], we consider
the following “duopoly system”

2@+ 1) = ay@®A — y(@)
Yyt +1) = @)1 — (@),

u(t +2) = out + 1)+ p , for t > — oo,

where o and f§ are constants. For this system, we have 4; = —/Jo. In [7], we
consider the system under the condition such that 0<% = 23 <1.

Therefore we will investigate the equation (1.2) in the case |;| =
= [4| =1

In this present paper, making use of theorems in [2] and [5], we will
prove the existence of a solution and obtain an analytic solution of (1.2)
under the conditions 4; = A3 = 1, in which X, Y are defined by (1.3), i.e., we
suppose that

X(xa?/):er Z C’Lj‘%.iyj :90+X1(9€7?/)a
+j=2,i=1

Y, p=y+ >  dg'y =y+Yilw,y).

+j=z2,j=1

(1.5)

Here we suppose that X;(x,y) # 0 or Yi(x,y) Z 0.
Next we consider a functional equation

(1.6) P (X (e, () = ¥ (w, ¥ (),

where X(x,y) and Y (x, %) are holomorphic functions in |x| <d, |y| <Jd1. We
assume that X(x,y) and Y(x,y) are expanded there as in (1.5).
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Now we will consider the meaning of equation (1.6).
Consider the simultaneous systenél of difference equations (1.2). Suppose
(1.2) admits a solution (x(), y(t)). If d—gtﬁ # 0 for some tj, then we can write

t = w(x) with a function y in a neighborhood of g = x(¢y), and we can write
1.7 y =yt) = yy) = ¥@),

there. Then the function ¥ satisfies the equation (1.6).
Conversely we assume that a function ¥ is a solution of the functional
equation (1.6). If the following first order difference equation

(1.8) w(t + 1) = X((), P (@@),

has a solution «x(t), we put y(t) = ¥ («(t)). Then the (x(f), y(t)) is a solution of
(1.2). Hence if there is a solution ¥ of (1.6), then we can reduce the system
(1.2) to a single equation (1.8).

This relation is important in order to derive analytic solutions of non-
linear second order difference equations which are written as in (1.2). We
have proved the existence of solutions ¥ of (1.6) in [3] (or [4]) and [8] for
other conditions on X and Y.

Hereafter we consider ¢ to be a complex variable, and concentrate on
the difference system (1.2). We define a domain D1 (x, Ry) by

(1.9) Dl(Ko,Ro) = {t : |t| > RQ, |arg[t]| <K0},

where g is any constant such that 0 <y = g, and R, is a sufficiently large

number which may depend on X and Y. Further we define a domain D*(x, J) by

1.10) D*(i,0) = {x : |argle]| <k, 0<|x| <},
where ¢ is a small constant, and x is a constant such that x = 2k, i.e.,
O<k= g

Our aim in this paper is to prove the following Theorem 1.
THEOREM 1. Suppose X(x,y) and Y (x,y) are expanded in the forms
(1.5) such that X1(x,y) Z 0 or Y1(x,y) £ 0, and put A = cy.

(1) Suppose that kcag = dy1 for somek € N, k=2, then we have a formal
solution x(t) of (1.2) the following form

-1
1 . (logt\*
(1.11) 1 <1+ > qut (T) ) ,

j+k=1

where q;i. are constants defined by X and Y.
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(2) Suppose kcyg =di1<0 for some kelN, k=2 and R;=
= max (Ry,2/(JA|0)), then there is a solution x(t) of (1.2) such that

(1) x(t) is holomorphic and x(t) € D*(x, d) for t € D1(xy, Ry),
(ii) x(t) is expressible in the following form

-1
1 log ¢

where b(t,logt/t) is asymptotically expanded fort € D1(xy, B1) such that
logt ., logt k
() ~ 3 a3 (7F)
Jtk=1

as t — oo through D1(xg, R1).

2. Proof of Theorem 1.

In [2], Kimura considered the following first order difference equation
(D1) w(t + 1) = F(w(t)),
where F is represented in a neighborhood of co by a Laurent series

2.1) F(z) = z(l + f: bjz-f), by =4 #0.

J=m
He defined the following domains

0 DER= {t: |t| > R, |arglt] — 0] < g ¢, or Im(e* %) > R,
. or Im(e!+9t) < — R},

D@, R)={t : |t| >R, |arg[t] — 0 — n| < g —zor Im(e ™9y > R
2.3) or Im(efi(0+n+s)t)< _ R},
where ¢ is an arbitrarily small positive number, R is a sufficiently large
number which may depend on ¢ and F', and 0 is defined by 0 = arg /, (in this

present paper, we consider the case A = 1in (D1)). He proved the following
Theorems A and B.
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THEOREM A. — Equation (D1) admits a formal solution of the form

i logt\"
@.4) t<1+ 3 qjkt—J(%t) )

jk=1

containing an arbitrary constant, where q;. are constants defined by F.

THEOREM B. — Given a formal solution of the form (2.4) of (D1), there
exists a unique solution w(t) satisfying the following conditions:
(i) w(t) s holomorphic in D(e, R),
(i) w(t) is expressible in the form

2.5) w(t) = t(l +b<t,lotgt>>,

where the domain D(e, R) is defined by (2.2), and b(t, n) is holomorphic for
t € D@, R), |n|<1/R, and in the expansion

b(t,m ~ > bty
k=1

Here bi(t) is asymptotically developed into
) ~ > Gt
j+k=1
ast — oo through D(e, R), where Gj, are constants which are defined by F.
Also there exists a unique solution W which is holomorphic iz@ D, R)
and satisfies a condition analogous to (11), where the domain D(e, R) is
defined by (2.3).

In Theorems A and B, Kimura defined the function F' as in (2.1). In our
method, we do not have a Laurent series for the function F. Hence we
derive the following Propositions.

In the following, A will be a constant which is defined as in Theorem 1
such that A = ¢y, where ¢y is the coefficient in (1.5).

PROPOSITION 2. — Suppose F(t) is formally expanded such that

2.6) F(t) = t(l +) bjtf'>, by =4 #0.
j=1
Then the equation

@7 w(F®) = ) + 2



Analytic Solutions of Second Order Nonlinear etc. 19

has a formal solution
logt
2.8) w(t)—t<1+2q]t g °g>
J=1

where g1 can be arbitrarily prescribed while other coefficients q; (j = 2) and
q are uniquely determined by b;, (j = 1,2, ---), independently of q:.

PROPOSITION 8. — Suppose F(t) is holomorphic and expanded asymp-
totically in {t : —1/(At) € D*(x,9), A<0} as

F@t) ~ t(l + ibjt7>, by =4 #0,

=1
where D*(x, 0) is defined in (1.10). Then the equation (2.7) has a solution
w = w(t), which is holomorphicin {t : —1/(At) € D*(x/2,0/2), A<0} and
has an asymptotic expansion

logt
(t)~t<l+Zq7t ’+q0g>

J=1

there.

These Propositions are proved as in [2] pp. 212—222. Since A = ¢z <0
and ko =x/2, we see that x= —1/(At) € D*(x/2,0/2) equivalent to
t € D1(c/2,2/(JA|5)) = D1(xo,2/(JA]0)), where D (xq, Ro) is defined in (1.9).

We define a function ¢ to be the inverse of y, so that w = y~1(t) = &(¢).
Then we have ¢ o w(w) = w, y o §(t) = t, furthermore ¢ is a solution of the
following difference equation

(D) w(t + 1) = Fw()),

where F is defined as in Proposition 2 (see pp. 236 in [2]). Hereafter, we put
A = 1. Since 0 = 0, we then have the following Propositions 4 and 5, ana-
logous to Theorems A and B.

PROPOSITION 4. — Suppose F(t) is formally expanded as in (2.6). Then
the equation (D) has a formal solution

logt
2.9) w¢(t)t<1+ 3 q]kt](()f) )

J+k=1

where qj. are constants which are defined by F as in Theorem A.
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PROPOSITION 5. — Suppose a function ¢ is the inverse of w such that
w=y ()= #t). Given a formal solution of the form (2.9) of (D), there
exists a unique solution w(t) = ¢(t) which is holomorphic and admits an
asymptotic expansion for t € Di(iy,2/(JA|9)) such that

(2.10) w=¢(t) = t(l +b (t, lngt>> ,

where
logt . ,_(logt k
bG’T) ~ Dt ’(T) '
JHk=1

This function ¢(t) is a solution of difference equation of (D).
In [5], we proved the following Theorem C.

THEOREM C. — Suppose X (x, y) and Y (x,y) are defined in (1.5). Then we
hawve following:

Q) If kcoy # dyy for any k € N, k=2, the formal solution ¥(x) of (1.6) of
the following form

o0
@.11) V) = ama”,
m=1
s identical to 0, t.e, a; =ag = ---=0.

(@) Ifkegy = diy for some k € N, k =2, we have a formal solution ¥ (x) of
(1.6) of the following form

o0

2.12) P) =Y aua",
m=k
e, a1 =0 = - =0ap1=0.
(3) Suppose
(2.13) keog = di1 <0 for some kelN, k=2.
Forany i, 0<k= g and small 6, we define the following domain D* (i, o),
(1.10) D*(x,0) = {x : |arglx]| <k, 0<|x|<d}.

There is a constant 6 > 0 and a solution ¥(x) of (1.6), which is holomorphic
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and can be expanded asymptotically in D*(k, o) such that
(2.14) P~ > aal.
=k

Proor oF THEOREM 1. — We will first prove (1) of Theorem 1. From
Theorem C (2), we have a formal solution ¥(x) of (1.6) which can be for-
mally expanded so that one has

(2.15) Pw) = au,
=k
On the other hand putting w(t) = — 1) in (1.8), since A = cgg, We have
1 1
t+1) = — = —
WD =T G D T AX (@), P)
(2.16) _ 1

1 1 '
AX( At ’l‘”( _Aw(t))>

X (@), P@t) =2+ 3 e @ @)y

From (1.5), we have

i+=2,i=1
= x(t){l + > T W) }
iHj=2,1=1
Thus we have
.
X (a(®), ¥ ()
_ 1
af{1- 5 et @)}

ij=2iz1

1 if . N N

ij=2.i=1 i=2iz1

A3
+( > —Cz‘j%(t)i‘l(q’(x(t)))’> 4+

+j=2,1=1
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Since w(t) = — xﬁ(t)’ we have
1 1 il 1 J
SEONZE0) R ( > olmn) (Cxm)) )
\ 2
1 i—1 1 J
+<Z_+j§izf Cij(_Aw(t)) (l‘y(_Aw(t )))
1 il j
+(. .Z.>_cij(_Awt)) ( ))
Hy=2,1=1

1
Since ¥Y(x) is a formal solution of (1.6) such that ¥(x) = ( —) =

1 A'?/U
_ N =
= mZ::k a; ( Aw) , (k=2), we have
(2.17) o w {1 + Czolﬂfl + Z 6/c(u))’“]
' AX (ac, S”(ac)) A = ’

where ¢, are defined by ¢;; and a;. (1 +-j = 2,1 =1,k = 2). From (2.17) and the
definition of A, we can write (2.16) in the following form

218)  w(t+1) =Fu®) = w(t){l +uw® "+ @(w(t))—’“}.

k=2

On the other hand, putting 2 =1 and m =1 in (2.1), i.e. 0 = arg[/] =
= arg[1] = 0, and making use of Proposition 4, we have the following for-
mal solution w(?) (2.19) of the first order difference equation (2.18),

2.19) w(t)—t<1+ ST gt 7<1°gt> )
j+k=1

where ;. are defined by Fin (2.18). From (2.17) and (1.6), Fis defined by X
and Y. Hence gj; are defined by X and Y.

From x(t) = ————, we have a formal solution of (1.2) such that
Aw(t)
-1
1 logt
_ = —j
(2.20) a(t) = (1 + ;lq,kt ( ; > )

From the relation of (1.2) and (1.8) with (1.6), we have proved (1) of
Theorem 1.
Next we will show (2). From the assumption that kcey = g11 <0 for some
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k € N, k=2, we suppose that Ry > R and x < g — ¢&. Since 0 = 0, we have

(2.21) D1 (59, By) C D(e, R).

For ax € D*(x, 9), making use of Theorem C (3), we have a solution ¥ (x) of
(1.6) which is holomorphic and can be expanded asymptotically in D*(x, 6)
such that

2,14) P (x) ~ i aja’.
j=k

Since B; = max (Ry,2/(|A|d)), making use of Proposition 5, we have a so-
lution w(t) of (2.18) which has an asymptotic expansion

wo=t(1+0(1221)),

in t € Dy(x, R1). Therefore we have a solution «(¢) of (1.2) which has an
asymptotic expansion

-1
1 logt

there. At first we take a small J > 0. For sufficiently large R, since
Ri =R, > R, we will have

1+b(t7lngt>

for t € D1(ico, R1). Since A = ¢99 <0,

-1
1 logt B logt

For sufficiently large R;, we then have
1
140 (t, %t)]

—xp — Ko < argle@®)] < xo + K.

1

1
A <—04+1)<9,

(2.22) ()] = AR

arglx(t)] = arg

arg <Koy, forte Di(ko,Rq).

Hence we have
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From the assumption of x = 2x, we have
(2.23) largla@®)]| <k = g for t € D1(co, R1).

From (2.22) and (2.23), we have x(t) € D*(x, ) for a some x, <O<K§ g)
Hence we have a ¥ (x(t)) which satisfies the equation (1.6).

Therefore from the existence of a solution ¥ of (1.6) and Proposition 5,
we have a holomorphic solution w(%) of first order difference equation (2.18)
for t € D1(xy, R1). Thus we obtain a solution x(¢) of (1.2) for ¢ there, which
satisfies the following conditions:

(i) () is holomorphic in D; (o, R1),
(ii) «(t) is expressible in the form

-1
1 logt
(2.24) x(t) = _At<1 + b(t, t)) .

Here b(t,logt/t) is asymptotically expanded for ¢ € D;(x, R1) such that

logt ., logt k
b(t,T) ~ Z (I]kt ](T> ,

JHk=1

as t — oo through D;(xq, R1). O

Finally, we obtain a solution (u(t), v(t)) of (1.1) by the transformation
u®)\ p x(t)
@) ) Y(x) )
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