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On the Regularity for Solutions of the Micropolar
Fluid Equations

ELvA ORTEGA-TORRES (¥) - MARKO R0OJAS-MEDAR (¥*)

ABSTRACT - We give sufficient conditions on the kinematics pressure in order to
obtain regularity and uniqueness of the weak solutions to the micropolar fluid
equations.

1. Introduction.

We consider the regularity of the weak solutions for the equations that
describes the motion of a viscous incompressible micropolar fluids in a
bounded domain 2 ¢ R?, with smooth boundary 9 over a time interval
[0,7], 0<T < + oc. These equations are given by

6)) %+u.Vus1Au+V]OZZMVI”OthFfv
@  divu=0,
ow .
3) E+u~wavawfV3Vd1vw+4,u,nw:2,117 rotu +g,

where v = p+ ft,., va = €q + €4, V3 = Co + €4 — Cq-

The unknowns are the functions u(x,t) € R® w(x,t)e R® and
p(x,t) € R which denote the linear velocity vector, the angular velocity
vector of rotation of particles, and the pressure of the fluid, respectively.
The functions f (x,t) € R? and g, t) e R? are given, and denote external
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sources of linear and angular momentum, respectively. The positive con-
stants u, 1, o, ¢ and cq, characterize isotropic properties of the fluid: x is
the usual Newtonian viscosity; u,, co, Cq, Cq are new viscosities related to
the appearance of the field of internal rotation w and satisfy co + ¢4 > c,.

Together with the equations (1)-(3) we prescribe the following bound-
ary and initial conditions

4  u(x,t)=0, w(x,t)=0 on Sp=02x(0,T),
B)  ulx,0) =wupx), w(x,0) = wylx) in Q.

For the derivation and physical discussion of the equations (1)-(3) see [7]
and [14]. The existence of diverse notions of solutions for the system (1)-(3)
has been much studied, as in [13], [17], [18] and [23]. We observe that the
equations (1)-(3) include as a particular case the classical Navier-Stokes
equations, which widely has been studied (see, for instance, the classical
books [12], [21] and the references there in).

In the theory of the three-dimensional Navier-Stokes equations, the
problems of uniqueness of weak solutions is the most difficult ones (see for
instance [21], p. 297, [12]). For sufficiently smooth solutions, the unique-
ness is proved quite easily, while in the class of weak solutions the problem
of uniqueness (or non-uniqueness) remain open to discussion. There exist
many works devoted to these questions. A pioneer work in this direction
was give by Serrin [19], Serrin proved that a weak solution (u, p) is regular
if the velocity u satisfies some suitable extra conditions. After many au-
thors extend the result of Serrin, see for instance [11], [22], [8], [1], [17].

The pressure term is source of problems for understanding of the
Navier-Stokes equations, since it plays a role seemed to a Lagrange
multiplier to enforce the incompressibility constraint. Thus, an other
interesting question is to look for conditions involving the pressure and
not the velocity, as it has been done in almost all the literature. A first
sufficient condition for regularity involving the pressure alone, was
given by Kaniel in [10] who proved that p € L>(0, T'; LY(Q)), for ¢ > 12/5
is a sufficient condition for the smoothness of weak solutions of the
three-dimensional Navier-Stokes equations. This approach was ignored
by many years but, recently, many authors have write extensions of the
results by Kaniel [10], see for instance [2], [3], [16], [5], [6]. Following
the idea of Kaniel it is well known that if uy € V, there exists an unique
strong local solution for the Navier-Stokes equations, and if |uyl|} is
small enough and the external force is zero, the solution is global. Since
the weak global solution also exist, then the local strong solution is



On the regularity for solutions of the micropolar etc. 29

equal to the weak solution on the maximal interval of existence, say
[0, T*), with 0<T* <T. Thus, the following question comes to our mind:
what conditions on the pressure implies that the unique local strong
solution is in fact global?, in other words, it is possible to change the
condition on ||uy||;; by another that involve only the pressure?. If we
have an affirmative answer, we would have the uniqueness of weak
solutions. It is important to say that these results is not directly com-
parable to the Serrin, since the initial condition is take in different
spaces. Moreover, it will be interesting to know if it is possible change
the hypotheses of Serrin by another that involve only the pressure, but
this is a difficult question. In fact, in an early work Heywwod and Walsh
[9] give an interesting result on the behavior of the pressure in ¢t =0
when the initial condition uy € V. They show that there exist initial
conditions uy € V such that lim %l‘lp Ipllz2@ = + o0, which implies that
t—

lim sup ||p|| 14 = + oo for any ¢ > 2.
t—0+

By the other hand, the condition given by Kaniel is: ||p||7,q < Co for

each ¢ in the interval of existence of the weak solution, with ¢ > 5 in
particular, this implies that the lim sup ||p||;:(, is finite and consequently
o

some degree of regularity on the ﬁ;essure is in fact necessary. Thus, other
interesting question in this direction is find the minimal hypotheses on the
pressure. The work of Berselli [5] is in that direction. In fact, the Berselli’s
results, roughly speaking, are the L9- versions of the Kaniel result (¢ > 3).

The purpose of this paper is to extend the proof presented in [5] to the
micropolar equations, and thus, we research the same level of knowledge
as the one in the case of the classical Navier-Stokes equations. We note
that, as remarked in [5], the proof is done by following techniques in-
troduced in [4] and developed in [3].

An outline of this paper is as follows. In Section 2, we introduce some
notations and functions spaces, and we state our main theorem. In Section
3, we prove some estimates for the proof of our main result. Finally, in
Section 4, we prove our main theorem.

2. Statements, notations and main result.

We denote by LP(Q), 1 <p < +oco the usual Lebesgue spaces of
scalar functions and for vector value functions we define LP(Q) =
= (LP(Q))® with norm [vll, = llv[ll, where |-| denotes the Euclidean
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length. As customary, Hé(Q) denotes the Sobolev space given by the
functions vanishing on the boundary and belonging to L*(Q) with their
first-order distributional derivatives, and the norm is defined by
||v\|H(1J = | |Vv||l;- When X is a Banach space, we denote by C(0,T;X)
the set of continuous functions on [0,7] with values in X and by
LP(0,T;X) the Banach space of measurable functions v with values in X,
endowed with the norm

T 1/p
HU”LP(O,T;X) = (/ |U(t)|§)(dt) )
0

Let C;°(2) denote the set of all C*-real vector functions v with compact
support in ©, and CS;(Q) denotes the functions v € C;°(2) such that
dive = 0. Then, we introduce the following function spaces

H, = closure of Cgf’a(Q) in L*(9),
G, = closure of C;°(2) in L*(Q),
V = closure of C§' (@) in Hy(Q).

We denote by the same C various positive constants and by C(-, -,...) the
constants depending only on the quantities appearing in parentheses.
Also, we denote the classical bilinear and trilinear forms by
3 ou; Ov; 3 ;
(Vu, Vo) = Z —L de, (w-Vvo,w)= Z /uj—widac
Q

i1 A 890i 890i i1 890]'

for all u, v, w where the integrals make sense. Moreover, the trilinear form
has the properties
(6) (u-Vu, |v|"‘7zv) =0, YuecV,Vve H(l)(Q).

For simplicity of notations, we consider the following quantities (introduced
in reference [4])

) N2w) = [||uf " [Vul |3, M) = |||V Juf |3
and, in the calculations will be used the inequalities

(8) )|}, <CoM2@), ¥ |uff € Hy(Q),
©) Vvl <[Vv|, VueH)Q),
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and for allv € H, (1,(9), the following equalities

(10) (rotv,w) =(v,rotw), Yw € H(l)(Q),

11 rot(\v|“7zv) :|v\“72 rotv + (o — 2)|v|°‘73 V v] x v,
(12) div (Jv|* %) =[v|* 2dive + (2 — 2)|v| v - V |v),
(13) ol v, =Illelll; "

Now, we set out our main result

THEOREM 2.1. Let (u,w) be a weak solution of the problem (1)-(5) with
mitial conditionsuy € H,, wy € G, andf, g € L*(0, T; L*(Q)) fora > 3. Ifp
the associated pressure satisfies

(14) p € LX0,T; L(Q))

then the weak solution satisfies

(15) w,w) € C(0,T;H,) x C0,T;G,)

and

(16) (2, |w}) € L20, T; HY(Q)) x L*0, T; Hy(XQ)).

REMARK 2.2. To the Navier-Stokes equations it is well known that a
weak solution in the sense of Leray-Hopf (see [19], [15], [20], [21]) is reg-
ular if

an we 0.1 L@), 2

@ | WO

+-<1, s>3.

REMARK 2.3. Ifwe put r = o and s = 3o /(e + 1) we get as a sufficient
condition for reqularity that

2
18 pel’(0,T,L°(Q) with s>9/4 and p +§ =1 +%.

Note that the right-hand side in the equality of (18) is a number greaterthan
1 and strictly lower than 2. Note that if we could take r = 3 we would get a
pressure belonging to L3(0, T'; Li(Q)). By taking into account that p ~ |u\2,
this condition is equivalent tou € L%(0, T; Lg(.Q)), which satisfies (17).

3. A priori estimates.

With the notations given in Section 2 and in order to prove the main
Theorem 2.1, we give the following Lemma:
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LEmMA 3.1.  Let (u,p,w) be a smooth solution of the micropolar equa-
tions (1)-(5) in 2 x (0, T1. Then the following estimate is satisfied

1d Ve (o — ) (o 2)
OC2

o g el llw ||>+—N“ )+ 5 Ni@w)+4n M;w)+C M:(w)

].9 o o— o o o o
W) gyl < — Tp, w2 w) + CFIE + g1 + Ol + w]D,

where C1 = 4ve — ovg > 0.

Proor. We multiply both sides of (1) by |u|“72u (as in the proof of
Lemma 1.1, [4]) and then doing integration by parts in ©, taking into ac-
count (6) and (10), it follows that

1d -2
0 ocdt”u” +v1N°‘(u)+4v1( )

M)
< —(Vp, [l *u) + 2 40, (w0, vot (ul* ) + F, Ju* *u)

In analogous form multiplying (3) by |w\"72w, taking into account (6), (10)
and (12), we get

1d -2
Lo+ v N2 G0) + 40y @22

(1) © dt
< 2, (u, ot ([w|" 2w)) + (g, |w|* *w) +vs ( —2) (divw, [w|" > w V [w)).

M)+ vy [[[w] " |dive] |5 +4 4, |wlf;

Now, taking into account (11) and (9), we have
(w7rot(|u|‘“72u)) = (w, |u\°‘72 rotu) + (o0 — 2)(w, |u|°‘73 V |u| x u)

= (|, w2 |Vu)) + @ — 2w, [ |V ju| x u])

(22)
< (|wl, |u"* |V u]) + (o — 2)(|w], |u|** |V u])
< (o — D(w|,u|* 2 |Vul).
. 1 ao—2 1 . .
Since &+T+§ =1, from (22) together the Hélder and Young in-

equalities, we get
2 1, @, vot (ju**w) < 241, (e — Vo], [tz [l V]l
©3) < 2w (= D], ||l [[Z* V@)

_ v
< vy o= P ol | a7+ NaGa).
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2 -2
Again, since M + (ZT = 1, by using the Young’s inequality in (23), we obtain
o—. o o v o
@4)  2u, w,rot (Ju|"w)) < C(a, v) lw]|* + C(@) |||’ +Zl N @),
Similarly as to (23) and (24), we can obtain

242 (o — 1)
v2

o— o— 1%
2 1, (u, vot (o] *w) < ol 1w 1572 + 5 NiGa)

(25)
o o v o
< Cu 1) [lull; + Clou o) |} + 5 Na)
D1 . 1 a—-1 . ,
Now, considering (13) and since — + —— =1, by using the Young’s in-
. . o o
equality in (23), we have
(26) (2| < Y el 1570 < C I+ C N e 5
Similarly
27 @, [w]"w)| < Clg|l; + C|| lw| |I5-
Now, taking into account that |V |u || = g 71|V |u| | a.e. in ©, to the last

term in the right-hand side of (21), we get

divw, lw| 2w -V [w)) <(divw|, [w|* 2|V [w])
< (|diveo| jwf ™, wl |V fw])

28 u a_
@8 "y el % [ao] |1,

<|||div w| |w|

a
2

z-1
o IV fw

2
Then, by using the Young’s inequality, from (28) we have

- 10 1
(divew, |w|* 3wV|w|)< o™ divan] |3+~ M),

1 -2
and since, 3 < aT <1 for o > 3, then

P 2
29) v3(x—2)(divw, \w|°‘73 wV |w)) < v |w|T1 |divaw| Hg + 13 (a )

M, w).

Setting (24) and(26) in (20), as well as (25), (27) and (29) in (21), we obtain

1d 3\1 ( 2)

0 ocdt” I +—N“( )+4n M)

< —(Vp, lul"u) + C ||w||§ +C iy + CIF-
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and

G+ = N“(w)+(4V2—OW3)( ~2)

o > L o M) + 4, ol

<C ||u||§ +Cllwl; +Clgll;,
thus adding inequalities (30) and (31) is followed (19).
LEMMA 3.2. Let (u,p,w) be a smooth solution of the micropolar equa-
tions (1)-(3) in Q2 x (0, T]. Then the following estimate is satisfied

o o —2 o / o
62— (Vp A < G ol + 2 M) + 2 Vi)

where Cy s a positive constant dependent on vy, o.

Proor. Taking into account that u € H, and (12), we have

— (Vp, [u"?u) = (p, div (ju|"*u)) = (2 — 2) (p, [u|"*u - V|u|)
33) < (@ —2)(pl, |u|"*|Vu|)
<@ —2)(p| [uf ", [uftVa).

1 -2 1
Since prl yi2 oo 1, by applying Hélder’s inequality in (33), we
3o 6o 2
have
— (Vp, [u]""u) < (o = 2| |t g e ]
(34)

-1
< (= 2)[|pl|zs [l ([l [Vael [l

Then, by using the Young’s inequality in (34), we get

o— o —2 ? o— v o
@ Ol < C R g+ Vi,
2 a-—2 . . .
Now, 5 + =1, then by using the Young’s inequality and (8), we have
(2 —2)° (o 2) 1
IpIRs Naell5® < Collpls + v —5— )H ull3,
39 ' ( )
<Csz Y +n MU( ),

- o — 2 /2 V1
where Co = ( ) Coo)® ( " )
Thus, inequahtles (35) and (36) imply (32).
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4. Proof of Theorem 2.1

The proof of Theorem 2.1 is based on Lemma 3.1 and Lemma 3.2 with
the aid of smoothing properties.

From Lemma 3.1 and Lemma 3.2, we have that the smooth solution
(u,p,w) of the micropolar equations (1)-(3) satisfies

(x—2)
o

d o o oV o o Vo "
%(IIUIIa + ||w||a)+7 N (u) + 5 Niw)+3wn

(x—2)
o

M)

+ C

M) < Co [Pl s, +C (IFIl 4191120 + C (luell+ [[w]]3)-

Moreover, by observing the notation given in (7) and since g> 1,
o—2

> %, from (37) we get

4

gy g7 D 0 N2+ N2 ) 1 |9 I+ 0 1V o

< oIl + C UL+ llgll) + C (lully + [lw]l-

By integrating (38) from 0 to ¢ € (0, T'), we have

t t
@+ [w®| + 1 / N*(u(@®)de+ v, / N*(w(2)) dr
0 0

t t
a C 2
o [I9 @B+ 5 [ 19 e
(39) ’ t ' ¢
< oll3+ ol +C [ Ip@, e+ C [ @+l ds
0 0

t
L / (@] + [w@| de.
0

Then, taking into account the hypotheses onf, g and p (see (14)), inequality
(39) implies

t t t
||u(t)||§+||w(t)||§+v1/N:(u(r))dr+V2/N§(w(T))dr+v1/|\V|u(1)\§|\2d7
0 0 0
(40) C t t
+8 [V le@iPar < +¢ [ quo; + w@lads
0 0
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and using the Gronwall’s inequality in (40), we obtain

wpy O @l / IV kefPar + / IV @ ds

<CQ+1texp (Ct) =K@ < K(T)

then follows that (u,w) € L>(0,t; H,) x L*°(0,t; G,) and consequently by
the hypothesis o > 3 (see [8]) we have that (u,w) € C(0,t; H,) xC(0,t; G,).

Now, if we denote by t* the lowest upper bound of the values in [0, T'] for
which (41) is satisfied in [0, ¢*], we have that t* > 0 and (u, w) € C(0,t*; H,) x
xC(0,t*; Gy). Then, taking u(t*), w(t*) as initial data, if t* <7 one show from
(39) and (41) that exists a positive constant # such that

t*+n
e + I + o + DI +w / IV lu@fPde

42) c t+n tr
v [ IVe@fFd < Ko < KD

t*
thus (u,w) € C0,t* +n;H,) x C0,t* + n;G,), therefore necessarily it
must be t* = T.

REMARK 4.1. For o > 3 we have that ? < 3—“ <3, then
4 oa-+1
(43) L¥0, T LHQ) € L0, TiLAQ), § <q<3,

where q = %. Thus, from (14) and (43), we conclude that the same result

of the Theorem 2.1 is obtained if we consider

p € L*0,T;L1(Q), - <g<3.

4

.12 9 e . Lo
Moreover, since — > 1 the condition on the pressure given by Kaniel in
[10] s tmproved.
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