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Weak Krull-Schmidt for Infinite Direct Sums of Cyclically
Presented Modules over Local Rings

AFSHIN AMINI (*) - BABAK AMINI (*) - ALBERTO FACCHINT (**)(%)

1. Introduction.

There is a surprising analogy between the behavior of direct sums of
uniserial modules over an arbitrary ring and the behavior of direct sums of
cyclically presented modules over local rings. The reason of this analogy
lies mainly in the fact that both the endomorphism ring of a uniserial
module over an arbitrary ring and the endomorphism ring of a cyclically
presented module over a local ring are either local or exactly have two
maximal ideals whose residue rings are division rings. This allows us to
give a complete description of the direct-sum decompositions of a module
into uniserial submodules or into cyclically presented submodules (when
the base ring is local) exactly using two invariants. These two invariants
are the epigeny class and the monogeny class in the case of uniserial
modules [4], and are the epigeny class and the lower part in the case of
cyclically presented modules over local rings [1]. In both cases, a Weak
Krull-Schmidt Theorem for finite direct sums holds. It is now natural to try
to see which further parts of the theory of uniserial modules developed in
the last decade also holds for cyclically presented modules over local rings.
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The first natural question is to see whether the Weak Krull-Schmidt
Theorem holds for infinite direct sums as well. For uniserial modules, this
question was answered in three papers. First, Dung and Facchini [3] in-
dividuated a possible “pathology”, given by the so-called non-quasismall
modules, as a possible source of difficulties. Secondly, Puninski [11] proved
the existence of non-quasismall modules. And thirdly, Prihoda [9] finally
determined the correct form of the Weak Krull-Schmidt Theorem for in-
finite direct sums of uniserial modules. In this paper, we answer the cor-
responding question for infinite direct sums of cyclically presented mod-
ules over a local ring, that is, we prove a Weak Krull-Schmidt Theorem that
holds for infinite direct sums of cyclically presented modules over local
rings (Theorem 3.1). The case of cyclically presented modules turns out to
be much simpler than that of uniserial modules, essentially because cy-
clically presented modules are finitely generated, hence small, so that the
pathology of non-quasismall modules cannot appear in this setting.

Another natural question is whether a direct summand of a direct sum
of uniserial modules (cyclically presented modules over a local ring) is still
a direct sum of uniserial (cyclically presented, respectively) modules; see
[5, Problems 9 and 10, p. 268]. For infinite direct sums of uniserial modules,
the answer is negative, as was proved by Puninski in [10, Theorem 6.3].
The same holds for cyclically presented modules over a local ring, because
the example given by Puninski in [11, Proposition 8.1] of a uniserial domain
R with a non-zero non-invertible element 7 and a direct-sum decomposition
Ko (R/?"R)(NO) o (R/?”R)(N"), shows not only the existence of a uniserial
module K that is not quasi-small, but also that there is a countably gen-
erated uniserial direct summand K of a direct sum of cyclically presented
modules over the local ring R that is not a direct sum of cyclically pre-
sented modules. Thus this second question has a negative answer both in
the case of uniserial modules and in the case of cyclically presented mod-
ules over local rings. Here is another example. In [10, Theorem 6.3], there
is an example of a pure projective module P over a uniserial coherent ring
that is not direct sum of indecomposable modules. Over a uniserial ring,
every finitely presented module is a direct sum of cyclically presented
modules. Therefore, P is another example of a module that is not a direct
sum of cyclically presented modules, but is a direct summand of a direct
sum of cyclically presented modules.

A third natural question is therefore whether a direct summand of a
direct sum of finitely many uniserial modules (cyclically presented mod-
ules over a local ring) is still a direct sum of uniserial (cyclically presented,
respectively) modules. In the finite case, Prihoda [8] showed that every
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direct summand of a direct sum of finitely many uniserial modules is still a
direct sum of finitely many uniserial modules. The general case of direct
summands of direct sums of finitely many cyclically presented modules
over a local ring is still open.

Direct summands of direct sums of cyclically presented modules are
usually called RD-projective modules in the literature. Here “RD” stands
for “relatively divisible”. As we have seen above, there exist countably
generated indecomposable RD-projective modules K over local rings that
are not direct sums of cyclically presented modules and RD-projective
modules P over local rings that are not direct sums of indecomposable
modules. Nevertheless, every RD-projective module over a commutative
local ring is a direct sum of cyclically presented modules [12, Corollary 2].
However, every RD-projective module over an arbitrary ring is a direct
sum of countably generated RD-projective modules. In order to see this,
notice that if a module M is a direct sum of c-generated modules, where c is
any fixed infinite cardinal, then so is every direct summand of M [5,
Theorem 2.47]. For ¢ = Ny, we get that every RD-projective module over
an arbitrary ring, not necessarily local, is a direct sum of countably gen-
erated RD-projective modules. Therefore every RD-projective module
over an arbitrary ring is a direct sum of direct summands of direct sums of
countably many cyclically presented modules.

As we have already said, in this paper we completely solve the first
question posed above, showing that the Weak Krull-Schmidt Theorem
holds for infinite direct sums of cyclically presented modules over local
rings (Theorem 3.1). In the last section of the paper, we study the monoid
of all isomorphism classes of direct sums of cyclically presented modules
over a local ring.

This paper is the natural generalization of our previous article [1], from
the finite case to the infinite one. Throughout the paper, we consider
unitary right modules over an associative ring with identity. For a ring R,
J(R) and U(R) will be the Jacobson radical and the set of all invertible
elements of R, respectively.

2. Preliminary results.

Recall that a right module over a ring R is said to be cyclically pre-
sented if it is isomorphic to R /aR for some a € R. The endomorphism ring
of a non-zero cyclically presented module R/aR is canonically isomorphic
to E/aR,where £ := {r € R | ra € aR } is the idealizer of aR and the right
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ideal aR of R is a two-sided ideal in the subring £ of R. The following result
is proved in [1, Theorem 2.1].

THEOREM 2.1. Let a be a non-zero non-invertible element of a local
ring R, let E be the idealizer of aR in R, and let E /aR be the endomorphism
ring of the cyclically presented right R-module R/aR. Set

I'={reR|racaJR)} and K :=J(R)NE.

Then I and K are completely prime two-sided ideals of E containing aR,
the union (I /aR) U (K /aR) is the set of all non-invertible elements of £ /aR,
and every proper right ideal of E /aR and every proper left ideal of E /aR is
contained either in I/aR or in K/aR. Moreover, exactly one of the fol-
lowing two conditions holds:

(a) Either the ideals I and K are comparable, so that E/aR is a local
ring with maximal ideal (I/aR) U (K/aR), or

(b) The ideals I and K are not comparable, J(E /aR) = (I N K)/aR, and
(E/aR)/J(E/aR)is canonically isomorphic to the direct product of the two
division rings E /I and E /K.

From now on, for a non-projective cyclically presented module
U = R/aR over a local ring R, we use the notation Zy, Ky for the two
ideals I/aR,K/aR of Endg(U) described in Theorem 2.1.

Recall that two modules A and B hawve the same epigeny class (notation
[A], = [Bl,), if there exist an epimorphism A — B and an epimorphism
B — A; see [4]. Notice that, if a,b are elements of a local ring R, then
[R/aR], = [R/bR], if and only if there exist u,v € U(R) with ua € bR and
vb € aR, or, equivalently, if there exist u,v € U(R) and r,s € R with
ua = br and vb = as (because any epimorphism R/aR — R/bR is induced
by left multiplication by some invertible element of R). If B/aR and R /bR
are two cyclically presented modules over a local ring R, we say that B/aR
and R /bR have the same lower part, and write [R/aR], = [R/bR];, if there
exist u,v € U(R) and r,s € R with au = rb and bv = sa, equivalently, if
there exist , s € R such that vbR = aR and saR = bR (see [1]). The unique
cyclically presented module, up to isomorphism, with the same epigeny
class as 0 is 0, and the unique cyclically presented module, up to iso-
morphism, with the same epigeny class as Rp is Rp. Similarly for the lower
part.

The significance of these concepts for cyclically presented modules over
local rings is highlighted by the fact that any cyclically presented module is
uniquely determined by its lower part and its epigeny class.
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LeEmma 2.2 [1, Proposition 4.2]. Let U and V be cyclically presented
modules over a local ring R. Then U =2V if and only if [U];, = [V]; and
[U]e = [V]e.

For the reader’s convenience, we collect in the rest of this section some
results that will be used repeatedly in the sequel. The proof of Lemma 2.3
follows from [1, Lemma 5.2], Lemma 2.4 follows from [5, Corollary 4.6], and
Lemma 2.5 follows from Theorem 2.1.

LeEmMA 2.3.  Let V, V' be cyclically presented modules over a local ring
R. Suppose that there exists a cyclically presented module U such that
(U, =[V], and [U], =[V'],. Then there exists a cyclically presented
module U’ such that VoV =2U® U. Moreover, [U],=[V']; and
(U], = [V].

LeEmMA 2.4 (Cancellation property). Let A, B be right modules over a
local ring R and U a cyclically presented right R-module such that
AoU=BoU Then A=B.

LEmMA 2.5.  Let U be a non-projective cyclically presented module over
an arbitrary local ring R.

@) If f and g are two endomorphisms of U such that f € Ty \ Ky and
g € Ky \ Iy, then f + g is an automorphism.

(b) Conversely, suppose that fi,..., f, are n endomorphisms of U,
none of which is an automorphism. If fi + - - +f,, is an automorphism,
then there exist two distinct indices 1,k=1,2,...,n such that
ﬁ S IU\ICU CWLdf/C S /CU\IU.

LEMMA 2.6. Let A and B be non-zero cyclically presented right modules
over a local ring R with A non-projective.

(a) If there exist homomorphisms o: A — B and f: B — A with fla ¢ T a,
then [A]l = [B]l

(b) Ifthere exist homomorphisms a: A — B and f: B — A with o ¢ Ka,
then [A], = [B],.

The proof of Lemma 2.6 follows from the fact that, for any a,b € R,
every homomorphism R/aR — R/bR is induced by left multiplication by
some r € R with raR C bR.
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3. Arbitrary families of cyclically presented modules over local rings.

Consider two arbitrary families of cyclically presented modules
{Ui|1el} and {V;|j € J} over a local ring R. The main result of this

section says that @ U; = @V if and only if the families {U; |7 € I} and
el jed

{V; |j € J } have the same lower parts and the same epigeny classes. This

fact was proved for finite families of cyclically presented modules in [1].

THEOREM3.1. Let{U; |t € I}and{V;|j<c J} betwo families of non-
zero cyclically presented modules over a local ving R. Then @ U; = PV if
iel jed
and only if there exist two bijections a,7:1 — J such that [U;]; = [Vu i
and [U;l, = [Vl for every i € L.

ProoF. Suppose that there are two bijections ¢,7:1 — J such that
[U;l; = [Vl and [Us;le = [Vl for every ¢ € I. We have to show that
QU xPV;.

el jed
The symmetric group S; consisting of all bijections I — I acts on the set
I in a natural way. Let C be the cyclic subgroup of S; generated by

-1g € S7. Then C acts on the set I. For every element i € I let
[i]1= {0 G) |z Z}

denote the C-orbit of i. Let o([¢]) = {o(x) | * € [¢]} be the image of the
orbit [ 7] via the bijection o.

Fix an element ¢ € I. We claim that @ Uy~ & V,. In order to
keli] lea([i])
prove the claim, set, for simplicity of notation, i, := (t"1¢)°(i), j, := a(i,),

U,:=U; and V, :=V, for every z € /. Hence if the orbit [¢] is infinite,
then o([¢]) is infinite, and U, = U,, if and only if n = m. If the orbit [7]
is finite of cardinality q, then o([7]) is finite of cardinality q, and U, = U,,
if and only if 7 = m (mod ¢). Note that (i) = 1(z 16)*(i) = o(t 0)* (i) =
= 0(i;—1) =J.—1. In this notation, the equality [U;]; = [V,u]; for every
1 € I implies that

ey (U1 =[V.];
for all z € 7, and similarly the equality [U;], = [Vl implies that
@) [U.e = [Vo1le

for all z € Z.
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We now prove that there are cyclically presented modules Xy, X7, ...
and Y7, Yo, ... satisfying the following properties for every integer n > 1:

(a) Xn—l @ Yn = ‘]n—l S3) V—n and Xn 53] Yn = Un @ U—n;
(b) [Xn]l = [Un]l and [Xn]e = [U—nr]e;
© [Y,]; =[V_); and [V, ], = [Vie—1le.

The construction of the X;’s and the Y}’s is by induction, as follows. Set
Xy := Uy. Since [Up]; = [Vi]; and [Uyl, = [V_1]., there is a cyclically pre-
sented module Y; such that Vo oV_ 1 X() D Yl, [Yl]l = [V—I]l and [Yl]e =
= Vo], Wemma 2.3). Therefore, [U;]1, =[Vol, =[Yi), and [U_1]; = [V_1]; =
= [Y1];. Hence, again by Lemma 2.3, there is a cyclically presented module
X1 such that U1 &) U_1 = X1 D Yl, [Xl]l = [Ul]l and [Xl]e = [U_l]e.Thuon,
X1, Y1 have the required properties.

Now suppose n > 1 and that X; and Y; satisfying the required prop-
erties have already been constructed for every t<mn. Since [X, 1], =
= [Un—l]l = [Vn—l]l and [Xn—l]e = [U—n+l]e = [V—n]e7 by Lemma 23, there
exists a cyclically presented module Y,, suchthat X,, 1 ¢ Y, =2V, & V_,,
[Yn]l = [V—n]l and [Yn]e = [anl]e- From [Ufn]l = [V—n]l and [Un]e =
- [an—l]e; it follows that [Yn]l = [U—n]l and [Yn]e = [Un]e- Again by
Lemma 2.3, there exists a cyclically presented module X, such that
Xn ) Yn = Un @ U,n, [Xn]l = [Un]l and [Xn]e = [U—n]e-

Suppose that the orbit [ 7] is an infinite set. Then

@ Uk = @Un :UO ® <@(Un ® Un))

kel] nez n>1

%XO S (@ (Xn @ Yn))

n>1

= @ (anl @ Yn)

n>1

= @ (Vn—l ©® V—n)

n>1

= @V = @ V.
nez ltea([i])

This proves the claim for the case of an infinite orbit [ ].

In order to prove the claim in the case in which the orbit [ ] is a finite
q-1 q-1
set with g elements, that is, in order to prove that @ U, = @ V,, it suffices

2=0 2=0
to apply (1), (2) and the Weak Krull-Schmidt Theorem for finite direct
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sums of cyclically presented modules over local rings [1, Theorem 5.3].
Thus the claim is true.

When the index 7 runs over all the indices in 7, we get that the orbits [7 ]
form a partition of I into disjoint countable subsets I = |J[%] and their

el

images o([¢]) form a partition of J into disjoint co&ntable subsets
J = o i]). From the claim we know that @ Uy~ €& V, for every

i€l | leel'i] tea((il)
orbit [¢], sothat QU; =~ PV;.

iel jed

For the proof of the opposite implication in the statement of Theo-

rem 3.1, we first prove the following auxiliary lemma.

LEMMA3.2.  Let M = @ A; be a direct sum of arbitrary modules A; over
jed
a local ring R. Suppose that M = U & B, where U is a non-zero cyclically

presented R-module. Let ny:M = U ®B — U, m:M = @A; — Ay bethe
JjeJ

structural projections and ey:U — M =U @ B, ¢: Ay — M = @A, be

the embeddings. Then: J&s

@) If U is non-projective, there exist two indices i,k € J such that
nyemiey € Iy \ Ky and nyepmpey € Ky \ Zy.

(b) If U =2 Rp, there exists an index k € J such that nyepmpey s an
automorphism of U.

ProOOF. As Up, is finitely generated, there are ji,...,j, € J such that
UCAj &---®A,,. Therefore, for any j € J\ {j1,....Jn}, 7;(U) = 0. Set
C:= @ Aj, so that M ZAJ'I @--- ®Ajn @ C. If ey, ny, g, 7B, &y Ty

JFET15-dn
(t=1,...,n) and ¢, nc are the injections and the projections associated to

the two direct-sum decompositions M = U & B = Aj, @ --- © A;, © C, then
7c(U) = 0 and hence

1y = nyey = ny (Sjlﬂjl +--tem, + SC”C)SU
= nyg, M ey + - - - + TyE;, G, Eu + TuEcToey

= ny&; ey + -+ TUe;,T,Eu-
Then we have two cases:

(a) If U is non-projective, then by Lemma 2.5, there exist two indices
’i,k S {j], . 7.77[} such that nyeniey € Ly \ Ky and nyepTrEy € Ky \IU.
(b) If U = Rg, then Endz(U) = R is a local ring, hence there exists an
index k € {Jj1,...,n} such that nyemeey is an automorphism of U. O



Weak Krull-Schmidt for Infinite Direct Sums of Cyclically etc. 47

We are now ready to prove the remaining implication in the proof of
Theorem 3.1. We may suppose that M = @ U; = @ V; with U;,V; non-
zero cyclically presented modules for evemﬁl and j.jEJ

We construct the bijection o, the existence of the other bijection t can
be proved exactly in the same way. For any non-zero cyclically presented
module U, consider the two subsets I(U) = {t € I | [U;]; =[U]; } of I and
JW)={jeJ|[Vli=[U]} of J. It is obvious that the I(U)’s and the
J(U)’s, when U ranges in all the non-zero cyclically presented modules,
form a partition of I and J, respectively.

In order to establish the existence of the bijection o between the lower
parts of {U; |t €1} and {V;|j € J}, it is sufficient to prove that the
cardinalities |I(U)| and |J(U)| are equal for every non-zero cyclically pre-
sented module U.

Fix a non-zero cyclically presented module U. Suppose first that either
I(U) or J(U) is a finite set. Without loss of generality we may assume
[I(U)| < |J(U)|. Suppose that |[[(D)|<|J(U)|. If I(U) = {i1,...,1n}, let
{J1,---,Jn+1} be a subset of J(U) of cardinality » + 1. Write

M:Uil@'.'@ULL@B:‘/}I@.'.@‘/}7#1@6"

B:@Ui and C = @ V.

(CaC TN JAT LGt

where

We will show by induction on % that the submodule B has a cyclically pre-
sented direct summand V isomorphic to Vj, for some ¢ = 1,..., % + 1, which
gives us a contradiction because by Lemmas 2.6(a) and 3.2 there exists
ve I\ {ir,..., 5} with [U;], = [V], = [V}, ], = [U].

If U =~ Rg, then U;,,...,U;, and V},,...,V; | are all isomorphic to Rg.
By cancelling U;,,...,U;, and V..., V; from both sides (Lemma 2.4), we
getB2CaVj ..

Now suppose that U 22 Rr. Forany k € [and ¢ € J,let n: p U; — Uy,
pe: @V, = Vi, e:Ur — @U; and e: Vo — @V, be the canoileiizal projec-

. Jed . X el jed X
tions and injections. Apply Lemma 3.2 to U; and the direct sum

M = @V}, so that there is j € J such that ; e;pje;, ¢ ICUH. By Lemma 2.6,

jed
we héve [Ui,Je = [V;]e. One of the following two cases holds.
(1) j is equal to some jy, say ji. Thus U; =V}, (Lemma 2.2). Therefore,

Uiz@...@Uin@BngZ@...@anH@C
by Lemma 2.4.
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(2) j #J¢ for every t =1,...,n+1. Since [U; ]; = [V}, ];, by Lemma
2.3, Uy, ® U' 2 V; @V, for some cyclically presented module U’. Then,
again by Lemma 2.4,

U,®---0oU,eBx2V,o---aV,, ,eD

for some suitable module D. An easy induction argument shows that
after n steps we get the required contradiction.

Now suppose that I(U) and J(U) are both infinite. By symmetry it is
sufficient to prove that |J(U)| < |I(U)|. For every k € I(U), define a subset
A(k) of J(U) by setting A(k) := {£ € J(U) | peexmree is an automorphism of
Vi} if U= Rpg, and Ak) :={¢ € J(U) | peexmres ¢ v, } it U is non-pro-
jective. Note that A(k) is a finite set because there is a finite subset F of J
with U, C @V}, so that pse, = 0 for every £ € J \ F. We claim that

JjEF
JU) = | Ak).
kel(U)

In order to prove the claim take an index ¢ € J(U). By Lemma 3.2 applied
to the direct summand V; of M = @ U;, there exists an index k € I such
i€l

that peepmrer is an automorphism of V, when U =~ Ry and peegmper ¢ Ty,
when U is non-projective. Hence in each case we have [U]; = [V,], = [U];
(Lemma 2.6), i.e., k € I(U) and ¢ € A(k). This proves the claim.

It follows that |J(U)| < Ro|I(U)| = |I(U)|. Hence |J(U)| = |I(U)| if I(U)
and J(U) are both infinite. This concludes the proof of Theorem 3.1. [

4. Monoids of isomorphism classes.

In [1], we have associated to every local ring R a bipartite, non-directed
graph G = G(R), without multiple edges, which describes the behavior of
cyclically presented right R-modules. It is constructed in the following
way. Let L, E and I be sets of representatives up to having the same lower
part, epigeny class and isomorphism of all non-projective cyclically pre-
sented right R-modules, respectively. The set of vertices of G is the disjoint
union of L and £, and the set of edges of G is I. The graph G = (LU E, I) is
bipartite because there are no edges between two vertices in L or between
two vertices in E. An edge U € I connects the vertices V € Land W € FE if
and only if [U]; = [V]; and [U], = [W],. We identify L, E and I with the
classes of all lower parts, all epigeny classes and all isomorphism classes,
respectively, of non-projective cyclically presented right E-modules, so
that L = {[U]; | U is non-projective cyclically presented }, E = {[U], | U
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is non-projective cyclically presented } and I = {(U) | U is non-projective
cyclically presented }, and (U) is the unique edge between [U]; and [U],.

The connected components of G define a partition of the set L UE of
vertices of the graph G and a partition of the set I of edges, and the con-
nected components of G are full subgraphs of G. A full subgraph of a graph
G without multiple edges is a subgraph G’ of G such that any two vertices of
G’ adjacent in G are adjacent in G’ as well. Thus a connected component of
G will be of the type C = (L¢ U E¢, I) for suitable subsets L¢, E¢ and I of
L,E and I, respectively. We say that two non-projective cyclically pre-
sented right R-modules U and V are in the same connected component if
there is a connected component C of G with (U) € I and (V) € I¢.

A graph is called a complete bipartite graph if there is a partition X U Y
of its set of vertices for which X # (), Y # (), there are no edges between
any two vertices in X, no edges between any two vertices in Y, and exactly
one edge between any vertex in X and any vertex in Y. For any local
ring R, the connected components C = (Lo UFEq,Ig) of the graph
G = (L UE,I) are complete bipartite graphs [1, Proposition 8.1].

Let G = (VU W,I)be abipartite graph and let /' := N(OV) & N(()W> be the
free commutative monoid with free set of generators the disjoint union
V U W. The elements of F' are tuples of nonnegative integers, almost all
zero, indexed in VUW. We write the elements of F' in the form
(@y)pev U (by)wew. Here the a,’s and the b,’s belong to Ny and are almost
all zero. Let S; be the submonoid of F' whose elements are all (a,)yey U

U bwwew € F with >~ a, = > b, for every connected component
veVe weWe

C = (Ve UWg,I¢)of G. Forinstance, for every edge {v,w} of G, the element
Jom = O5.)vev U (Op)wew € F, where 6 is the Kronecker delta, is in Sg.
The set of all f,, ,,, where {v, w} ranges in the set of all edges of G, is a set of
generators for the monoid S¢. Moreover, the f, ,,’s are precisely all atoms of
the monoid S;. Recall that a non-zero element m of a commutative monoid M
is an atom of M if for every a,b € M, m = a + b impliesa = 0 or b = 0.
Let SCP*-R be the class of all right R-modules that are finite direct
sums of cyclically presented modules, and SCP-R the class of all right R-
modules that are finite direct sums of cyclically presented modules non-
isomorphic to Rg. For any module Mg, let (Mg) := {Ng | Nr is an R-
module isomorphic to My} be the isomorphism class of Mp, and let
V(SCP*-R) := {(Mpg) | Mr € SCP*-R } be the monoid of all isomorphism
class of finite direct sums of cyclically presented E-modules with addition
induced by direct sum: (Mz) + (Ngr) = (Mr @ Ng). Similarly, consider the
submonoid V(SCP-R) := {(Mpg) | Mr € SCP-R } of V(SCP*-R). The fact
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that every R-module in SCP*-R is uniquely of the form P @& N with P free
and N € SCP-R implies that V(SCP*-R) = Ny @ V(SCP-R), where Nj
corresponds to the finitely generated free modules, that is, to the cyclic
submonoid of V(SCP*-R) generated by (Rg).

By [1, Theorem 5.3], there is a subdirect embedding V(SCP-R) —
— N (()E> e N BD. Here £ and L are the sets of all epigeny classes and all lower
parts of non-projective cyclically presented right R-modules. For the graph
G = (LUE,I), the monoids V(SCP-R) and S; are isomorphic [1, Theo-
rem 8.3], so that V(SCP*-R) =~ Ny & Sg

As we have recalled above, for a local ring R, the graph G = (LUE, I)is
the disjoint union of its connected components C, which are complete bi-
partite graphs [1, Proposition 8.1]. It follows that Sz = @ S¢. Now a

c

complete bipartite graph C is completely determined by two cardinal
numbers o > f > 1. More precisely, for every pair of cardinal numbers
o> f>1, let C(a, f) be the complete bipartite graph with set of vertices
the disjoint union of « and f and exactly one edge between each a € o and
each b € f. Then, for every complete bipartite graph C, there is one pair
(o, f) of cardinal numbers o > f > 1 with C = C(a, f). Notice that the
commutative monoid Sc(,p) is a free commutative monoid if and only if
f =1, and in this case S, ) is isomorphic to Né”. More precisely, we have
the following.

LEmMmA 4.1.  For cardinal numbers oo > > 1, y > 0 > 1, the monoids
Scp and Sc,s) are isomorphic if and only if « = y and ff = 0.

PrOOF. A monoid isomorphism S, 5 — Sc(,,s sends the set X of all
atoms of S¢(, ) onto the set Y of all atoms of S¢(, 5. The atoms of S¢y, 4 are
the elements of the form f;;, where a ranges in o« and b ranges in f.
Equivalently, X corresponds to the set of all edges of the graph C(«, 5). Let
F be the family of all subsets X’ of X such that the divisor-closed submonoid
(X") of S¢(,,p) generated by X' is a free monoid with free set of generators
X N (X'). Recall that the divisor-closed submonoid of S¢(, s generated by X’
is the set of all elements s € S¢up such that there exist » > 1,
xp,...,x, € X" and t € S¢(,p With s +t =] + ... + ). Notice that if f,;
and f; 4 are two atoms in a subset X" € F, then the two corresponding edges
{a,b} and {c,d} are incident, because otherwise there is a relation
fab +Jfed = faa + fep between elements of X N (X’). It follows that the ele-
ments X’ € F correspond to subgraphs of C(a,f) that are stars. If we
partially order F by inclusion, then the maximal elements of F have car-
dinality either o or f. Similarly for S¢, 5. Hence the isomorphism type of
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Sc,p determines o and f, that is, Sce.p = Sc(,s) implies {«, f} = {y,d}.
Fromo > f > 1andy > 6 > 1, it now follows that « = y and f§ = 6. O

Therefore Sg = N’ @ (@ Sc(, ) for a cardinal number X and an

indexed set {(o;,f;) |1l }legf pairs (a;,f;) of cardinal numbers with
o; > f; > 2. The following proposition shows that the cardinal number X
and the indexed set of pairs (o;, §;),7 € I, in this direct-sum decomposition
of the commutative monoid S are uniquely determined by the ring E.

PROPOSITION 4.2. If there is a monoid isomorphism ¥:N @
(EB Scepy) =N @ (EB Sow, p) for cardinal mumbers XX and

oct>[)’ >2 (el and oc >/3 >2 (je J), then X=X and there is a
byection f: I — J such that (ocz, p.) = (ocf(t)7 p m)) for every i € I

Proor. The monoid isomorphism ¥ sends the set of atoms onto the set
of atoms. Since there are no nontrivial relations between the atoms con-
tained in N(()N) and every atom in (€D S¢(, 4,)) is subject to some nontrivial

el

relation because o; > f5; > 2, it follows that N = X and that the monoid
isomorphism ¥ restricts to an isomorphism @SC(C{[ ) = @Sm 8 We

show that for any i € I, there is a uniquej € J Wlth Y(Scp )) C SC((X B By
considering the same property for ¥ !, we conclude that ¥ restricts to an
isomorphism S, 4.) = Scu [,) Thus by Lemma 4.1, o; = oc and f; /?
Forafixed i € I,let a,a’ € o; and b, b’ € f; be distinct elements There
exists j € J such that ¥(f,,) € SC(a B Since fop +foy =fop + S We
infer that ¥(fo.), Y (fup), ¥ (fup) and Y (fw ) must be in the same com-
ponent, i.e., in SC(O( B Now for any a” € o; and 0" € f3;, there is (x,y) €
€ {(a,b),(a,b), (@, b) (a',b)} such that x # o” and y # b”. Again from the
relation f,, + forpv = fopr +fary We conclude that ¥Y(fy ) € SC(x £ be-
cause ¥ (fr,) € SC(“ o Therefore, ¥ (Sc, 5,)) € Scw £ 88 desired. O

REMARK 4.3. (@) The previous results in this Section hold not only for
the graph that describes the cyclically presented modules over a local ring,
which we have introduced in this paper, but also for the graph that de-
scribes the uniserial modules over an arbitrary ring, which Piihoda and the
third author introduced in [6, 7]. The following fact, on the contrary, ap-
plies only to our graph and not to that introduced in [6, 7]. Let R be a local
ring and G = (L. U £, I) be our graph. Here I is the set of all isomorphism
classes of non-projective cyclically presented right B-modules. Let J*(R)
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be the set J(R) \ {0}. Recall that two cyclically presented right R-modules
R/aR, R/bR (a,b € J*(R)) are isomorphic if and only if there exist
u,v € U(R)with a = ubv [1, Lemma 2.4]. Thus there is a right action of the
group UR)” x U(R) on the set J*(R), and I turns out to be the set of all
orbits (a) := U(R)aU(R) with respect to this group action. With this point
of view, E, the set of all epigeny classes of non-projective cyclically pre-
sented right R-modules, is the quotient set of I = {(a) | @ € J*(R) } with
respect to the equivalence relation ~ on I defined by (a)~ (b) if
[R/aR], = [R/bR],, that is, if and only if there exist u,v € U(R) and
r,s € Rwith ua = br and vb = as. Similarly, L turns out to be the quotient
set of I with respect to the equivalence relation = on I defined by (a) = (b)
if [R/aR], = [R/bR],, that is, if and only if there exist u,v € U(R) and
r,s € R with au = rb and bv = sa.

(b) The graph G(R) that describes cyclically presented modules over a
local ring R is the same for right modules and left modules, that is, it is a
left/right symmetric invariant of E.

Clearly, the graph G = G(R) and the monoid S describe the behavior
of finite direct-sums of cyclically presented modules over a local ring R, but
in view of our Theorem 3.1 the constructions of the graph G and the
monoid S can be extended to arbitrary cardinalities in the following way.

Fix alocal ring R and an infinite cardinal number R. Let SCP}-R be the
class of all right R-modules that are direct sums of families of cardinality <N
of cyclically presented R-modules, and SCPy-R the class of all right R-
modules that are direct sums of families of cardinality < of cyclically pre-
sented modules non-isomorphic to Rg. Thus SCP-R = SCPy,-R and SCP”*-
R =SCPy-R. Let V{:=V(SCPy-R) and Viy:=V(SCPx-R) be the
corresponding monoids of all isomorphism classes of modules in SCP}-R
and SCPy-R, respectively. Thus Vi = {(PR/a;R): |I| <X, a; € R } and

Vi = {<Q?R/aiR>: I|<X, a; € R\ {0}}."

LEmMA 4.4.  Every R-module in SCPy-R is uniquely of the form P & N
with P free and N € SCPy-R, thatis, if P ® N = P’ & N' with P, P’ free and
N,N'" in SCPy-R, then P~ P and N = N'.

PrOOF. Suppose that P = (P U; and P' = P Uj, where U; = U} = Ry,
i€l jed
for every ¢ € I and j € J. Also suppose that N = @ Vi and N =PV,
keK leL
where the V;’s and the V}’s are non-projective cyclically presented modules

and P® N = P' & N'. An application of Theorem 3.1 to the isomorphism
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PoN =P @ N gives that there are two bijections ¢,: /UK — J UL
corresponding to the lower parts and epigeny classes. Since a non-projec-
tive cyclically presented module does not have the same lower part or
epigeny class as Rp, o and 7 induce bijections I — J and K — L. Now again
by Theorem 3.1, we have P =~ P’ and N =~ N'. O

From Lemma 4.4, it follows that Vi = [0, R[ & Vi, where [0, X[ is the
commutative additive monoid of all cardinal numbers <.

For an arbitrary bipartite graph G = (V U W, I) and an infinite cardinal
N, let P := [0, N[V x [0, R[" be the direct product of a family of copies of the
additive monoid [0, X[ whose cardinality is equal to the cardinality of the
disjoint union V U W. The elements of P are tuples of cardinals <N in-
dexed in V U W. Write the elements of P in the form (a,)yer U (B,,)wews
where the «,’s and the f§,’s are cardinals <. Let S x be the submonoid of
P whose elements are all (a),cy U (B, )wew € P subject to two conditions:
@ > ay= > p, for every connected component C = (Vo U We, 1) of

UEV(} 'LUEW(;
G; (2) > o, <N. Notice that the sum of any set of cardinals is defined as the
veV
cardinality of their disjoint union.

THEOREM 4.5. For the graph G = (L UE,I) of a local ring R, the
monotds Vy and Sgx are isomorphic. Thus Vi = [0, X[ @ Sg .

Proor. By Theorem 3.1, there is a well-defined subdirect embedding
@:Vyy — P = [0,R[* x [0, R[¥ defined as follows. Let M = @ U; € SCPy-

JjeJ
R. For any non-projective cyclically presented module U let Ly(M) =
={jeJ: U =[U]} and Ey(M)={je€ J:[Ujl =[Ul}. Then the
Ey(M)'s and the Ly(M)’s form two partitions of J. Define

O((M)) = (|[LyM)Dioyer, U (EvD Do, k-
Hence it suffices to show that the image of @is Sg . Nowif A = @ R/a;R is
=

J
a direct sum of non-projective cyclically presented modules B/a;R (|J| <),
the partition of G into its connected components C induces a partition
{Jc | Cis a connected component of G } of J, so that A = @ ( @ R/a;R).

C eJe
Thus if ®((A)) = ()ier, U (B,)eck, then, for every connected cor{lpopnent C of

G, > oy=|J¢|and > f,=1Jc|. It follows that &((A4)) is in Sgx. Con-
leL¢ eckE¢
Verselgf, let (o), U (,[)’e)ceeE be an element of Sgx. For every connected

component C of G, >~ oy = > [, by Condition (1), so that there exists a
ZGLC eeE(;
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set J¢ of cardinality |[J¢| = > oy = > f, with two mappings /¢:Je — L¢
ZGLC 6€EC
and yc:Jo — E¢ such that for every [ € L¢ the inverse image of [ in J¢ via

/¢ has cardinality oy, and for every e € E¢ the inverse image of e in J via 5,
has cardinality f, (this follows immediately from the definition of sum of a
set of cardinals recalled above). Since the connected component C is a
complete bipartite graph, for every j € J¢ there is a non-projective cycli-

cally presented module R /a;R with epigeny class #.(j) and with lower part
Ac(j). Then A := @( EB R/aj ) is in SCPy-R by Condition (2), and

D((A)) = (o)er, U (ﬁe)eeE O
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