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On the Homogeneity of Global Minimizers for the
Mumford-Shah Functional when K is a Smooth Cone

ANTOINE LEMENANT (¥)

ABSTRACT - We show that if (u,K) is a global minimizer for the Mumford-Shah
functional in RY, and if K is a smooth enough cone, then (modulo constants) « is a

homogenous function of degree 5 We deduce some applications in R® as for

instance that an angular sector cannot be the singular set of a global minimizer,
that if K is a half-plane then u is the corresponding cracktip function of two
variables, or that if K is a cone that meets S2 with an union of C* curvilinear
convex polygones, then it is a ’, Y or T.

Introduction.

The functional of D. Mumford and J. Shah [18] was introduced to solve
an image segmentation problem. If Q is an open subset of R, for example a
rectangle, and g € L*°(Q) is an image, one can get a segmentation by
minimizing

J(K,u) = / |VulPde + / (u — g)de + H\(K)
Q\K Q\K

over all the admissible pairs (u, K) € A defined by
A= {u,K); K C Qis closed , u € W-3(Q\K)}.

loc

Any solution (u, K) that minimizes J represents a “smoother” version of the
image and the set K represents the edges of the image.

Existence of minimizers is a well known result (see for instance [11])
using SBV theory.

(*) Indirizzo dell’A.: Université Paris XI, Bureau 15 Batiment 430, Orsay, 91400,
France.
E-mail: antoine.lemenant@math.u-psud.fr
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The question of regularity for the singular set K of a minimizer is more
difficult. The following conjecture is currently still open.

CONJECTURE 1 (Mumford-Shah). [18] Let (u,K) be a reduced mini-
mizer for the functional J. Then K is the finite union of C* arcs.

The term “reduced” just means that we cannot find another pair (i, K)
such that K c K and 4 is an extension of % in Q\K.

Some partial results are true for the conjecture. For instance it is
known that K is C' almost everywhere (see [7], [4] and [2]). The closest to
the conjecture is probably the result of A. Bonnet [4]. He proves that if
(u, K) is a minimizer, then every isolated connected component of K is a
finite union of C'-arcs. The approach of A. Bonnet is to use blow up limits.
If (u, K) is a minimizer in 2 and y is a fixed point, consider the sequences
(uy., Kj,) defined by

1 1 1
up(0) = —= wy +tpx), Kpy=_-(K-vy), Q=_-Q-y).
k N Y T+ Uk k i Y k i Y
When {t;} tends to infinity, the sequence (uy, K;) may tend to a pair
(%o, Ko), and then (4., K,) is called a Global Minimizer. Moreover, A.
Bonnet proves that if K, is connected, then (u.,, K,,) is one of the list
below:

o 18T CASE: Ko = () and u is a constant.

e 2ND CASE: K, is a line and . is locally constant.

e 3RD CASE: “Propeller”: K, is the union of 3 half-lines meeting with
120 degrees and u., is locally constant.

e ATH CASE: “Cracktip”: K., = {(x,0); 2 < 0} and u,( cos(d), r sin(d)) =

2 0
=+ \/774/2 sin 5+ C,forr > 0and |0| <n (Cis a constant), or a similar pair
T

obtained by translation and rotation.

We don’t know whether the list is complete without the hypothesis that
K is connected. This would give a positive answer to the Mumford-Shah
conjecture.

The Mumford-Shah functional was initially given in dimension 2 but
there is no restriction to define Minimizers for the analogous functional in
RY. Then we can also do some blow-up limits and try to think about what
should be a global minimizer in RY. Almost nothing is known in this di-
rection and this paper can be seen as a very preliminary step. Let state
some definitions.
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DEFINITION2. LetQ c RY , (u, K) € Aand B be a ball suchthat B C Q.
A competitor for the pair (u, K) in the ball B is a pair (v, L) € A such that

U ="

K_p ) inQ\B

andin addition if x and y are two points in Q\(B U K) that are separated by
K then they are also separated by L.

The expression “be separated by K” means that « and y lie in different
connected components of Q\K.

DEFINITION 3. A global minimizer in RY is a pair (u,K) € A (with
Q =RY) such that for every ball B in RY and every competitor (v, L) in B
we have

/ |VulPde + HY YK NB) < / |VolPde + HY-{(L N B)
B\K B\L

where HY=1 denotes the Hausdorff measure of dimension N — 1.

Proposition 9 on page 267 of [8] ensures that any blow up limit of a minimizer
for the Mumford-Shah functional in RY, is a global minimizer in the sense of
Definition 3. As a beginning for the description of global minimizers in RY, we
can firstly think about what should be a global minimizer in R?. If % is locally
constant, then K is a minimal cone, that is, a set that locally minimizes the
Hausdorffmeasure of dimension 2in R?. Then by [9]we know that K is a cone of
type P (hyperplane), \ (three half-planes meeting with 120 degrees angles) or
of type T" (cone over the edges of a regular tetraedron centered at the origin).
Those cones became famous by the theorem of J. Taylor [20] which says that
any minimal surface in R? is locally C! equivalent to a cone of type I, Y or T.

N

y § _ el _. y _\\ \
) R

Fig. Cones of type ¥ and ' in R
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To be clearer, this is a more precise definition of Y and T, as in [10].

DEFINITION 4. Define Prop C R? by
Prop = {(x1,x2); 61 > 0,22 = 0}
U{(@1, w2); 21 < 0,2 = —V/31}
U {(@y, ;w1 < 0,22 = V3u:}.

Then let Yoy = Prop x R ¢ R®. The spine of Y, is the line Lo=
={x; = 22 = 0}. A cone of type ¥ is a set Y = R(Y,) where R is the com-
position of a translation and a rotation. The spine of Y isthenthe line R(Ly).

DEFINITION 5. Let A; =(1,0,0), Ag—(—;,z\g/gﬁ), Az =

= (—é, —?,?), and Ay = (—%, —g, —?) the four vertices of a
regular tetrahedron centered at 0. Let T be the cone over the union of the 6
edges [A;, A1t # j. The spine of Ty is the union of the four half lines [0, A;[. A
cone of type 1" is a set T = R(Ty) where R is the composition of a translation
and a rotation. The spine of T is the image by R of the spine of Ty.

So the pairs (u, Z) where u is locally constant and Z is a minimal cone,
are examples of global minimizers in R3. Another global minimizer can be
obtained with K, a half-plane, by setting u := Craktip x R (see [8] section
76). These examples are the only global minimizers in R? that we know.

Note that if (u, K) is a global minimizer in RY , then u locally minimizes
the Dirichlet integral in R\ K. As a consequence, « is harmonic in R¥\K.
Moreover, if B is a ball such that K N B is regular enough, then the normal
derivative of % vanishes on K N B.

In this paper we wish to study global minimizers (u, K) for which K is a
cone. It seems natural to think that any singular set of a global minimizer is
a cone. But even if all known examples are cones, there is no proof of this
fact. In addition, we will add some regularity on K. We denote by S¥~! the
unit sphere in RY and, if Qis a open set, W'2(Q) is the Sobolev space. We
will say that a domain @ on S¥~1 has a piecewise C? boundary, if the to-
pological boundary of Q, defined by 9Q = Q\Q, consists of an union of
N — 2 dimensional hypersurfaces of class C?. This allows some cracks, i.e.
when Q lies in each sides of its boundary. We will denote by 2 the set of all
the singular points of the boundary, that is

X = {x € 0Q;¥r > 0,B(x,r) N OR is not a C* hypersurface}.



On the Homogeneity of Global Minimizers ete. 133

DEFINITION 6. A smooth coneis a set K of dimension N — 1in RY such
that K is conical, centered at the origin, and such that SN—1\K is a domain
with piecewise C? boundary. Moreover we assume that the embedding
W2(SN-1\K) — L2(SN-1\K) is compact. Finally we suppose that we can
strongly integrate by parts in B(0,1)\K. More precisely, denoting by X the
set of singularities

X = {te;(t,x) € R x X2},

we want that
(Vu, Vo) =0

BO.D\K

Sfor every harmonic function u in B(0, )\K with a%u = 0on K\Z, and for

all p € WH2(B(0, D\K) with vanishing trace on SN-1\K.

REMARK 7. For instance if K is the cone over a finite union of C?-arcs on
S?, then we can strongly integrate by parts in B(0, 1)\ K. Another example in
R¥ is given by the union of admissible set of faces (as in Definition (22.2) of [5]).

Now this is the main result.

THEOREM 15. Let (u, K) be a global minimizer in RY and assume that
. .1 .
K is a smooth cone. Then there is a g-homogenous SJunction uy such that

u — uy 18 locally constant.

As we shall see, this result implies that if (u, K) is a global minimizer in

RY, and if K is a smooth cone other than a minimal cone, then isan

eigenvalue for the spherical Laplacian in S¥ =1\ K with Neumann boundary
conditions. In section 2 we will give some applications about global mini-
mizers in R?, using the estimates on the first eigenvalue that can be found
in [6], [5] and [14]. More precisely, we have:

ProposITION 17.  Let (u, K) be a global Mumford-Shah minimizer in
IR? such that K is a smooth cone. Moreover, assume that S? N K is a union
of convex curvilinear polygons with C* sides. Then u is locally constant
and K is a cone of type P, Y or T.

Another consequence of the main result is the following.
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ProposITION 19.  Let (u, K) be a global Mumford-Shah minimizer in
R3 such that K is a half plane. Then u is equal to a function of type
cracktip x R, that is, in cylindrical coordinates,

2 .. 0
u(r,H,z):ﬁ:\/:r%sm——&-C
T 2
for 0<r< + oo, —n< <z where C is a constant.

Finally, we deduce two other consequences from Theorem 15. Let
(r,0,2) € RT x [ —m,n] x R be the cylindrical coordinates in R3. For all
w € [0, 7] set

Ol :={(r,0,2) e R®;0 = —w or 0 = w}.
and
1) S, :={(r0,2)eR¥2=0,r>0,0c[—ww]}

Observe that Sy is a half line, Sz, 91"g and OI';, are half-planes, and that
Sy and OI; are planes.

PROPOSITION 18.  There is no global Mumford-Shah minimizer in R?
such that K is wing of type oI, with o & {0, g , n}.

PROPOSITION 23.  There is no global Mumford-Shah minimizer in R

such that K is an angular sector of type (u,S,) for o & {;—T , n}.

1. If K is a cone then u is homogenous.

In this section we want to prove Theorem 15. Notice that this result is
only useful if the dimension N > 3. Indeed, in dimension 2, if K is a cone
then it is connected thus it is in the list described in the introduction.

1.1 — Preliminary.

Let us recall a standard uniqueness result about energy minimizers.

PROPOSITION 8. Let Q be an open and connected set of RN and let
1 C 0Q be a hypersurface of class C*. Suppose that u and v are two
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functions in WY2(Q) such that uw = v a.e. on I (in terms of trace), solving
the minimizing problem

min E(w) := / |Va(ae)|*da
Q

over all the functions w € WY(Q) that are equal to u and v on 1. Then
u=0.

Proor. This comes from a simple convexity argument which can be
found for instance in [8], but let us write the proof since it is very short. By
the parallelogram identity we have

u—+v 1 1 1
@) E( > ) = 5 B) +5B@) - B - ).
U+ v

On the other hand, since is equal to « and v on I, and by minimality of

« and v we have

2

E (“ ; ”) > Bw) = E@).

Now by (2) we deduce that E'(u — v) = 0 and since Q is connexe, this implies
that u — v is a constant. But u — v is equal to 0 on [ thus u = v. |

REMARK 9. The existence of a minimizer can also be proved using the
convexity of E(v).

1.2 — Spectral decomposition.

The key ingredient to obtain the main result will be the spectral theory
of the Laplacian on the unit sphere. Since « is harmonie, we will decompose
u as a sum of homogeneous harmonic functions just like we usually use the
classical spherical harmonics. The difficulty here comes from the lack of
regularity of RV\K.

It will be convenient to work with connected sets. So let Q be a con-
nected component of SV ‘I\K, and let A(r) be

A(r) = {tx; (x,t) € Q x [0,7] }.
We also set

A(co) := {tw; (x,t) € 2 x RT }.
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All the following results are using that the embedding W2(Q) in L(Q) is
compact. Recall that this is the case by definition, since K is a smooth cone.
Notice that for instance the cone property insures that the embedding is
compact (see Theorem 6.2. p. 144 of [1]).

Consider the quadratic form

Qu) = / |Vule) Pdae

Q

of domain W'2(Q) dense into the Hilbert space L?(Q2). Since Q is a positive
and closed quadratic form (see for instance Proposition 10.61 p. 129 of [16])
there exists a unique selfadjoint operator denoted by —4, of domain
D(— 4,) ¢ W'2(Q) such that

Vu € D(— 4,), Yo € WH2(Q), /(Vu, Vo) = /(—A%u, v).
Q Q

ProPoOSITION 10. The operator —A4, has a countably infinite discrete
set of eigenvalues, whose eigenfunctions span L*(Q).

Proor. The proof is the same as if Q was a regular domain. Consider
the new quadratic form

Q) := Qu) + |[u||2

with the same domain W12(Q). The form Q has the same properties than @
and the associated operator is Id — 4,,. Moreover Q is coercive. As a result,
the operator Id — 4, is bijective and its inverse goes from L*(Q) to
D(— 4,) c WH(Q). By hypothesis the embedding of W'2(Q) into L?(Q) is
compact. Thus the resolvant (Id — An)*1 is a compact operator, and we
conclude using the spectral theory of operators with a compact resolvant
(see [19] Theorem XIII. 64 p. 245). O

REMARK 11. The domain of —4, is not known in general. If Q was
smooth, then we could show that the domain is exactly D(— 4,) =

= {u c Wzvz(.Q);g—Z =0on 6.(2}. Here, the boundary of Q has some sin-

gularities so this result doesn’t apply directly. But knowing exactly the
domain of —4, will not be necessary for us.

Now we want to study the link between the abstract operator 4, and
the classical spherical Laplacian Ag on the unit sphere. Recall that if we
compute the Laplacian in spherical coordinates, we obtain the following
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equality

# N-19 1
T or r or 2%

®3) 4

ProrosiTiON 12. For every function f € D(—A4,) such that
—Anf = Af we have

1) felC™Q
W) —Asf=—-d,f =i mQ
211) % exists and 1s equal to 0 on K N 5\2

Proor. Let ¢ be a C* function with compact support in Q and
f € D(— 4,). Then the Green formula in the distributional sense gives

/ Vf.Vp = (~dsf. )
Q

where the left and right brackets mean the duality in the distributional
sense. On the other hand, by definition of —4, and since f is in the domain
D(— 4,), we also have

/ Vf.Vo = (~duf )
Q

where this time the brackets mean the scalar product in L?. Therefore
Aof = Asf in D(Q).

In other words, —Asf = if in /(). But now since f € W'2(Q), by hy-
poellipticity of the Laplacian we know that f is C* and that —4gf = if in
the classical sense. That proves ) and it). We even know by the elliptic
theory that, since K\ X is regular, f is regular at the boundary on K\ 2.

Now consider a ball B such that the intersection with K N Q does not
meet 2. Assume that B is cut in two parts B™ and B~ by K, and that B* is
one part in Q. Possibly by modifying B in a neighborhood of the inter-
section with K, we can assume that the boundary of B and B~ is C?. The
definition of 4, implies that for all function ¢ € C*(Q) that vanishes out of
B* we have

[ 5ode~ [afoia=s [ .o
J

B+ B+
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On the other hand, integrating by parts,

[ . vz = [(asro+ [ She
)

B+ OB+
of
=1 / {f o)+ / 4
dB* OB+
thus
of
OB+

In other words the function f is a weak solution of the mixed boundary
value problem

—Agu = )f in B
u=f on OB"\K

%zoonl{ﬁaBJr
on

Therefore, some results from the elliptic theory imply that f is smooth in B
and is a strong solution (see [21]). O

Let us recapitulate what we have obtained. For all function f € L*(Q),
there is a sequence of numbers a; such that

+00
“ f=Y aifi

=0
where the sum converges in L. The functions f; are in C*(Q) N W'2(Q),
verify —Agf; = A;f; and % =0 on K N Q\X. Moreover, we can normalize

the f; in order to obtain an orthonormal basis on L?(Q), in particular we
have the following Parseval formula

2NN 2
Ifl2 =D laif".
i=0

Note that if f belongs to the kernel of —4,, (i.e. is an eigenfunction with
eigenvalue 0), then

<Vf,Vf> = <_Anfvf> =0
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and since Q is connected that means that f is a constant. Thus 0 is the first
eigenvalue and the associated eigenspace has dimension 1. Then we can
suppose that 1o = 0 and that all the ; for ¢ > 0 are positive.

We define the scalar product in W12(Q) by

<uv U>W1-2 = <u7 U>L2 + <V7/L, VU>L2.

PROPOSITION 13.  The family {f;} is orthogonal in W**(Q). Moreover
+00

if f € WYA(Q) and if its decomposition in L2(Q) is f = 3. a;f;, then the
+00 9 9 i=0

sum Y |a;|"||Vfillz converges and

i=0

+00
5) > a1Vl = IV

i=0
PrOOF. We know that { f;} is an orthogonal family in L?(2). In addition
if ¢ # j then

/ ViV = / — M fif

Q Q
=Q/ff;
0

thus {f;} is also orthogonal in W#(Q) and

1fillfne = 11z + IVAIE =1+ 2.

Consider now the orthogonal projection (for the scalar product of L?)
k
P, k :f — Z alﬁ
=0

The operator P}, is the orthogonal projection on the closed subspace Ay,
generated by {fo,...,fr}- More precisely, we are interested in the
restriction of P, to the subspace W'2(Q) C L*(Q). Also denote by
Py : W12 — A, the orthogonal projection on the same subspace but for the
scalar product of W2, We want to show that P, = P;. To prove this, it
suffice to show that for all sets of coefficients {a;};,_; , and {b;},_; 4,

k k
<f - aif;, Zbifi> =0.
=0 =0

W12
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Since we already have

k k
<fzalﬁazblﬁ> :07
=0 =0

L2

all we have to show is that

k k
/<Vf > wVi Y bini>dac =0
=0 1=0

Q
Now
k k
/<Vf - Zaivfi,zbivﬁ> :/<Vf,zb Vﬁ> Z%b VA2
0 =0 =0 o

thus Pj, = P; and therefore, by Pythagoras

IPUAIne < 1 Bye.
By letting k tend to infinity we obtain

+00
®) >_alIVAill < IV/115
1=0

From this inequality we deduce that the sum is absolutely converging in

K
W2(Q). Therefore, the sequence of partial sum 3" a;f; is a Cauchy se-
i=0

quence for the norm W2(Q). Thus, since the sum " a; f; already converges
tof in L?(Q), by uniqueness of the limit the sum converges to f in W'2(Q), so

we deduce that (6) is an equality and the proof is over.

Once we have a basis {f;} on 2 ¢ SV, we consider for a certain ry > 0,

the functions
vip(®
hi(x) = 7/'()fz (7,0)
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defined on Q. The exponent «; is defined by

- (N =2+ (N -2 + 44

o = 2

The functions &; form a basis of W2(1Q). Indeed, if f € W'2(r,Q), then
flrox) € WH2(Q) thus applying the decomposition on Q we obtain

+00
foow) = bifi@)
=0

thus
+00
f@ =" aihi)
=0
with
&) a; = bi’l"(;ai.
. . 2 _ 20+N-1
Notice that since ||%;||5 = 7} we also have
c 2 N2 2 N1 2
©) Z“?Hhinz = Z“?ﬂ"o T = £ 220y < + 00
=0 =0

Moreover, applying Proposition 13 we have that
(10) S RIVAIE = IVl < + oc.
=0
We are now able to state our decomposition in A(r).
PROPOSITION 14. Let K be a smooth cone in RY, centered at the origin

and let Q be a connected component of SN"\K. Then there exist some
harmonic homogeneous functions g;, orthogonal in W2(A(1)), such that

for every function uw € WY2(A(1)) harmonic in A(l) with g_u =0 on
KNAQ\Z, and for every ry € 10,1[, we have that "

+00
U= Z a;9; i A(rp)
i=0

where the a; do not depend on radius ry and are unique. The sum converges
n WY2(A(ry)) and uniformly on all compact sets of A(1). Moreover

+00
2 2 2
(11) ey = D @19l @)
=0
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ProOF. Since u € W2(A(1)) then for almost every 7, in ]0,1] we have
that

Ul o € WH(ro9Q).

Thus we can apply the decomposition on 72 and say that
+00
u = Z a;h; on rQ.
i=0

Define g; by
L x
gi(@) := ||| (—)

where o; is defined by (7). Since the f; are eigenfunctions for — Ag, we deduce
from (3) that
? N-190 1

49; =% giJrT%giJrﬁASgi

=o;(; — Dr*i2f; + T — R

=2 4+ N — 2w — 2r i 2f;
=0

by definition of «;, thus the g; are harmonic in A( + oo). Notice that the g;
are orthogonal in L?(A(1)) because they are homogeneous and orthogonal in
L?(Q). Note also that h; is equal to g; on Q. Moreover for all 0 <7 < 1 we
have

P

12) g1y = / gif? = / / lgiCa) Pt
A(r) 0 9B®HNAQ)

= / / g (ty)[Pdydt = / gt / l9: @) Fdydt
0 Q 0 Q
1,.20!71+N
T2 +N

7-2067', +N

2
Ifillz2) = % T N <1l

On the other hand, since the f; and their tangential gradients are ortho-
gonal in L?(Q), we deduce that the gradients of g; are orthogonal in A(1).
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Then, by a computation similar to (12) we obtain for all 0 <r < 1

,
2
2 0g;
(13) [IVgillzeaw) :/ / ‘8;
0 OBBNAQ)
2
sl
0 OBBNAQ)

|
T

2

afe J )

+| Vg Pdwdt

dwdt

w1

dwdt
0 OB(t)NA(1)
A 2
+ / {2041 / ‘v,fi (?) duwdt
0 OB(t)NA(1)

;
:a?/tz(“i‘l)/[fi(w)|2tN‘1dwdt
2

r

+ / 2~ / |V fi(w) PtN " dedt
0 Q
20— 1)+ N 2 DN
2 T
= DN 1£il1Z20) +m IV fill 720

(=}

720 -D+N

— (42 . 112
=5 D Al

< Cr¥#i(o2 4 ;)
because |V fi|l3 = Al fill5, 7 < 1 and «; > 0. Moreover the constant C de-

pends on the dimension N but does not depend on <.
We denote by g the function defined in A(co) by

+0oo
g:=> g
i=0
Then ¢ lies in L?(A(ry)) because using (12) and (9)

2 2 2N
HgHLZ(A(’r‘O)) Z|az| ||gz||LZ(A(;0)) Z|az S

We want now to show that g = u.
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e First step: We claim that ¢ is harmonic in A(rp). Indeed, since the g;
k
are all harmonic in A(r), the sequence of partial sums s; := > a;g; is a
i=0
sequence of harmonic functions, uniformly bounded for the L? norm in
each compact set of A(ry). By the Harnack inequality we deduce that the
sequence of partial sums is uniformly bounded for the uniform norm in
each compact set. Thus there is a subsequence that converges uniformly to
a harmonic function, which in fact is equal to g by uniqueness of the limit.
Therefore, g is harmonic in A(ry).

e Second step: We claim that g belongs to W'2(A(ry)). Firstly, since
u € WH2(r,Q), by (8) and (10) we have that
a4 Z @y Ve fillFomo, D\K) < 00
In addition, since | V. fi|3 = Al fill5 and || fi[|; = 1, we deduce
(15) f a5t < + o0
=0

and since o; and /; are linked by the formula (7) we also have that
(16) Zag ool < 4 o0.

Now, since > a; g; converges absolutely on every compact set, we can say
that

+00
Vg =Y a;Vy;

1=0

thus using (13), (15), (16), and orthogonality,
9 +00 ) 9
va“LZ(A(m)) = Z a; IVl

<C2:002 20"(oc + )< +00.

Therefore, g € W'2(A(ry)).

o Third step : We claim that gg =0on K NA(ry)\Z. We already know

th t 8g1 = 0 on K\2 (because the f; have this property). We want to show
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that g is so regular that we can exchange the order of % and > . So let

be a point of K N A(rp)\2 and let B be a neighborhood of ¥ in RY that
doesn’t meet 2 and such that K separates B in two parts BT and B~.

Assume that B* is a part in A(ry). The sequence of partial sums
k
Sk := > a; g; is a sequence of harmonic functions in B*. Since 0BT N K is
i=0
C? we can do a reflection to extend s;, in B~. For all k, this new function sy, is
the solution of a certain elliptic equation whose operator become from the
composition of the Laplacian with the application that makes B* N K flat.
Thus since > a; g; converges absolutely for the L? norm, by the Harnack
inequality > a; g; converges absolutely for the uniform norm in a smaller

neighborhood B’ C B that still contains xy. Thus s; converges to a C!
function denoted by s, which is equal to g on B*. And since % (x9) = 0, by

the absolute convergence of the sum we can exchange the order of the
0s
on .
is equal to g on B* we deduce that g is C! at the boundary and o 0 at .

derivative and the symbol > so we deduce that — (xy) = 0. Finally, since s

o Fourth step: we claim that ¢ is equal to u on 1, Q2. Let » be a radius such

that r<ry. Then the function x+— g,(x) :==¢ (r %) is well defined for
0

x € 1€2, and since the g; are homogeneous we have

<7ﬂ£>— f:a- '(r£>— f(i) aia‘ () = §<1> GCiOL-h-(QC)
g o 2 i9i P Z\r i9i 2\ 7, i)

We deduce that the function x+— ¢ <: ac> isin L2(ryQ) and its coefficients in
o 0
the basis {h;} are {(:) ai}. We want to show that ||g, — /|72, o) tend to
0

0. Indeed, writing » in the basis {%;}

we obtain
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which tends to zero when r tends to 7y by the dominated convergence

o 2
theorem because ((ri) —1) < 1. Therefore, there is a subsequence for
0

which g, tends to u almost everywhere. On the other hand, since ¢ is har-
monic, the limit of g, exists and is equal to g. That means that g tends to u
radially at almost every point of 7.

o Fifth step: The functions % and g are harmonic functions in A(ry), with
finite energy, with a normal derivative equal to zero on K N A(ry)\2 and
that coincide on 0A(ry)\K. To show that = g in A(ry) we shall prove that g
is an energy minimizer. Proposition 8 will then give the uniqueness.

Let ¢ € W2(A(7))\K) have a vanishing trace on dB(0, 7). Then, set-

ting J(v) :== [ |Vo[? for v € WL2(A(ry)) we have
A(ro)

J(g+o)=J(g + / VgV + J().
Alry)

Now since ¢ is harmonic with Neumann condition on K\X and since ¢
vanishes on 790, integrating by parts we obtain

J(g+p)=J(g) +J(p).

Since J is non negative and g + ¢ describes all the functions in W2(A(ry))
with trace equal to u on 72, we deduce that g minimizes J. We can do the
same with « thus % and g are two energy minimizers with same boundary
conditions. Therefore, by Proposition 8 we know that g = u.

o Sixth step: The decomposition do not depends on 7. Indeed, let r; be a
second choice of radius. Then we can do the same work as before to obtain a
decomposition

+00
u@) = bigi@) inBO,m)\K.
=0
Now by uniqueness of the decomposition in B(0, min(ry,r;)) we deduce that
b; = a; for all 7.
In addition, 7y was initially chosen almost everywhere in ]0, 1[. But since
the decomposition does not depend on the choice of radius, 7y can be chosen
anywhere in ]0, 1[, by choosing a radius almost everywhere in Jry,1[. O

THEOREM 15. Let (u, K) be a global minimizer in RYN such that K is a
smooth cone. Then for each connected component of RN\K there is a

.1
constant uy, such that w — uy, is é-homogenous.
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Proor. Let Q be a connected component of RY \K. We apply the
preceding proposition to %. Thus

+00
u@) =Y aigi@) in Alr),
=0

for a certain radius 7y chosen in ]0, 1[. Let us prove that the same decom-
position is true in A(co). Applying Proposition 14 to the function
ur(x) = u(Rx) we know that there are some coefficients a;(R) such that

+00
ur@) = ai(R)gi() in A(ry).
=0

Now since up (%) = u(x) we can use the homogeneity of the g; to identify

the terms in B(0, ) thus a;(R) = a;R*. Now we fix y = Rx and we obtain
that

+00
uy) = a;giy) in A(Rry).
=0

Since R is arbitrary the decomposition is true in A(co).
In addition for every radius R we know that

+00
2 2 2
amn ”vu”LZ(A(R)) = Zai HVQZ'HLZ(A(R))
i=0
and since g; is a;-homogenous,

2 2(0;—1)+N 2
||v9i||L2(A(R)) = R*i D+ HVgiHLz(A(n)-

Now, since u is a global minimizer, a classical estimate on the gradient
obtained by comparing (u,K) with (v,L) where v =1pgp-u and
L = 0B(0, R) U (K\B(0, R)) gives that there is a constant C such that for all
radius R

2 _
IVulz2momnm) < CRY .
We deduce

+00

2 2o~ 1)+ N 2 N-
Z“iR DN Vg5l < CRY
=0

Thus

+00 2

2 p2o;—
> @R Vgillaay < C-
prg
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This last quantity is bounded when R goes to infinity if and only if a; = 0
whenever o; > 1/2. On the other hand, this quantity is bounded when R
goes to 0, if and only if a; = 0 whenever 0 <a; <1/2. Therefore, u — ay is a

finite sum of terms of degree % O

REMARK 16. In Chapter 65 of [8], we can find a variational argument
that leads to a formula in dimension 2 that links the radial and tangential

derivatives of u. For all £ € KN dB(0,r), we call 0 € [0, g} the non or-

iented angle between the tangent to K at point & and the radius [0, £]. Then
we have the following formula

2
/ Y gpgt — / PN amt + " cos - —HI(K N B, ).
or ot
OBO.NK OBO.M\K CeRNOBO
Notice that for a global minimizer in R? with K a centered cone we find
ou ou
1 H' = H'.
s / <ar) ar = | <a> ‘
OBO,N\K OBON\K

Now suppose that (u, K) is a global minimizer in RY with K a smooth
cone centered at 0. Then by Theorem 15 we know that % is harmonic and

1

é—homogenous. Its restriction to the unit sphere is an eigenfunction for
the spherical Laplacian with Neumann boundary condition and asso-
_ 3. We deduce that

4
9 2N 3
||vquL2(c’)B(0,l)) = Hu“LZ(aB(o 1)

ou 1, 1 ([
e =a bt (i)

H HLZ({}B(O m =7 HuHLZ(OB(O 1)

2
ciated to the eigenvalue

On the other hand

thus

So
2 U2
||Vr“||L2<aB(o,1>> =(@2N -3)| ar ||L2(aB(o,1>)-

In particular, for N = 2 we have the same formula as (18).
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2. Some applications.

As it was claimed in the introduction, here is some few applications of
Theorem 15.

ProposITION 17.  Let (u, K) be a global minimizer in R? such that K is
a smooth cone. Moreover, assume that S?NK is a union of convex
curvilinear polygons with C*> sides. Then u is locally constant and K is
a cone of type PP, Y or T.

Proor. In each polygon we know by Proposition 4.5. of [6] that the
smallest positive eigenvalue for the operator minus Laplacian with Neu-

mann boundary conditions is greater than or equal to 1. Thus it cannot be %
and u is locally constant. Then K is a minimal cone in RR? and we know from
[9] that it is a cone of type P, Y or T. O

Let (r,0,2) € R" x [ — m,7] x R be the cylindrical coordinates in R3.
For every w € [0, 7] set

Iy :={0r0,2) e R -w<l<w}
of boundary
or, = {(r,0,2) e R*0=—wor 0 =w}.

Consider Q,, = I",, N S? and let 1; be the smallest positive eigenvalue of —4g
in Q,, with Neumann conditions on 02,,. Then by Lemma 4.1. of [6] we have
that

J1 = min (2, 1)

A = 14'_1 2_1
2w 2 4’

In particular for the cone of type Y, w = g thus 4; = 2.

where

Observe that for w # =, A, # 2 So we get this following proposition.

PROPOSITION 18.  There is no global Mumford-Shah minimizer in R

such that K is wing of type oI, with o & {O,g , n}.
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Another consequence of Theorem 15 is the following. Let P be the half

plane
P:={(r,0,2) € R0 = n}.

PRrOPOSITION 19.  Let (u, K) be a global Mumford-Shah minimizer in
R? such that K = P. Then wis equal to cracktip x R, that is in cylindrical
coordinates

2 1.
u(r,@,z)—i\/:fﬂsmg+0
n 2
for0<r< +ocoand —n<0<m

REMARK 20. In Section 3 we will give a second proof of Proposition 19.

REMARK 21. We already know that w = cracktip x R is a global
minimizer in R? (see [8)]).
To prove Proposition 19 we will use the following well known result.

ProposiTION 22 ([5], [13]) . The smallest positive eigenvalue for —4,

in S?\P is ?I’ the corresponding eigenspace is of dimension 1 generated by

the restriction on S% of the following function in cylindrical coordinates
.0
wr,0,z) = rsin 5
for0<r< +ocoand —t<0<m

Now the proof of Proposition 19 can be easily deduce from Proposition
22 and Theorem 15.

PrOOF OF PROPOSITION 19. If (u, P) is a global minimizer, we know that
after removing a constant the restriction of « to the unit sphere is an ei-

genfunction for —4, in S2\P associated to the eigenvalue 1 Therefore,
from Proposition 22 we know that

wr,0,z) = Cri sin g

so we just have to determinate the constant C. But by a well known ar-
gument about Mumford-Shah minimizers we prove that C must be equal to

2
j:\/; (see [8] Section 61 for more details). O
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Now set

Sy = {00,057 > 0,0 € [ — o, 0]}

PROPOSITION 23.  There is no global Mumford-Shah minimizer in R®

such that K is an angular sector of type (u,S,,) for 0<w< g org <w<m

Proor. According to Theorem 15, if (u, S,,) is a global minimizer, then

. . . 1 . -
% — up is a homogenous harmonic function of degree 5 thus its restriction

to S2\S,, is an eigenfunction for —4,, associated to the eigenvalue 1 Now if

M) denotes the smallest eigenvalue on 0B(0, 1)\S,,, we know by Theorem

2.3.2. p. 47 of [14] that A(w) is non decreasing with respect to w. Since

/i 3 Vi
A (§> = we deduce that for o< 5 we have

19) Mew) > %

In [14] page 53 we can find the following asymptotic formula near o = g

(20) M@:§+§amw+omm%»

this proves that the case when (19) is a equality only arises when w = T
. . . 2
Thus such eigenfunction  doesn’t exist.

. Vi
Consider now the case w > 5 For w = 7 there are tow connected

components. Thus 0 is an eigenvalue of multiplicity 2. The second eigen-
value is equal to 2. Therefore, for w = 7z the spectrum is

0<0<2</l3<... w=n

By monotonicity, when w decreases, the eigenvalues increase. Since the
domain becomes connexe, 0 become of multiplicity 1 thus the second ei-
genvalue become positive. The spectrum is now

0<1<Aa<... Ww<T

with 4; > 2 for 1 > 2. Thus the only eigenvalue that could be equal to %is A2

which is increasing from from 0 to %’ reached for w = g Now (20) says that
T
s 2
3/4 for w > 5 and there is no possible global minimizer. O

the increasing is strict near w = —. Therefore there is no eigenvalue equal to
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3. Second proof of Propositions 19 and 22.

Here we want to give a second proof of Proposition 19, without
using Theorem 15, and which do not use Proposition 22. In a remark
at the end of this section, we will briefly explain how to use this
proof of Proposition 19 in order to obtain a new proof of Proposition
22 as well.

Let assume that K is a half plane in R3. We can suppose for instance
that

21) K=P:= {902:0}0{901§0}

We begin by studying the harmonic measure in R\ P.

Let B := B(0, R) be a ball of radius R and let y be the trace operator on
0B(0, R)\P. We denote by T the image of W!2(B\K) by 7. We also denote
by Cg(aB\K) the set of continuous and bounded functions on 9B(0, 1)\P.
Finally set A := T'n C}. Obviously A is not empty. To every function f € 4,
Proposition 15.6. of [8] associates a unique energy minimizing function
u € WY2(B\K) such that y(u) = f on OB\P. Since u is harmonic we know
that it is C* in B\K. Let y € B\K be a fixed point and consider the linear
form y, defined by

Kyt A —R

22
= f=u).

By the maximum principle for energy minimizers, we know that for all
f € A we have

1y (DI < N1f oo

thus y, is a continuous linear form on A for the norm || || .. We identify x,
with its representant in the dual space of A and we call it harmonic
measure.

Moreover, the harmonic measure is positive. That is, if f € A is a non
negative function, then (by the maximum principle) ,uy( f) is non negative.
By positivity of 4, if f € A is a non negative function and g € A is such that
fg € A, then since (|lg||, +¢)f and (|g|,, —9)f are two non negative
functions of A we deduce that

23) [79; 1) < Nlgll oo (F' 12)-

Now here is an estimate on the measure /ﬂj.
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LEmMMA 24.  There is a dimensional constant Cy such that the following
e . R . .
holds. Let R be a positive radius. For 0 < i< 2 consider the spherical do-
main
C,:={xeR?®; |x| = R and d(x,P) < 1}.
Let g, € C*(0B(0, R)) be a function between 0 and 1, that is equalto 1 on C)
and 0 on OB(0, R)\Cz; and that is symmetrical with respect to P. Then for
R

everyy € B (O, E) \P we have

R A
Hy (9;) < CE'

Proor. Since g, is continuous and symmetrical with respect to P, by
the reflection principle, its harmonic extension ¢ in B(0, R) has a normal
derivative equal to zero on P in the interior of B(0, R). Moreover ¢, is clearly
in the space A. Thus by definition of 4,

o) = (95, 11])).

On the other hand, since ¢; is continuous on the entire sphere, we also have
the formula with the classical Poisson kernel

R — |yl 9,()
NoyR _ 3
N e e

ds(x)

oY) =

with wy equal to the measure of the unit sphere. In other words

R—yP [ ¢
£ _ds(x).
NoyR lv -yl
0Bp

uf((/)@) =
For x € OB we have
1 3
SR <ol =yl < oyl < o] + Iyl < SR.

We deduce that

1
/l_ff((ﬂ;,) < CN}? / ds.
Co
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Now integrating by parts,
/ds :Z/Zm/R2 — w2dw
G 0

=4r % VR2 — }% + R? arcsin (%)
<CRZ
because arcsin(x) < gx The proposition follows. O
Now we can prove the uniqueness of cracktip x R.

SECOND PROOF OF PrROPOSITION 19. Let us show that u is vertically
constant. Let ¢t be a positive real. For = (1, 22,23) € R® set
X := (21,22, 23 + t). We also set

w () = ule) — u(xy).

Since u is a function associated to a global minimizer, and since K is reg-
ular, we know that for all R > 0, the restriction of u to the sphere
0B(0, R)\K is continuous and bounded on 9B(0, R)\K with finite limits on
each sides of K. It is the same for u;. Thus for all 2 € R*\P and for all
R > 2||x|| we can write

R
u () = <ut|OB(O,R)\P7 )

where 1, is the harmonic measure defined in (22). We want to prove that
for x € R3\P, (u| OBO.R)\P* 1) tends to 0 when R goes to infinity. This will
prove that u; = 0.

So let ¢ € R*\ P be fixed. We can suppose that R > 100(||z| + ¢). Let C;
and ¢, be as in Lemma 24. Then write

up(w) = <“t|aB(o,R)\P(ﬂ/:vﬂf> + <ut|aB(o,R)\P(1 - (0;,),ﬂ§>~

Now by a standard estimate on Mumford-Shah minimizers (that comes
from Campanato’s Theorem, see [3] p. 371) we have for all x € RY \P,

|ut(ac)| < C\/l_f.

Then, using Lemma 24 we obtain

A
[(utlopo.rnp i uE) < CVit B
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On the other hand, for the points y such that d(y,P)> 1, since
% : u(.) — u(y) is harmonic in B(y, d(y, P)) we have, by a classical estimation
on harmonic funections (see the introduction of [12])

. 1 -
|Va(y)| < CW [0l < 0By day. Py
Now using Campanato’s Theorem again we know that

~ 1
%] < 0B 2.y < CAy, P)?

2

thus
1

d(y, P}

|Vu(y)| < C

and finally by the mean value theorem we deduce that for all the points y
such that d(y, P) > /,

1
lur()| < C sup |Vu@)|.ly —y:| <t /1—

1
z€ly,yil 2

Therefore,

[(ut|opo,p0P(1 — ) 1) < Ct

S|

So

thus by setting 2 = R? and by letting R go to +oo we deduce that u;(x) = 0
thus z — u(x, y, 2) is constant.

Now we fix zp = 0 and we introduce Py :=P N {z=0}. We want to
show that (u(x,y,0), Py) is a global minimizer in RZ. Let (v, ), 1) be a
competitor for u(x, y, 0) in the 2-dimensional ball B of radius p. Let C be the
cylinder C := B x [ — R, R]. Define v and Iin R? by

_ v,y if (x,y,2) €C
UW%@_{M%%@ if (x,y,2) ¢C

[=@CnIlx[-R,RDUP\C)UB x {£R}).

It is a topological competitor because R3\P is connected (thus P doesn’t
separate any points). Now finally let B be a ball that contains C. Then (v, I")
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is a competitor for (x, P) in B. By minimality we have:

/|W|2+H2(Pmé)g/|w|2+H2(me).
B B

In the other hand u is equal to 2 in B\C and it is the same for I" and I". We
deduce

/ Vuldadydz + HX(P N C) < / \Viltdedydz + HXT A C).
C C

Now, since u and v are vertically constant, V.u = V.9 =0, and V,u, V,u
are also constant with respect to the variable z (as for v). Thus

2R/ [Vulx,y, 0)|2dmdy +H*(PNO) < 2R/ [V, y)|2dacdy +HX(I'NO).
B B

To conclude we will use the following lemma.

LEmMA 25.  If I is rectifiable and contained in a plane Q then
H*(I' x [ — R,R]) = 2RH\(I').

Proor. We will use the coarea formula (see Theorem 2.93 of [3]). We
take f : R® — R the orthogonal projection on the coordinate orthogonal to
Q. By this way, if E:=1 x[—R,R], we have Enf-1(t)= I for all
t € [ — R, R]. E is rectifiable (because I is by hypothesis). So we can apply
the coarea formula. To do this we have to calculate the jacobian ¢;d?f,. By
construction, the approximate tangente plane in each point of ¥ is ortho-
ggn:&) to Q. We de@ce that if T, is a tangent plane, then there is a basis of T,
(b1, b2) such that by is orthogonal to Q. Since the function f is the projection
on bj, and its derivative as well (because f is linear ) we obtain that the

— —
matrix of d¥f, : T, — R in the basis (by, bs) is

def, = (1,0)
thus
crdPf, = \/det[(1,0).4(1,0)] = 1.
Therefore

R
H*(E) = / HY(I') = 2RH\(I). O
-R
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Here we can suppose that I” is rectifiable. Indeed, the definition of
Mumford-Shah minimizers is equivalent if we only allow rectifiables
competitors. This is because the jump set of a SBV function is rectifiable
and in [11] it is proved that the relaxed functional on the SBV space has
same minimizers.

So we have

2R / |V, y, 0)|*dady + 2RH'(P N B)
B

<2R / Vo, y)Pdedy + 2RHY(I" N B) + HX(B x {£R}).
B

Then, dividing by 2R,

/ Ve, y,0)[dedy + H'(P N B) < / |V, y)Pdedy + H(I' N B) + n%f
B

B

thus, letting R go to infinity,

/ |Vule,y, 0)[dedy + H (PN B) < / Ve, y)Pdaedy + H'(I' N B).
B B

This last inequality proves that (u(x,y, 0), Py) is a global minimizer in IR?,
and since Py is a half-line,  is a cracktip. O

REMARK 26. Using a similar argument as the preceding proof, we can
show that the first eigenvalue for —4 in S?\P with Neumann boundary

conditions (where P is still a half-plane), is equal to g Moreover we can

prove that the eigenspace is of dimension 1, generated by a function of type
cracktip x R, thus we have a new proof of Proposition 22. The argument is

to take an eigenfunction f in S?\P, then to consider u(x) := ||||*f <ﬁ>

with a good coefficient o € ] ;0, 2] that makes « harmonic. Finally we use

the same sort of estimates on the harmonic measure to prove that u is
vertically constant. Thus we have reduced the problem in dimension 2 and
we conclude using that we know the eigenfunctions on the circle. A detailed
proof is done in [15].
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4. Open questions.

As it is said in the introduction, this paper is a very short step in the
discovering of all the global minimizers in RY. This final goal seems rather
far but nevertheless some open questions might be accessible in a more
reasonable time. All the following questions were pointed out by Guy David
in [8], and unfortunately they are still open after this paper.

e Suppose that (u, K) is a global minimizer in RY. Is it true that K is
conical?
e Suppose that (u, K) is a global minimizer in RY, and K is a cone. Is it

true that

e Suppose that (, K) is a global minimizer in R?, and suppose that K is
contained in a plan (and not empty). Is it true that K is a plane or a half-
plane?

e Could one found an extra global minimizer in R® by blowing up the
minimizer described in section 76.c. of [8] (see also [17])?

One can find other open questions on global minimizers in the last page
of [8].

is the smallest eigenvalue of the Laplacian on S¥1\K?
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