Gruppi fattorizzati da sottogruppi ciclici

ENRICO JABARA (*)

Al professor Federico Menegazzo per il suo 65° compleanno

ABSTRACT - This paper is devoted to a study of groups defined by the presentation

$$G = \langle a, b, c \mid a^b = a^{1+r}, b^c = b^{1+s}, c^a = c^{1+t} \rangle$$
 $(r, s, t \in \mathbb{Z}).$

It is proved that $G'' \leq Z(G)$ and that if r, s and t are all $\neq -2,0$ then G is finite and its order divides $|(r,s)(s,t)(t,r)\rho\sigma\tau|$ where $\rho = (1+r)^{|s|}-1$, $\sigma = (1+s)^{|t|}-1$ and $\tau = (1+t)^{|r|}-1$.

1. Introduzione.

Lo scopo che questo lavoro si prefigge è duplice. In primo luogo si continua lo studio, iniziato in [6], dei gruppi fattorizzati tramite tre (o più) sottogruppi abeliani. In secondo luogo si applicano alcuni dei risultati ottenuti allo studio della famiglia di gruppi definiti dalla seguente presentazione:

$$M(r, s, t) = \langle a, b, c \mid a^b = a^{1+r}, b^c = b^{1+s}, c^a = c^{1+t} \rangle; \quad r, s, t \in \mathbb{Z}.$$

In [9] Mennicke ha studiato i gruppi M(t,t,t) ed ha dimostrato che se $t\geq 1$ si tratta di gruppi finiti in cui il sottogruppo $\langle a^{t^3},b^{t^3},c^{t^3}\rangle$ è normale, abeliano e a quoziente nilpotente. Successivamente Schenkman in [13] ha dimostrato che il secondo derivato di M(r,s,t) è nilpotente di classe al più 3 e che M(r,s,t) è finito se r,s,t sono tutti maggiori di 0. In questo lavoro si dimostra il

E-mail: jabara@unive.it

2000 Mathematical Subject Classification: 20D40 (20F05,17B60).

^(*) Indirizzo dell'A.: Dipartimento di Matematica Applicata, Università di Ca' Foscari, Dorsoduro 3825/e, 30123 Venezia, Italy.

TEOREMA 1. Per ogni $r, s, t \in \mathbb{Z}$ il gruppo G = M(r, s, t) è supersolubile e si ha $G'' \leq Z(G)$ e $\gamma_3(G) \leq Z(G')$. In particolare G' è nilpotente di classe al più 2. Inoltre se r, s, t sono tutti diversi da 0 e da -2 allora G è finito e il suo ordine divide

$$|(r,s)(s,t)(t,r)\rho\sigma\tau|$$

ove $\rho = (1+r)^{|s|} - 1$, $\sigma = (1+s)^{|t|} - 1$, $\tau = (1+t)^{|r|} - 1$ e (m,n) indica il massimo comun divisore tra i due numeri interi m e n.

La dimostrazione del Teorema 1 è ottenuta combinando alcuni risultati più generali riguardanti i gruppi fattorizzati con dei calcoli diretti sui commutatori. Si dimostrerà anche la seguente generalizzazione del Teorema 3 di [13].

PROPOSIZIONE 1. Sia G un gruppo generato da tre suoi sottogruppi A, $B \in C$ nilpotenti di classi rispettivamente k_A , $k_B \in k_C$. Se $[A,B] \leq A$, $[B,C] \leq B \in [C,A] \leq C$ allora, posto $K=k_A+k_B+k_C$, si ha che il gruppo $\gamma_{K+1}(G)$ risulta nilpotente di classe al più K.

Dalla Proposizione 1 discende che se A, B e C sono sottogruppi abeliani di G allora $\gamma_4(\gamma_4(G)) = \{1\}$; sotto tali ipotesi si può ottenere un risultato più preciso.

Proposizione 2. Sia G un gruppo generato da tre suoi sottogruppi abeliani A, B e C. Se $[A, B] \leq A$, $[B, C] \leq B$ e $[C, A] \leq C$ allora G' risulta nilpotente di classe al più 3.

È conveniente riformulare la prima parte del Teorema 1.

PROPOSIZIONE 3. Sia G un gruppo generato da tre suoi sottogruppi ciclici A, B e C. Se $[A,B] \leq A$, $[B,C] \leq B$ e $[C,A] \leq C$ allora G risulta supersolubile e si ha $G'' \leq Z(G)$ e $\gamma_3(G) \leq Z(G')$. In particolare G' risulta nilpotente di classe al più 2.

Le Proposizioni 1, 2 e 3 non si possono estendere al caso di quattro o più sottogruppi; infatti Higman in [4] ha dimostrato che il gruppo

$$\langle a, b, c, d \mid a^b = a^2, b^c = b^2, c^d = c^2, d^a = d^2 \rangle$$

è infinito e privo di sottogruppi di indice finito.

Nel §3 sarà dimostrato un analogo del Teorema 1 valido per gli anelli di Lie.

2. Dimostrazione delle Proposizioni 1 e 2.

DIMOSTRAZIONE DELLA PROPOSIZONE 1. Sia $G=\langle A,B,C\rangle$ con $A,B\in C$ soddisfacenti alle ipotesi dell'enunciato. Essendo AB=BA, AC=CA e BC=CB si deve avere G=ABC. Si ha poi $A^G=A^{ABC}=A^C\leq AC$ e, analogamente, $B^G\leq AB$ e $C^G\leq BC$. Poiché C è normalizzato da A e $\gamma_{k_A+1}(A)=\{1\}$ risulta $\gamma_{k_A+1}(A^G)\leq \gamma_{k_A+1}(AC)\leq C$. Siccome $A^G\unlhd G$ e $\gamma_{k_A+1}(A^G)$ è caratteristico in A^G si ha $\gamma_{k_A+1}(A^G)\unlhd G$ e quindi $\gamma_{k_A+1}(A^G)\leq C_G$. In maniera analoga si dimostra che $\gamma_{k_B+1}(B^G)\leq A_G$ e $\gamma_{k_C+1}(C^G)\leq B_G$.

I tre sottogruppi A_G , B_G e C_G sono normali in G e nilpotenti di classe che non supera rispettivamente k_A , k_B e k_C . Quindi il sottogruppo $L = A_G B_G C_G$ è normale in G e, per il teorema di Fitting (5.2.8 di [12]), nilpotente di classe al più $k_A + k_B + k_C = K$. Posto $\overline{G} = G/L$ in \overline{G} si ha

$$\gamma_{k_A+1}(\overline{A}^{\overline{G}}) = \{1\}, \ \gamma_{k_B+1}(\overline{B}^{\overline{G}}) = \{1\}, \ \gamma_{k_C+1}(\overline{C}^{\overline{G}}) = \{1\}$$

e poiché $\overline{G} = \overline{A} \overline{B} \overline{C} = \overline{A}^{\overline{G}} \overline{B}^{\overline{G}} \overline{C}^{\overline{G}}$, ancora per il teorema di Fitting, si conclude che \overline{G} è nilpotente e che la sua classe di nilpotenza non supera $k_A + k_B + k_C = K$. Dunque $\gamma_{K+1}(\gamma_{K+1}(G)) = \{1\}$.

Per dimostrare la Proposizione 2 si utilizza il seguente risultato.

Lemma 1. Sia G un gruppo e A, B e C dei sottogruppi abeliani di G tali che G = ABC, $[A,B] \leq A$, $[B,C] \leq B$, $[C,A] \leq C$ e $A \cap B \cap C = \{1\}$. Allora $[G',G',G'] \leq Z(G)$.

DIM. Sotto le ipotesi dell'enunciato risulta $A_G \cap B_G \leq Z(G)$; infatti essendo A e B abeliani essi sono centralizzati da $A_G \cap B_G$. Sia poi $x \in A_G \cap B_G$ e $y \in C$; poiché A normalizza C si ha $[x,y] \in C$, del resto $A_G \cap B_G \trianglelefteq G$ porge che $[x,y] \in A_G \cap B_G$ e allora $[x,y] \in A_G \cap B_G \cap C = \{1\}$. Quindi $A_G \cap B_G$ centralizza anche C e dunque $A_G \cap B_G \leq Z(G)$.

Ragionando come nella dimostrazione precedente e ricordando che A, B e C sono abeliani, si ottiene $(A^G)' \leq C_G, (B^G)' \leq A_G$ e $(C^G)' \leq B_G$.

Per dimostrare l'asserto si distinguono tre casi.

(a) Almeno due dei tre sottogruppi A_G , B_G e C_G risultano identici. Non è restrittivo supporre $A_G = \{1\}$ e $B_G = \{1\}$. Allora $(B^G)' = \{1\}$ e $(C^G)' = \{1\}$ e quindi il sottogruppo normale $N = B^G C^G$ risulta, per il teorema di Fitting, nilpotente di classe al più 2. Siccome G/N è isomorfo a un quoziente di A, che è

- abeliano, si ha $G' \leq N$, da cui $[G', G', G'] = \{1\}$ e in questo caso l'asserto è dimostrato.
- (b) Uno solo dei tre sottogruppi A_G , B_G e C_G risulta identico. Non è restrittivo supporre che $C_G = \{1\}$ e dunque A^G è abeliano. In $\overline{G} = G/A_G$ anche $\overline{B}^{\overline{G}}$ è abeliano e quindi, ragionando come nel punto precedente, si ricava che $(G/A_G)'$ è nilpotente di classe al più 2 così come $(G/B_G)'$. Ma allora $[G', G', G'] \le A_G \cap B_G \le Z(G)$ e l'asserto è dimostrato.
- (c) $A_G \neq \{1\}$, $B_G \neq \{1\}$ e $C_G \neq \{1\}$. Allora siccome $A_G \cap B_G \cap C_G \leq A \cap B \cap C = \{1\}$, il gruppo G si immerge nel prodotto diretto $(G/A_G) \times (G/B_G) \times (G/C_G)$ e poiché ognuno dei tre fattori del prodotto diretto ricade nel caso considerato nel punto (b) se ne conclude che $[G', G', G'] \leq Z(G)$.

Quindi in ogni caso $[G', G', G'] \leq Z(G)$ e l'asserto è dimostrato.

A questo punto la dimostrazione della Proposizione 2 è quasi immediata.

DIMOSTRAZIONE DELLA PROPOSIZIONE 2. Poiché $A,B\in C$ sono abeliani, risulta $A\cap B\cap C\leq Z(G)$. In $\widehat{G}=G/(A\cap B\cap C)$ si ha $\widehat{A}\cap \widehat{B}\cap \widehat{C}=\{1\}$ e quindi, per il Lemma 1, $[\widehat{G}',\widehat{G}',\widehat{G}']\leq Z(\widehat{G})$ da cui $[G',G',G']\leq Z_2(G)$. In ogni gruppo X si ha $[X',Z_2(X)]=\{1\}$, quindi $[G',G',G',G']\leq [Z_2(G),G']=\{1\}$ e G' risulta nilpotente di classe al più 3.

OSSERVAZIONE 1. Con gli stessi medodi utilizzati nella dimostrazione della Proposizione 1 si può far vedere che se $G = \langle A,B,C \rangle$ con $A,B \in C$ risolubili di lunghezza derivata rispettivamente $d_A,d_B\in d_C$ e tali che $[A,B]\leq A,[B,C]\leq B$ e $[C,A]\leq C$, allora anche G è risolubile e la sua lunghezza derivata non supera $2(d_A+d_B+d_C)$. Inoltre, poiché G=ABC, se $A,B\in C$ sono policiclici, anche G risulta policiclico.

OSSERVAZIONE 2. Se G è un gruppo finito generato da tre sottogruppi ciclici A, B e C tali che $[A,B] \leq A$, $[B,C] \leq B$ e $[C,A] \leq C$, allora, ragionando come nella dimostrazione del Lemma 1 e della Proposizione 2 (e sfruttando il fatto che ogni sottogruppo di A è normalizzato da B, ogni sottogruppo di B è normalizzato da C e ogni sottogruppo di C è normalizzato da C si può dimostrare che $C'' \leq Z_2(C)$ (e di conseguenza C' risulta nilpotente di classe al più 2). La dimostrazione che $C'' \leq Z(C)$ richiede, come sarà chiaro nel §4, maggiore attenzione.

3. Anelli di Lie.

Da una lettura delle dimostrazioni precedenti è facile convincersi che le Proposizioni 2 e 3 (in analogia a quanto avviene per il Teorema 2 di [13]) valgono anche per gli anelli di Lie (su \mathbb{Z}). Più precisamente se \mathfrak{L} è un anello di Lie e \mathfrak{N} , \mathfrak{B} e \mathfrak{C} sono suoi sottanelli tali che $\mathfrak{L}=\mathfrak{A}+\mathfrak{B}+\mathfrak{C}$ e $[\mathfrak{N},\mathfrak{B}]\leq\mathfrak{N}$, $[\mathfrak{B},\mathfrak{C}]<\mathfrak{B}$ e $[\mathfrak{C},\mathfrak{M}]<\mathfrak{C}$ allora

- (i) se \mathfrak{A} , \mathfrak{B} e \mathfrak{C} sono nilpotenti di classe rispettivamente $k_{\mathfrak{A}}$, $k_{\mathfrak{B}}$ e $k_{\mathfrak{C}}$ allora, detto $K = k_{\mathfrak{A}} + k_{\mathfrak{B}} + k_{\mathfrak{C}}$, si ha $(\mathfrak{L}^{K+1})^{K+1} = \{0\}$;
- (ii) se \mathfrak{A} , \mathfrak{B} e \mathfrak{C} sono abeliani allora $[\mathfrak{L}',\mathfrak{L}',\mathfrak{L}'] \leq Z_2(\mathfrak{L})$ e quindi, in particolare, \mathfrak{L}' è nilpotente di classe al più 3.

Ove, come d'uso si pone $\mathfrak{L}^1=\mathfrak{L}$, $\mathfrak{L}^n=[\mathfrak{L}^{n-1},\mathfrak{L}]$, $\mathfrak{L}'=\mathfrak{L}^2$ e $\mathfrak{L}''=[\mathfrak{L}',\mathfrak{L}']$. Si supponga ora che \mathfrak{A} , \mathfrak{B} e \mathfrak{C} siano generati, come anelli, da \mathfrak{a} , \mathfrak{b} e \mathfrak{c} rispettivamente. Se si ha $[\mathfrak{a},\mathfrak{b}]=r\mathfrak{a}$, $[\mathfrak{b},\mathfrak{c}]=s\mathfrak{b}$, $[\mathfrak{c},\mathfrak{a}]=t\mathfrak{a}$ con $r,s,t\in\mathbb{Z}$, l'anello di Lie generato da \mathfrak{a} , \mathfrak{b} e \mathfrak{c} sarà denotato con L(r,s,t). Utilizzando l'identatà di Jacobi $[\mathfrak{a},\mathfrak{b},\mathfrak{c}]+[\mathfrak{b},\mathfrak{c},\mathfrak{a}]+[\mathfrak{c},\mathfrak{a},\mathfrak{b}]=0$, si ricava

$$(1) rsa + stb + rtc = 0.$$

da cui (commutando rispetto a, b e c) si ottiene

(2)
$$rsta = rt^2c$$
, $rstb = r^2sa$, $rstc = s^2tb$.

Commutando (2.b) tramite $\mathfrak b$ e $\mathfrak a,$ (2.c) tramite $\mathfrak c$ e $\mathfrak b$ e (2.a) tramite $\mathfrak a$ e $\mathfrak c,$ si ottiene

(3)
$$r^3 \mathfrak{sa} = 0, \qquad \mathfrak{s}^3 t \mathfrak{b} = 0, \qquad r t^3 \mathfrak{c} = 0,$$

(4)
$$r^2 s t \alpha = 0, \quad r s^2 t \mathfrak{b} = 0, \quad r s t^2 \mathfrak{c} = 0.$$

Grazie alle (4) si ricava immediatamente che se $rst \neq 0$ allora L(r, s, t) è finito e il suo ordine non supera $(rst)^4$.

Moltiplicando le relazioni (2) rispettivamente per $t,\,r$ e s si ricava

$$(5) \hspace{1cm} \textit{rst}^2\mathfrak{a}=0, \hspace{1cm} \textit{r}^2\textit{st}\mathfrak{b}=0, \hspace{1cm} \textit{rs}^2\textit{t}\mathfrak{c}=0.$$

Da (2) applicando le (4) si ottiene

(6)
$$rs^2t\mathfrak{a} = 0, \quad rst^2\mathfrak{b} = 0, \quad r^2st\mathfrak{c} = 0.$$

Moltiplicando (1) rispettivamente per rs, rt e sr e tenendo conto delle (4) si ha anche

(7)
$$r^2 s^2 \mathfrak{a} = 0, \quad s^2 t^2 \mathfrak{b} = 0, \quad r^2 t^2 \mathfrak{c} = 0.$$

Si può quindi enunciare il

Teorema 2. Se $\mathfrak{L} = L(r, s, t)$ allora si ha

- (a) $\mathfrak{L}'' \leq Z(\mathfrak{L});$
- (b) $[\mathfrak{L}^3, \mathfrak{L}^2] = \{0\}.$

Inoltre se $rst \neq 0$ allora \mathfrak{L} è finito e il suo ordine divide $|(r, s, t)^3 r^2 s^2 t^2|$ ove (r, s, t) denota il massimo comun divisore dei numeri interi r, s e t.

DIM. Siccome \mathfrak{L}' è generato da $r\mathfrak{a}$, $s\mathfrak{b}$ e $t\mathfrak{c}$ si ha che \mathfrak{L}'' è generato da $r^2s\mathfrak{a}$, $s^2t\mathfrak{b}$ e $rt^2\mathfrak{c}$. Sfruttando le uguaglianze (3) si ottiene

$$[r^2 s \alpha, b] = r^3 s \alpha = 0, \quad [s^2 t b, c] = s^3 t b = 0, \quad [rt^2 c, \alpha] = rt^3 c = 0,$$

mentre dalle uguaglianze (5) si ricava

$$[r^2s\alpha, \mathfrak{c}] = -r^2st\mathfrak{c} = 0, \quad [s^2t\mathfrak{b}, \alpha] = -rs^2t\alpha = 0, \quad [rt^2\mathfrak{c}, \mathfrak{b}] = -rst^2\mathfrak{b} = 0,$$

e l'asserto (a) è dimostrato.

Siccome \mathfrak{L}^3 è generato da $r^2\mathfrak{a}$, $s^2\mathfrak{b}$, $t^2\mathfrak{c}$, $rs\mathfrak{a}$, $st\mathfrak{b}$, $rt\mathfrak{c}$, ricordando (3), (4) e (7) si ottiene:

$$\begin{array}{lll} [r^2\alpha,s\mathfrak{b}]=r^3s\alpha=0, & [s^2\mathfrak{b},t\mathfrak{c}]=s^3t\mathfrak{b}=0, & [t^2\mathfrak{c},r\alpha]=rt^3\mathfrak{c}=0, \\ [r^2\alpha,t\mathfrak{c}]=-r^2t^2\mathfrak{c}=0, & [s^2\mathfrak{b},r\alpha]=-r^2s^2\alpha=0, & [t^2\mathfrak{c},s\mathfrak{b}]=-s^2t^2\mathfrak{b}=0, \\ [rs\alpha,s\mathfrak{b}]=r^2s^2\alpha=0, & [st\mathfrak{b},t\mathfrak{c}]=s^2t^2\mathfrak{b}=0, & [rt\mathfrak{c},r\alpha]=r^2t^2\mathfrak{c}=0, \\ [rs\alpha,t\mathfrak{c}]=-rst^2\mathfrak{c}=0, & [st\mathfrak{b},r\alpha]=-r^2st\alpha=0, & [rt\mathfrak{c},s\mathfrak{b}]=-rs^2t\mathfrak{b}=0 \end{array}$$

e quindi anche l'asserto (b) è dimostrato.

Si supponga quindi $rst \neq 0$ e si consideri il sottoanello $\mathfrak N$ di $\mathfrak L$ generato dagli elementi rsa, stb e rtc. Una semplice verifica mostra che $\mathfrak N$ è un ideale di $\mathfrak L$, che $\mathfrak L/\mathfrak N$ è finito e che il suo ordine divide $r^2s^2t^2$.

Per dimostrare l'asserto è quindi sufficiente dimostrare che \Re è finito e che il suo ordine divide r^3 , s^3 e t^3 .

Siano

- \mathfrak{T}_1 il sottoanello di \mathfrak{N} generato da rstc;
- \mathfrak{T}_2 il sottoanello di \mathfrak{N} generato da $rst\alpha$;
- \mathfrak{T}_3 il sottoanello di \mathfrak{N} generato da $rst\mathfrak{b};$

Utilizzando le relazioni (2) una verifica diretta porge che \mathfrak{T}_1 , \mathfrak{T}_2 e \mathfrak{T}_3 sono ideali di \mathfrak{R} (anzi di \mathfrak{L}).

Dalla relazione (1) si ottiene rsa = -stb - rtc e quindi \mathfrak{N} è generato come anello da stb e rtc. Siccome $s(rtc) = rstc \in \mathfrak{T}_1$ e $s(stb) = s^2tb = rstc \in \mathfrak{T}_1$ se ne deduce che $\mathfrak{N}/\mathfrak{T}_1$ è finito e che il suo ordine divide s^2 . Dalla relazione (5.c) si ricava $s(rst)c = rs^2tc = 0$ e quindi \mathfrak{T}_1 è finito e il suo ordine divide s. Dunque $|\mathfrak{N}|$ (è finito e) divide s^3 .

Un ragionamento analogo applicato a \mathfrak{T}_2 (a \mathfrak{T}_3) mostra che $\mathfrak N$ è anche un divisore di t^3 (di r^3).

Il Teorema è quindi dimostrato.

Se r=s=t dalle relazioni (2) si ricava $t^3\alpha=t^3\mathfrak{b}=t^3\mathfrak{c}$ e moltiplicando per t la (1) (che è diventata $t^2\alpha+t^2\mathfrak{b}+t^2\mathfrak{c}=0$) si ottiene

$$3t^3\mathfrak{a} = 3t^3\mathfrak{b} = 3t^3\mathfrak{c} = 0.$$

Tenendo conto che (3) porge $t^4\mathfrak{a}=t^4\mathfrak{b}=t^4\mathfrak{c}=0$ si possono dare due casi

- 3 non divide t; allora L(t, t, t) ha ordine t^8 ed è nilpotente di classe 3,
- 3 divide t; allora L(t, t, t) ha ordine $3t^8$ ed è nilpotente di classe 4.

Si osservi che, in generale, M(t,t,t) non è nemmeno nilpotente (infatti esso risulta finito e nilpotente se e solo se t=2 o t=-3); si può però considerare il quoziente RM(t,t,t) di M(t,t,t) tramite il suo residuale nilpotente (ovvero l'ultimo termine della serie centrale discendente).

TABELLA 1.

	L(t,t,	t)	RM(t,t,t)		
t	ordine	classe	ordine	classe	
2	2^{8}	3	2^{11}	4	
3^n	3^{8n+1}	4	3^{8n+1}	4	
p^n , $p^n \neq 2$, $p \neq 3$	p^{8n}	3	p^{8n}	3	
6	$2^8 \cdot 3^9$	4	$2^{14} \cdot 3^9$	5	
12	$2^{16} \cdot 3^9$	4	$2^{16} \cdot 3^9$	4	
10	$2^8 \cdot 5^8$	3	$2^{11}\cdot 5^8$	4	
20	$2^{16} \cdot 5^8$	3	$2^{16}\cdot 5^8$	3	
14	$2^8 \cdot 7^8$	3	$2^{17} \cdot 7^8$	6	
28	$2^{16}\cdot 7^8$	3	$2^{16}\cdot 7^8$	3	
30	$2^8 \cdot 3^9 \cdot 5^8$	4	$2^{20}\cdot 3^9\cdot 5^8$	7	
60	$2^{16}\cdot 3^9\cdot 5^8$	4	$2^{16}\cdot 3^9\cdot 5^8$	4	
42	$2^8\cdot 3^9\cdot 7^8$	4	$2^{11}\cdot 3^9\cdot 7^8$	4	
510	$2^8\cdot 3^9\cdot 5^8\cdot 17^8$	4	$2^{32} \cdot 3^9 \cdot 5^8 \cdot 17^8$	11	

Utilizzando il software GAP e i calcoli svolti sopra si ottiene la Tabella 1. I dati riportati in tale tabella suggeriscono che (a parte il caso eccezionale in cui t è il doppio di un numero dispari) vi sia una buona corrispondenza tra i due tipi di struttura.

Per l'esatto ordine di M(t, t, t) e RM(t, t, t) si veda [9] e l'Osservazione 3.

4. Dimostrazione della Proposizione 3.

L'analogo nei gruppi dell'identità di Jacobi è l'identità Hall-Witt (si veda il Teorema 2.2.3.i di [3] o il 5.1.5.iv di [12])

$$[x, y^{-1}, z]^y [y, z^{-1}, x]^z [z, x^{-1}, y]^x = 1,$$

o, equivalentemente,

$$[x, y, z^x][z, x, y^z][y, z, x^y] = 1.$$

Questa identità, anche se non è maneggevole come quella di Jacobi, costituisce uno strumento essenziale per lo studio dei gruppi M(r,s,t) e dei loro quozienti. Infatti, posto $\rho=(1+r)^{|s|}-1$, $\sigma=(1+s)^{|t|}-1$ e $\tau=(1+t)^{|r|}-1$, si perviene al seguente risultato.

LEMMA 2. Sia $G = \langle a, b, c \rangle$ un gruppo isomorfo a un quoziente di M(r, s, t) con r, s, t numeri interi tutti maggiori di 0. Allora si ha:

- (1) $a^{(1+r)\rho}b^{(1+s)\sigma}c^{(1+t)\tau} = 1$:
- (2) $a^{r^2\rho} = 1$, $b^{s^2\sigma} = 1$, $c^{t^2\tau} = 1$;
- (3) $a^{st\rho} = 1$, $b^{rt\sigma} = 1$, $c^{rs\tau} = 1$;
- (4) $a^{r\rho} \in \langle b \rangle, b^{s\sigma} \in \langle c \rangle, c^{t\tau} \in \langle a \rangle.$

DIM. (1) si ottiene direttamente dall'identità di Hall-Witt mentre (2) e (3) si ottengono da (1) tramite alcuni calcoli sui commutatori (per i particolari si vedano i lavori [7] e [1] nonché la dimostrazione del Lemma 7).

Per dimostrare (4) si pone $x=a^{\rho},\ y=b^{\sigma}$ e $z=c^{\tau}$. Per il punto (1) si ha $x^{1+r}z^{1+t}\in \langle b\rangle$ e quindi $x^{1+r}z^{1+t}=(x^{1+r}z^{1+t})^b$. Dal punto (2) discende che $x^{r^2}=1$, si può quindi scrivere $x^r=[x,b]=z^{1+t}(z^{-(1+t)})^b$ e siccome $z^{1+t}(z^{-(1+t)})^b=[z^{-(1+t)},b]\in B$ se ne conclude che $x^r\in \langle b\rangle$. In modo analogo si prova che $y^s\in \langle c\rangle$ e $z^t\in \langle a\rangle$.

OSSERVAZIONE 3. Il Lemma 2 spiega in parte l'eccezionalità del caso M(2,2,2) = RM(2,2,2). Infatti mentre in generale t^2 divide $\tau = (1+t)^{|t|} - 1$ ma t^3 non lo divide, se t=2 si ha che $2^3 = 3^2 - 1$.

Inoltre in [9] Mennicke ha determinato l'esatto ordine di M(t,t,t) (a parte un errore nel caso un cui t è pari). Si ha:

$$|M(t,t,t)| = \begin{cases} t^2 \tau^3 & \text{se } (3,t) = 1 \\ 3t^2 \tau^3 & \text{se } (3,t) = 3. \end{cases}$$

Da ciò si deduce facilmente che se $\tau = \tau_1 \tau_2 \operatorname{con} \pi(\tau_1) = \pi(t) \operatorname{e} (t, \tau_2) = 1$ allora

$$|RM(t,t,t)| = \begin{cases} t^2 \tau_1^3 & \text{se } (3,t) = 1 \\ 3t^2 \tau_1^3 & \text{se } (3,t) = 3. \end{cases}$$

OSSERVAZIONE 4. Non è difficile dimostrare che

$$M(r, s, t) \simeq M(s, t, r) \simeq M(t, r, s)$$

ma, in generale, $M(r, s, t) \not\simeq M(r, t, s)$. Ad esempio M(1, 2, 3) ha ordine 234 mentre M(1, 3, 2) ha ordine 210.

Oltre all'Osservazione 4 e alcune identità sui commutatori enunciate nei Lemmi 2.2.2 e 2.2.4 di [3], che saranno adoperate senza un esplicito richiamo, nella dimostrazione della Proposizione 3 si utilizzano anche i seguenti lemmi.

LEMMA 3. Sia G un gruppo generato da tre suoi sottogruppi ciclici A, B e C. Se $[A,B] \leq A$, $[B,C] \leq B$ e $[C,A] \leq C$ allora $A \cap B$, $B \cap C$ e $C \cap A$ sono sottogruppi normali di G e si ha $[(A \cap B)(B \cap C)(C \cap A), G] \leq A \cap B \cap C$. In particolare $A \cap B$, $B \cap C$ e $C \cap A$ sono contenuti in $Z_2(G)$ e se $A \cap B \cap C = \{1\}$ essi sono contenuti in Z(G).

DIM. Il sottogruppo $A \cap B$ è centralizzato da A e da B. Siccome C normalizza B e B è ciclico, ne segue che C normalizza $A \cap B$ e dunque $A \cap B \subseteq G$. In maniera analoga si prova che $B \cap C \subseteq G$ e $C \cap A \subseteq G$.

Se $A \cap B \cap C = \{1\}$ allora, se si procede come nella prima parte della dimostrazione del Lemma 1, si prova che $[A \cap B, G] = \{1\}$, $[B \cap C, G] = \{1\}$ e $[C \cap A, G] = \{1\}$. Dunque $[(A \cap B)(B \cap C)(C \cap A), G] \leq A \cap B \cap C$ e siccome $A \cap B \cap C \leq Z(G)$ l'asserto è dimostrato.

Lemma 4. Sia G un gruppo isomorfo a un quoziente di M(r, s, t) con $r, s, t \in \mathbb{Z}$ tutti maggiori di 0. Se $Z(G) = \{1\}$ allora G è metabeliano.

DIM. Il Lemma 3 ed il fatto che $Z(G) = \{1\}$ porgono che

$$A \cap B = B \cap C = C \cap A = \{1\}.$$

Quindi, per il punto (4) del Lemma 2, $a^{r\rho}=b^{s\sigma}=c^{t\tau}=1$. Si conclude in quanto $G'=\langle a^r,b^s,c^t\rangle$ e $G''=\langle a^{r\rho},b^{s\sigma},c^{t\tau}\rangle$.

Lemma 5. Sia $P = \langle x \rangle$ un gruppo ciclico di ordine p^n e sia A un sottogruppo ciclico di Aut(P) di ordine p^k . Allora esiste un opportuno $\alpha \in A$ che genera A con $x^{\alpha} = x^{\ell}$ tale che

- (1) se p > 2 allora $\ell = 1 + p^{n-k}$;
- (2) se p = 2 allora si possono dare i seguenti casi
 - (i) $\ell = 1 + 2^{n-k-1}$.
 - (ii) $\ell = -1 + 2^{n-k-1}$.
 - (iii) $k = 1 e \ell = -1$.

DIM. L'asserto discende facilmente dal Lemma 5.4.1 di [3] e da semplici considerazioni aritmetiche.

È conveniente dimostrare a parte che la Proposizione 3 è valida nel caso dei p-gruppi.

Lemma 6. Sia G un p-gruppo (finito) fattorizzato tramite tre sottogruppi ciclici A, B e C tali che $[A, B] \leq A$, $[B, C] \leq B$ e $[C, A] \leq C$. Allora $G'' \leq Z(G)$ e $\gamma_3(G) \leq Z(G')$.

DIM. Sia $A=\langle a\rangle, B=\langle b\rangle$ e $C=\langle c\rangle$ con $a^b=a^{1+r}, b^c=b^{1+s}$ e $c^a=c^{1+t}$. Si osservi che, per ogni $i,j,k\in\mathbb{Z}$, si ha $(a^i)^b=(a^i)^{1+r}$, $(b^j)^c=(b^j)^{1+s}$ e $(c^k)^a=(c^k)^{1+t}$. Si può quindi supporre (rimpiazzando eventualmente a,b e c con opportune loro potenze) che gli automorfismi indotti per coniugio da a,b e c rispettivamente su C, A e B abbiano la forma descritta dal Lemma 5.

Se $K \in \mathbb{N}$ e $K = \pm p^n + Hp^{n+1}$ (con $H, n \in \mathbb{N}$) si scriverà $K = \pm p^n + \vartheta(n)$ e, quando non vi sia possibilità di confusione, $K = \pm p^n + \vartheta$.

Tenendo presente che

$$G' = \langle a^r, b^s, c^t \rangle, \quad G'' = \langle a^{r\rho}, b^{s\sigma}, c^{t\tau} \rangle$$

e

$$[G,G,G]=\langle a^{r^2},b^{s^2},c^{t^2},a^{
ho},b^{\sigma},c^{ au}
angle$$

si devono considerare vari casi.

Io Caso.
$$r=p^{\alpha},\, s=p^{\beta}$$
 e $t=p^{\gamma}$ $(\alpha,\beta,\gamma\in\mathbb{N}).$

Si può supporre $\alpha \le \beta \le \gamma$ (il caso $\alpha \le \gamma \le \beta$ si tratta in maniera analoga).

Con le notazioni introdotte sopra si ha

$$\rho = p^{\alpha+\beta} + \vartheta, \quad \sigma = p^{\beta+\gamma} + \vartheta \quad \mathbf{e} \quad \tau = p^{\alpha+\gamma} + \vartheta.$$

Dalle relazioni (2) e (3) del Lemma 2 si ricava che l'ordine di a divide $p^{3\alpha+\beta}$, quello di b divide $p^{3\beta+\gamma}$ e $p^{\alpha+\beta+2\gamma}$ e quello di c divide $p^{2\alpha+\beta+\gamma}$.

Dal Lemma 2 discende $[a^{r\rho}, b] = [b^{s\sigma}, c] = [c^{t\tau}, a] = 1$.

Poi $[c,a^{r\rho}]=c^{(1+t)^{r\rho}-1}$ e siccome $(1+t)^{r\rho}-1=p^{2\alpha+\beta+\gamma}+\vartheta$ si ha $[c,a^{r\rho}]=1$. Analogamente $(1+r)^{s\sigma}-1=p^{\alpha+2\beta+\gamma}+\vartheta$ e siccome per ipotesi $3\alpha+\beta\leq\alpha+2\beta+\gamma$ si ha $[a,b^{s\sigma}]=1$. Infine $(1+s)^{t\tau}-1=p^{\alpha+\beta+2\gamma}+\vartheta$ e $[b,c^{t\tau}]=1$ porge che $G''\leq Z(G)$.

Si ha $[a^{r^2},b^s]=a^{r^2\rho}=1,[b^{s^2},c^t]=b^{s^2\sigma}=1$ e $[c^{t^2},a^r]=c^{t^2\tau}=1$. Poi

- $[c^t, a^{r^2}] = c^{t\{(1+t)^{r^2}-1\}}$, si ha $t\{(1+t)^{r^2}-1\} = p^{2\alpha+2\gamma} + \vartheta$ e siccome $2\alpha + \beta + \gamma \le 2\alpha + 2\gamma$ risulta $[c^t, a^{r^2}] = 1$;
- $[a^r,b^{s^2}]=a^{r\{(1+r)^{s^2}-1\}}$, si ha $r\{(1+r)^{s^2}-1\}=p^{2\alpha+2\beta}+\vartheta$ e siccome $3\alpha+\beta\leq 2\alpha+2\beta$ risulta $[a^r,b^{s^2}]=1$;
- $[b^s, c^{t^2}] = b^{s\{(1+s)^{t^2}-1\}}$, si ha $s\{(1+s)^{t^2}-1\} = p^{2\beta+2\gamma} + \vartheta$ e siccome $\alpha + \beta + 2\gamma \le 2\beta + 2\gamma$ risulta $[b^s, c^{t^2}] = 1$;
- $[a^{\rho}, b^{s}] = a^{\rho^{2}}, \rho^{2} = p^{2\alpha+2\beta} + \vartheta, 3\alpha + \beta \le 2\alpha + 2\beta$ e quindi $[a^{\rho}, b^{s}] = 1$;
- $[c^t, a^{\rho}] = c^{t\{(1+t)^{\rho}-1\}}, t\{(1+t)^{\rho}-1\} = p^{\alpha+\beta+2\gamma} + \vartheta, 2\alpha+\beta+\gamma \le \alpha+\beta+2\gamma$ e quindi $[c^t, a^{\rho}] = 1$;
- $[b^{\sigma}, c^t] = b^{\sigma^2}, \sigma^2 = p^{2\alpha+2\beta} + \vartheta, \alpha + \beta + 2\gamma \le 2\alpha + 2\beta$ e quindi $[b^{\sigma}, c^t] = 1$;
- $[a^r, b^{\sigma}] = a^{r\{(1+r)^{\sigma}-1\}}, r\{(1+r)^{\sigma}-1\} = p^{2\alpha+\beta+\gamma} + \vartheta, 3\alpha+\beta \le 2\alpha+\beta+\gamma$ e quindi $[a^r, b^{\sigma}] = 1$;
- $[c^{\tau}, a^r] = c^{\tau^2}$, $\tau^2 = p^{2\alpha+2\gamma} + \vartheta$, $2\alpha + \beta + \gamma \le 2\alpha + 2\gamma$ e quindi $[c^{\tau}, a^t] = 1$;
- la dimostrazione che $[b^s,c^\tau]=1$ richiede un trattamento diverso. Dalla relazione (1) del Lemma 2 si ricava $c^{-\tau}=a^{(1+r)\rho}b^{(1+s)\sigma}c^{t\tau}$. Si ha $[b^s,a^\rho]=a^{-\rho^2}=1$ (per quanto visto sopra) e $[b^s,c^{t\tau}]=1$ perché $s\{(1+s)^{t\tau}-1\}=p^{\alpha+2\beta+2\gamma}+\vartheta$ e $\alpha+\beta+2\gamma\leq\alpha+2\beta+2\gamma$. Ovviamente b^s commuta con $b^{(1+s)\sigma}$ e quindi $[b^s,c^\tau]=1$.

II° Caso. p = 2 e $1 + r = \pm 1 + 2^{\alpha}$, $1 + s = \pm 1 + 2^{\beta}$ e $1 + t = \pm 1 + 2^{\gamma}$ ($\alpha, \beta, \gamma \in \mathbb{N}$).

Questo caso comprende anche il caso (iii) del Lemma 5 (se, ad esempio, b induce l'inversione su A si può sempre scrivere $a^b = a^{-1+2^{|A|}}$).

Anche in questo caso si può supporre $\alpha \leq \beta \leq \gamma$ in quanto l'altra possibilità si tratta in maniera analoga. A titolo esemplificativo viene considerato solamente il caso

$$1+r=-1+2^{\alpha}$$
, $1+s=1+2^{\beta}$ e $1+t=1+2^{\gamma}$

in quanto gli altri casi sono del tutto simili.

Si ha

$$r = -2 + 2^{\alpha} = -2 + \vartheta$$
, $s = 2^{\beta}$ e $t = 2^{\gamma}$

da cui

$$\rho = 2^{\beta+1} + \vartheta, \quad \sigma = 2^{\beta+\gamma} + \vartheta \quad e \quad \tau = 2^{\gamma+1} + \vartheta.$$

Dal Lemma 2 si ottiene che l'ordine di a divide $2^{\beta+3}$, quello di b divide $2^{3\beta+\gamma}$ e $2^{\beta+2\gamma+1}$ e quello di c divide $2^{\beta+\gamma+2}$. Da $(1+t)^{r\rho}-1=2^{\beta+\gamma+2}+\mathcal{S}$ si ha $[c,a^{r\rho}]=1$. Da $(1+r)^{s\sigma}-1=-2^{\alpha+2\beta+\gamma}+\mathcal{S}$ e $\beta+3\leq \alpha+2\beta+\gamma$ si ha $[a,b^{s\sigma}]=1$. Infine da $(1+s)^{t\tau}-1=2^{\beta+\gamma+2}+\mathcal{S}$ e $\beta+\gamma+2\leq \beta+2\gamma+1$ si ottiene $[b,c^{t\tau}]=1$.

Questo prova che $G'' \leq Z(G)$; il fatto che $[G,G,G] \leq Z(G')$ si dimostra in maniera analoga. \Box

DIMOSTRAZIONE DELLA PROPOSIZIONE 3. Sia $A = \langle a \rangle$, $B = \langle b \rangle$ e $C = \langle c \rangle$. Conviene iniziare dimostrando che G è supersolubile. Ragionando come nella dimostrazione della Proposizione 1 si ricava che se A_G , B_G e C_G sono tutti identici allora G è nilpotente e quindi (essendo finitamente generato) supersolubile. Esclusa tale possibilità, si devono distinguere quattro casi.

(a) I tre sottogruppi A, B e C sono finiti.

In questo caso si ragiona per induzione su |A| + |B| + |C| (la base dell'induzione è triviale). Se $A_G \neq \{1\}$, l'ipotesi induttiva applicata a G/A_G ed il fatto che A_G è ciclico porgono la conclusione. Si ragiona in maniera analoga se $B_G \neq \{1\}$ o $C_G \neq \{1\}$.

(b) Uno solo tra i gruppi $A, B \in C$ è infinito.

Non è restrittivo supporre che sia C ad avere cardinalità infinita; in tal caso si ragiona per induzione su |A|+|B|. Se $A_G\neq\{1\}$ (o $B_G\neq\{1\}$) l'ipotesi induttiva applicata a G/A_G (ovvero a G/B_G) e il fatto che A_G (e B_G) è ciclico permettono di concludere. Se $C_G\neq\{1\}$ allora in $\overline{G}=G/C_G$ anche \overline{C} risulta finito e si conclude per il punto precedente.

(c) Uno solo tra i sottogruppi $A, B \in C$ è finito.

Si supponga che sia A ad essere finito. In questo caso si ragiona per induzione su |A|. Se $A_G \neq \{1\}$ si conclude per l'ipotesi induttiva, se $B_G \neq \{1\}$ (oppure $C_G \neq \{1\}$) allora, considerando G/B_G (oppure G/C_G), si è ricondotti al caso (b).

(d) I tre sottogruppi $A, B \in C$ sono infiniti.

Allora quozientando G tramite A_G (ovvero B_G o C_G) si è ricondotti al caso precedente.

Per dimostrare che $G'' \leq Z(G)$ e $\gamma_3(G) \leq Z(G')$ si devono distinguere cinque casi (tenendo conto del fatto che gli unici automorfismi del gruppo ciclico infinito sono l'identità e l'inversione).

(1)
$$[a, b] = 1$$
 (o $[b, c] = 1$ o $[c, a] = 1$).

In questo caso il gruppo AB è abeliano e G si fattorizza nel prodotto dei due sottogruppi abeliani AB e C. Per un noto risultato dovuto a Itô ([5]) G risulta metabeliano e in questo caso l'asserto è dimostrato.

(2)
$$a^b = a^{-1}$$
, $b^c = b^{-1}$ e $c^a = c^{-1}$.

In questo caso si ha $G'=\langle a^2,b^2,c^2\rangle$ e si verifica facilmente che G' risulta abeliano.

(3)
$$a^b = a^{-1}$$
, $b^c = b^{-1}$, $c^a = c^{1+t}$, b ha ordine infinito e c ha ordine finito.

Dall'identità di Hall-Witt si ottiene $[a,b,c^a][c,a,b^c][b,c,a^b]=1$ da cui $[a^{-2},c]^a[c^t,b]^c[b^{-2},a]^b=1$ e $(c^{(1+t)^2-1})^{a^{-1}}=(b^{-1+(-1)^t})^c$. Siccome per ipotesi c ha ordine finito e b ha ordine infinito i due membri dell'ultima uguaglianza devono ridursi all'identità e quindi $[c,a^2]=1$ e $[b,c^t]=1$. Si ha ovviamente $[a,b^2]=1$ e quindi $G'=\langle a^2,b^2,c^t\rangle$ risulta abeliano.

(4) $a^b=a^{-1},\,b^c=b^{1+s},\,c^a=c^{1+t},\,b$ e c hanno ordine finito e a ha ordine infinito.

Siccome b e c hanno ordine finito si può supporre $s \geq 1$ e $t \geq 1$. Da $[a,b,c^a][c,a,b^c][b,c,a^b]=1$ segue $[a^{-2},c]^a[c^t,b]^c[b^s,a]^b=1$ e $[a,b^s]\in BC$. Ma $[a,b^s]=a^{-1+(-1)^s}$ e a ha ordine infinito mentre BC è un sottogruppo finito di G, dunque $[a,b^s]=1$. Si ha poi $[c,a^2]^{a^{-1}}=(b^\sigma)^c$ (ove $\sigma=(1+s)^{|t|}-1$). Poiché $A\cap B\cap C=\{1\}$ il Lemma 3 porge $B\cap C\leq Z(G)$ e quindi $b^\sigma\in Z(G)$ e $[c,a^2]=c^{2t+t^2}\in Z(G)$. Si ha $b^\sigma=(b^\sigma)^c=b^{(1+s)\sigma}$ da cui $b^{s\sigma}=1$ e quindi $[b^s,c^t]=1$. Analogamente $c^{2t+t^2}=(c^{2t+t^2})^a=c^{(1+t)(2t+t^2)}$ porge $[c^t,a^2]=1$. Siccome $[a^2,b^s]=1$ ne risulta che $G'=\langle a^2,b^s,c^t\rangle$ è abeliano.

(5)
$$a^b = a^{1+r}$$
, $b^c = b^{1+s}$, $c^a = c^{1+t}$, con $a, b \in c$ di ordine finito.

Non è restrittivo supporre $r, s, t \ge 1$. Inoltre in questo caso G ha ordine finito; per provare l'asserto si ragiona per induzione su |G| (la base dell'induzione essendo triviale).

Siano N_1 e N_2 due sottogruppi normali minimali distinti di G. Allora, posto $G_1 = G/N_1$ e $G_2 = G/N_2$, dall'ipotesi induttiva si ricava

$$[G_i'', G_i] = \{1\} = [[G_i, G_i, G_i], G_i'] \quad (i \in \{1, 2\})$$

da cui $[G'',G] \le N_1 \cap N_2 = \{1\}, [[G,G,G],G'] \le N_1 \cap N_2 = \{1\}$ e in questo caso l'asserto è provato.

Quindi si può supporre che G ammetta un unico sottogruppo normale minimo N; tale N risulta essere un p-gruppo per qualche numero primo p. Ne discende che F = F(G), il sottogruppo di Fitting di G, è un p-sottogruppo di G. Inoltre, essendo G supersolubile, si ha $G' \leq F$ (5.4.10 di [12]) e F è un p-sottogruppo di Sylow di G.

Si può scrivere $a=a_1a_2$, $b=b_1b_2$ e $c=c_1c_2$ con a_1 , b_1 e c_1 p-elementi di G (necessariamente contenuti in F) e a_2 , b_2 e c_2 elementi di ordine coprimo con p. Si ha $F=\langle a_1,b_1,c_1\rangle$ e posto $H=\langle a_2,b_2,c_2\rangle$ si verifica (tenendo conto che b_2 normalizza $\langle a_2\rangle$, c_2 normalizza $\langle b_2\rangle$ e a_2 normalizza $\langle c_2\rangle$) che H è un p'-sottogruppo di G; si ha quindi G=FH, $F\cap H=\{1\}$. Inoltre, poiché G/F è abeliano, anche H risulta abeliano.

Sia $c_2 \neq 1$. Si ha $[H, c_2] = \{1\}$ e $[c_1, c_2] = 1$, inoltre $[c_2, a_1] \in F \cap \langle c_2 \rangle = \{1\}$. Quindi $[G, c_2] = \langle [b_1, c_2] \rangle$ e siccome $\langle b_1 \rangle$ è un p-gruppo mentre c_2 induce un p-automorfismo su $\langle b_1 \rangle$ si ha $[\langle [b_1, c_2] \rangle, c_2] = \langle [b_1, c_2] \rangle$.

Non si può avere $[b_1,c_2]=1$ perché in tal caso $c_2\in Z(G)\leq F$. Quindi $\langle [b_1,c_2]\rangle$ deve contenere N, l'unico sottogruppo minimale di G, e siccome $\langle [b_1,c_2]\rangle\cap Z(G)=\{1\}$ si deve avere $Z(G)=\{1\}$. Dal Lemma 4 discende che G è metabeliano e in questo caso l'asserto è dimostrato.

Si conclude allo stesso modo se $a_2 \neq 1$ o $b_2 \neq 1$. Infine, nel caso in cui $a_2 = b_2 = c_2 = 1$, G = F è un p-gruppo (finito) e il Lemma 6 porge la conclusione.

5. Dimostrazione del Teorema 1.

È conveniente enunciare la seguente generalizzazione del Lemma 2.

Lemma 7. Siano $r, s, t \in \mathbb{Z}$ tutti diversi da 0 e da -2 e sia $G = \langle a, b, c \rangle$ un quoziente di $M(r, s, t) = \langle a_*, b_*, c_* \mid a_*^{b_*} = a_*^{1+r}, b_*^{c_*} = b_*^{1+s}, c_*^{a_*} = c_*^{1+t} \rangle$, allora G è finito e risulta

- (1) $\langle a^{\rho} \rangle \leq \langle b^{\sigma}, c^{\tau} \rangle$, $\langle b^{\sigma} \rangle \leq \langle a^{\rho}, c^{\tau} \rangle$ $e \langle c^{\tau} \rangle \leq \langle a^{\rho}, b^{\sigma} \rangle$;
- (2) $a^{r\rho} \in \langle b \rangle, b^{s\sigma} \in \langle c \rangle, c^{t\tau} \in \langle a \rangle;$
- (3) $a^{r^2\rho} = 1$, $b^{s^2\sigma} = 1$, $c^{t^2\tau} = 1$;
- (4) $a^{s\rho} \in \langle c \rangle$, $b^{t\sigma} \in \langle a \rangle$, $c^{r\tau} \in \langle b \rangle$;
- (5) $a^{st\rho} = 1$, $b^{rt\sigma} = 1$, $c^{rs\tau} = 1$.

Dim. Utilizzando l'identità di Hall-Witt $[a,b,c^a][c,a,b^c][b,c,a^b]=1$ si

perviene a

$$[a^r, c^a][c^t, b^c][b^s, a^b] = 1$$

da cui

$$[a, b^s]^b [b, c^t]^c [c, a^r]^a = 1.$$

Se s>0 allora $[a,b^s]=a^\rho$; se invece s<0 allora $[a,b^s]=[a,b^{-s}]^{-b^s}=(a^\rho)^{-b^s}$. Analogamente se t>0 allora $[b,c^t]=b^\sigma$, se t<0 allora $[b,c^t]=[b,c^{-t}]^{-c^t}=(b^\sigma)^{-c^t}$ e se t>0 allora $[c,a^r]=c^\tau$ mentre se t<0 allora $[c,a^r]=[c,a^{-r}]^{-a^r}=(c^\tau)^{-a^r}$. Sia $a^{-b^{1+s}}=a^i,\,b^{-c^{1+t}}=b^j$ e $c^{-a^{1+r}}=c^k$ allora, posto

$$\lambda = \begin{cases} 1+r & \text{se } s>0\\ i & \text{se } s<0 \end{cases} \quad \mu = \begin{cases} 1+s & \text{se } t>0\\ j & \text{se } t<0 \end{cases} \quad \nu = \begin{cases} 1+t & \text{se } r>0\\ k & \text{se } t<0, \end{cases}$$

si ottiene

$$a^{\lambda\rho}b^{\mu\sigma}c^{\nu\tau}=1.$$

Per dimostrare che G è finito si devono considerare due casi.

• Almeno uno tra a, b e c ha ordine finito.

Non è restrittivo supporre che sia a ad avere ordine finito; sia $|\langle a \rangle| = m$. Allora $c = c^{a^m} = c^{(1+t)^m}$ e quindi (siccome $1+t \neq \pm 1$), c ha ordine finito che divide $(1+t)^m-1$. Se $|\langle c \rangle| = n$, ragionando in maniera analoga, si prova che b ha ordine finito che divide $(1+s)^n-1$. Siccome ogni elemento di G si può scrivere nella forma $a^i b^j c^k$ (con $i,j,k \in \mathbb{Z}$ opportuni) si può concludere che, in questo caso, G ha ordine finito.

• I tre elementi a, b e c hanno tutti ordine infinito.

Ragionando per assurdo si dimostra che questo caso non si può dare. Posto $a_1=a^{\lambda\rho},\ b_1=b^{\mu\sigma}$ e $c_1=c^{\nu\tau}$ si ha $a_1\neq 1,\ b_1\neq 1,\ c_1\neq 1$ e, per (#), $a_1b_1c_1=1$. Si osservi che non è restrittivo supporre $\lambda\rho>0$ (in caso contrario, in luogo di $a_1,\ b_1$ e c_1 , si considerano i rispettivi inversi). Si ottiene quindi

$$b_1^{-1}a_1^{-1} = c_1 = c_1^c = (b_1^{-1}a_1^{-1})^c = b_1^{-1-s}a_1^{-c}$$

e $[a_1,c]=b_1^{-s}$. Siccome $a_1=a^{\lambda\rho}$ risulta $[a_1,c]=c^{1-(1+t)^{\lambda\rho}}\in\langle c\rangle$ e dunque l'elemento $b_2=b_1^s$ appartiene a $\langle b\rangle\cap\langle c\rangle$. Ma allora

$$b_2 = b_2^c = b_2^{(1+s)}$$

e *b* dovrebbe avere ordine finito, contraddicendo le ipotesi.

Tenendo presente che a, b e c hanno ordine finito si ottiene

$$\langle a^{\lambda\rho} \rangle = \langle a^{\rho} \rangle, \quad \langle b^{\mu\sigma} \rangle = \langle b^{\sigma} \rangle \quad \text{e} \quad \langle c^{v\tau} \rangle = \langle c^{\tau} \rangle;$$

utilizzando tali uguaglianze si dimostra facilmente (1).

Il punto (2) si ricava ragionando come nella dimostrazione del punto (4) del Lemma 2.

Dal punto (2) si ottiene

$$1 = [a^{r\rho}, b] = a^{r^2\rho}, \ 1 = [b^{s\sigma}, c] = b^{s^2\sigma} \ \ e \ \ 1 = [c^{t\tau}, a] = c^{t^2\tau},$$

il che prova il punto (3).

Tenendo conto che G è finito, la Proposizione 3 porge che a^{ρ} , b^{σ} e c^{τ} commutano tra loro. Per (1) si può scrivere $a^{\rho} = b^{i\sigma}c^{j\tau}$ $(i,j \in \mathbb{Z} \text{ opportuni})$ e quindi $a^{s\rho} = (b^{i\sigma}c^{j\tau})^s = b^{is\sigma}c^{js\tau}$. Poiché, per (2), $b^{s\sigma} \in \langle c \rangle$ si può concludere che $a^{s\rho} \in \langle c \rangle$. In maniera del tutto analoga si prova che $b^{t\sigma} \in \langle a \rangle$ e $c^{r\tau} \in \langle b \rangle$.

Infine, per dimostrare (5), si può scrivere $a^{s\rho}=c^k$ ($k\in\mathbb{Z}$ opportuno) da cui $a^{s\rho}=(c^k)^a=c^{k(1+t)}=a^{(1+s)t\rho}$ e $a^{st\rho}=1$. Allo stesso modo si verifica che $b^{rt\sigma}=1$ e $c^{rs\tau}=1$.

DIMOSTRAZIONE DEL TEOREMA 1. Sia G un quoziente di M(r,s,t) con $r,s,t\in \mathbb{Z}$. Il fatto che, se $r\neq 0,-2,s\neq 0,-2$ e $t\neq 0,-2,G$ è finito discende dal Lemma 7 (la dimostrazione fornita in [7], dove viene esplicitato solo il caso $r,s,t\in \mathbb{N}$, non è molto chiara). I fatti che G è supersolubile, che $G''\leq Z(G)$ e che $\gamma_3(G)\leq Z(G')$ discendono direttamente dalla Proposizione 3. Per dimostrare che, sotto tali ipotesi, l'ordine di G divide $|(r,s)(s,t)(t,r)\rho\sigma\tau|$ si ragiona per induzione su |G| (la base dell'induzione essendo triviale).

Il gruppo $L=\langle a^{\rho},b^{\sigma},c^{\tau}\rangle$ è un sottogruppo di G contenuto in $\gamma_3(G)$, in particolare L è abeliano. Inoltre $L \unlhd G$ infatti $[a^{\rho},b]=a^{r\rho}\in L$ poi, siccome r divide ρ , si può scrivere $\rho=rk$ e poiché $[c,a^r]=c^{\tau}$ e c^{τ} commuta con c e con a^r (in quanto $a^r\in G'$) si ha $[a^{\rho},c]=[c,a^{rk}]^{-1}=[c,a^r]^{-k}=c^{-k\tau}\in L$. In maniera analoga si prova che $[b^{\sigma},a],[b^{\sigma},c],[c^{\tau},a],[c^{\tau},b]\in L$.

Se $L=\{1\}$ allora l'ordine di G divide $|\rho\sigma\tau|$ e l'asserto è dimostrato. Si può quindi assumere che $L\neq\{1\}$. Sia p un divisore primo dell'ordine di L. Se L non è un p-gruppo si può scrivere $L=L_1\times L_2$ con L_1 p-sottogruppo non banale e L_2 p'-sottogruppo non banale. Per l'ipotesi induttiva gli ordini dei due gruppi G/L_1 e G/L_2 dividono entrambi $|(r,s)(s,t)(t,r)\rho\sigma\tau|$ e siccome $(|L_1|,|L_2|)=1$ anche l'ordine di G deve dividere tale numero.

Si supponga quindi che L sia un p-gruppo. Poiché G/L ha ordine che divide $|\rho\sigma\tau|$ per dimostrare l'asserto è sufficiente far vedere che l'ordine di L divide (r,s)(s,t)(t,r); per far questo si sfrutta il fatto che il reticolo dei sottogruppi di un p-gruppo ciclico è totalmente ordinato.

Sia $r=p^{\alpha}r'$, $s=p^{\beta}s'$, $t=p^{\gamma}t'$ con (r's't',p)=1; si può supporre (eventualmente rinominando gli elementi $a,b\in c$) che $\alpha\leq\beta\leq\gamma$ oppure che $\alpha\leq\gamma\leq\beta$. Si può inoltre considerare solamente il caso $\alpha\leq\beta\leq\gamma$ in quanto l'altro caso è del tutto simile. Siccome $(r,s)=p^{\alpha}(r',s')$, $(s,t)=p^{\beta}(s',t')$ e $(t,r)=p^{\alpha}(t',r')$ sarà sufficiente dimostrare che |L| divide $p^{2\alpha+\beta}$.

Dal Lemma 7 si ottiene $L = \langle a^{\rho}, b^{\sigma} \rangle$.

Ancora dal Lemma 7 si ottiene $a^{p^{2a}\rho}=1$ da cui $a^{p^{a+\beta}\rho}=1$ e $a^{rs\rho}=1$; poiché $c^{rs\tau}=1$ risulta anche $b^{rs\sigma}=1$.

Sempre per il Lemma 7 si ha $a^{r\rho} \in A \cap B$; a questo punto si possono dare due casi

- $\langle a^{r\rho} \rangle \leq \langle b^{s\sigma} \rangle$. Siccome $a^{r\rho}, b^{s\sigma} \in \langle b^{s\sigma} \rangle$ l'ordine di $L/\langle b^{s\sigma} \rangle$ divide $p^{\alpha+\beta}$ e poiché $b^{rs\sigma} = 1$ l'ordine di L divide $p^{2\alpha+\beta}$.
- $\langle a^{r\rho} \rangle \geq \langle b^{s\sigma} \rangle$. Siccome $a^{r\rho}, b^{s\sigma} \in \langle a^{r\rho} \rangle$ l'ordine di $L/\langle a^{r\rho} \rangle$ divide $p^{\alpha+\beta}$ e poiché $a^{r^2\sigma} = 1$ l'ordine di L divide $p^{2\alpha+\beta}$.

Dunque in ogni caso |L| divide (r, s)(s, t)(t, r) e l'asserto è dimostrato. \square

OSSERVAZIONE 5. Sia G = M(r, s, t) e si supponga che G sia finito. Se p è il più piccolo divisore primo di |G|, siccome G è supersolubile esso ammette un p-complemento normale (si veda 5.4.8 di [12]). In particolare essendo

$$G/G' \simeq C_r \times C_s \times C_t$$

se $r=p^{\alpha}$, $s=p^{\beta}$ e $t=p^{\gamma}$ allora RM(r,s,t) (il quoziente di G tramite il suo residuale nilpotente) è un p-gruppo isomorfo a un p-sottogruppo di Sylow di G. Inoltre il residuale nilpotente N di G è abeliano e non è difficile dimostrare che il suo ordine è $|\rho\sigma\tau|_{p'}$ (se $n\in\mathbb{N}$ con $n_{p'}$ si indica la p'-parte di n cioè quel numero n' tale che $n=p^{\lambda}n'$ con (n',p)=1 mentre con $n_p=p^{\lambda}$ si indica la p-parte di n).

L'esatta determinazione dell'ordine $\omega = \omega_p(\alpha, \beta, \gamma)$ di $RM(p^{\alpha}, p^{\beta}, p^{\gamma})$ sembra però abbastanza difficile. Numerosi esperimenti condotti col software GAP portano a congetturare che ω divida sempre il numero

$$\Omega = \Omega_p(\alpha,\beta,\gamma) = \begin{cases} (p^\alpha,p^\beta)(p^\beta,p^\gamma)(p^\gamma,p^\alpha)[\rho\sigma\tau]_p/(p^\alpha,p^\beta,p^\gamma) & \text{se } p \neq 3\\ 3(3^\alpha,3^\beta)(3^\beta,3^\gamma)(3^\gamma,3^\alpha)[\rho\sigma\tau]_3/(3^\alpha,3^\beta,3^\gamma) & \text{se } p = 3 \end{cases}$$

Per l'Osservazione 3 si ha $\omega_p(\gamma,\gamma,\gamma)=\Omega_p(\gamma,\gamma,\gamma)$ ma, in generale, può accadere che $\omega\neq\Omega$ come mostrano i risultati riportati nella Tabella 2. Si osservi che in tutti i casi considerati si ha $\omega_p(\alpha,\beta,\gamma)=\omega_p(\alpha,\gamma,\beta)$; risulta però (ad esempio) $|M(2,4,8)|=2^{16}\cdot 3\cdot 13\cdot 313$ mentre $|M(2,8,4)|=2^{16}\cdot 3\cdot 5^2\cdot 41^2$.

Un altro problema che sembra di non facile soluzione è la determinazione dell'esatta classe di nilpotenza di RM(r, s, t).

Tabella 2.

			p = 2			p = 3			p = 5		
α	β	γ	ω	Ω/ω	classe	ω	Ω/ω	classe	ω	Ω/ω	classe
1	1	1	2^{11}	1	4	3^9	1	5	5^8	1	3
1	1	2	2^{12}	1	5	311	1	5	5^{10}	1	4
1	2	2	2^{14}	1	6	3^{13}	3	5	5^{13}	1	5
2	2	2	2^{16}	1	3	3^{17}	1	4	5^{16}	1	3
1	2	3	2^{16}	1	6	3^{15}	3	5	5^{15}	1	5
1	3	2	2^{16}	1	7	3^{15}	1	6	5^{15}	1	6
2	2	3	2^{18}	1	4	3^{19}	1	4	5^{18}	1	4
2	2	4	2^{20}	1	4	3^{21}	1	5	5^{20}	1	4
1	3	5	2^{22}	2	7	3^{21}	9	6	5^{21}	5	6
1	5	3	2^{22}	2	9	3^{21}	9	8	5^{21}	5	8
3	3	3	2^{24}	1	3	3^{25}	1	4	5^{24}	1	3
1	4	6	2^{26}	4	8	3^{25}	27	7	5^{25}	25	7
1	6	4	2^{26}	4	10	3^{25}	27	9	5^{25}	25	9
2	4	5	2^{28}	1	5	3^{28}	1	5	5^{28}	1	5
2	4	6	2^{30}	1	5	3^{30}	3	5	5^{30}	1	5

OSSERVAZIONE 6. Non è difficile dimostrare che se $p \neq 2$ o se p^{α} , p^{β} e p^{γ} sono tutti maggiori di 4 allora $RM(p^{\alpha}, p^{\beta}, p^{\gamma})$ è un p-gruppo powerful nel senso della definizione data in [8]. Ne segue che se M(r, s, t) è finito allora un suo p-sottogruppo di Sylow è un p-gruppo powerful per ogni numero primo dispari p (si rammenti che M(r, s, t) è supersolubile e si veda 5.4.8 di [12]).

OSSERVAZIONE 7. Vi è un altro caso in cui M(r,s,t) risulta finito. Si supponga infatti r=-2 e sia $s=2s_1+1$ dispari; allora $\rho=(1+r)^{|s|}-1=-2$, $\sigma=(1+s)^{|t|}-1$ e $\tau=(1+t)^2-1$. Condizione necessaria e sufficiente affinché $M(-2,2s_1+1,t)$ sia finito è che ρ , σ e τ siano tutti diversi da 0, il che accade se e solo se $t \notin \{-2,0\}$. In questo caso si può dimostrare che

$$|M(-2,2s_1+1,t)|=|\rho\sigma\tau|.$$

OSSERVAZIONE 8. Mentre questo lavoro era in fase di revisione è apparsa la pubblicazione [2] in cui vengono studiati i gruppi G(a,b;c,d;e,f) definiti dalla presentazione

$$\langle\, x,y,z\mid (x^a)^y=x^b, (y^c)^z=y^d, (z^e)^x=z^f\,\rangle; \quad a,b,c,d,e,f\in\mathbb{Z}.$$

Si ha ovviamente M(r,s,t)=G(1,1+r;1,1+s;1,1+t) e quindi i gruppi G(a,b;c,d;e,f) costituiscono una generalizzazione di quelli considerati nel presente lavoro. Il Teorema 2 di [2] stabilisce che, se (a,b)==(c,d)=(e,f)=1 e se nessuna delle tre coppie di parametri è uguale a $(\pm 1,\pm 1)$, allora G(a,b;c,d;e,f) ammette un quoziente universale Q=Q(a,b;c,d;e,f) tra quelli in cui x,y e z hanno ordine finito, Q è finito e risolubile e Q' è nilpotente di classe al più due.

Non è difficile vedere come, utilizzando con poche modifiche la dimostrazione del Teorema 1, sia possibile affermare che risulta $Q'' \leq Z(Q)$ (si veda l'Osservazione 2).

Si osservi anche che in [11] è dimostrato che, se $1 \le a < b$, $1 \le c < d$ e (a,b) = (c,d) = 1, allora G(a,b;c,d;1,f) ha ordine finito (si veda anche il Lemma 6 di [2]). D'altro canto è facile dimostrare che $Q(n,n+1;n,n+1;n,n+1) = \{1\}$ per ogni $n \in \mathbb{Z}$; tenendo conto di alcuni risultati ottenuti in [2] appare ragionevole formulare la seguente

Congettura. Il gruppo G(n,n+1;n,n+1;n,n+1) risulta infinito per ogni $n \in \mathbb{Z} \setminus \{-2,-1,0,1\}$.

In [10] Neumann afferma che se $2 \le a \le |b|$, $2 \le c \le |d|$ e $2 \le e \le |f|$ allora G(a,b;c,d;e,f) è un gruppo infinito; purtroppo la dimostrazione da lui fornita non è corretta.

Ringraziamenti. L'autore esprime la sua gratitudine all'anonimo referee per l'attenta e puntigliosa lettura del testo, grazie alla quale alcuni errori e parecchie inesattezze hanno potuto essere eliminati dalla versione finale di questo lavoro.

BIBLIOGRAFIA

- [1] M. A. Albar A. A. Al-Shuaibi, On Mennicke groups of deficiency zero. II. Canad. Math. Bull., 34, no. 3 (1991), pp. 289–293.
- [2] D. Allcock, Triangles of Baumslag-Solitar groups. arXiv:0808.0934v1 ([v1] Wed, 6 Aug 2008; http://arxiv.org/abs/0808.0934v1).
- [3] D. GORENSTEIN, Finite groups. Second edition. Chelsea Publishing Co., New York, 1980.

- [4] G. HIGMAN, A finitely generated infinite simple group. J. London Math. Soc. 26, (1951). 61–64.
- [5] N. Itô. Über das Produkt von zwei abelschen Gruppen. Math. Z. 62 (1955), 400–401.
- [6] E. Jabara, *Gruppi fattorizzati da sottogruppi abeliani*. Rend. Sem. Mat. Univ. Padova. [In corso di pubblicazione]
- [7] D. L. JOHNSON, E. F. ROBERTSON, Finite groups of deficiency zero. Homological group theory (Proc. Sympos., Durham, 1977), pp. 275–289, London Math. Soc. Lecture Note Ser., 36, Cambridge Univ. Press, Cambridge-New York, 1979.
- [8] A. LUBOTZKY, A. MANN, Powerful p-groups. I. Finite groups. J. Algebra 105 (1987), no. 2, 484–505.
- [9] J. MENNICKE, Einige endliche Gruppen mit drei Erzeugenden und drei Relationen. Arch. Math. 10 (1959) 409–418.
- [10] B. H. NEUMANN, Some group presentations. Canad. J. Math. 30 (1978), no. 4, 838–850.
- [11] M. Post. Finite three-generator groups with zero deficiency. Comm. Algebra 6 (1978), no. 13, 1289–1296.
- [12] D. J. S. Robinson, A course in the theory of groups. Graduate Texts in Mathematics, 80. Springer-Verlag, New York-Berlin, 1982.
- [13] E. SCHENKMAN, A factorization theorem for groups and Lie algebras. Proc. Amer. Math. Soc. 68 (1978), no. 2, 149–152.

Manoscritto pervenuto in redazione il 4 luglio 2008