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Rigid Two-Step Nilpotent Lie Groups Relative to
Multicontact Structures

IRENE VENTURI

ABSTRACT - Let {X;, Y, } denote a fixed basis of the Lie algebra n of a connected and
simply connected nilpotent Lie group N of step two. Under a technical as-
sumption on {X;, Yy}, we prove that the Lie algebra M of vector fields V on N
that satisfy [V, X;] = /,X; is finite dimensional, a property that we refer to as
rigidity. Our proof allows the explicit count of dim M.

1. Introduction.

Inabroad sense, the study of rigidity of stratified niplotent Lie groups has
attracted much attentionin recent years, starting from the seminal work by N.
Tanaka ([19] and references therein) and his school (notably Yamaguchi [20],
Yatsui[21] and Morimoto [15]) and then moving into more explicitly geometric
settings in the important papers by Koranyiand Reimann[11]and Pansu [17],
where various generalised contact-type structures were considered. At a
more general and formal level, the notion of multicontact structure was first
formulated by Cowling, De Mari, Koranyi and Reimann [4, 5] in the context of
the “boundaries” G/P of symmetric spaces (G semisimple, P a parabolic
subgroup of G). In particular, the local nature of G/P as a nilpotent stratified
Lie group stemming from the Iwasawa decomposition of G = KAN and from
the Bruhat decomposition, together with the root structure of the Lie algebra
of N, leads to a notion of multicontact vector field that can easily be formulated
for all stratified nilpotent Lie algebras once an additional sub-stratification of
the ground layeris singled out. In the case of an Iwasawa nilpotent Lie algebra
n in its standard form as the sum of the (restricted) positive root spaces, the
stratification is provided by the height function on the root system, whereas
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the sub-stratification refers to the simple roots. As explained by Koranyi [10],
the problem has a clear differential geometric counterpart: if one selects
smooth distributions D; on a smooth manifold M such that the vector fields
spanning the distributions satisfy a Héormander type condition, then a mul-
ticontact mapping of M is a diffeomorphism whose differential preserves each
distribution D;. Passing to the infinitesimal level yields the notion of multi-
contact vector field, that is, a vector field V on M whose flow consists of
multicontact mappings. If V is such a vector field, the requirement amounts to
the condition that [V, X] € D; for every X € D;. Thus one may formulate a
general problem as follows: given a stratified nilpotent Lie algebra
n =1y +--- + ng (parametrizing the tangent bundle of the connected and
simply connected nilpotent Lie group N with Lie(N) = n) together with a
multicontact structure, that is, a decomposition of 11; into the sum of subspaces
ny = nl + -+ 1, is the Lie algebra M of vector fields on N which pre-
serve (under bracket) each direct summand n(li) finite dimensional? If yes, we
say that 1 is rigid and in this case it is natural to ask if we can describe the
structure of M. The remarkable answer in [20] and [4, 5] is that in most cases
M ~ Lie(G)if M = G /P andifeach n(lj ) is determined by the structure of Pin
terms of simple roots. These questions are formulated by Tanaka and his
school in terms of prolongation Lie algebras and rather deep results are
presented in [19, 20, 21]. Other very interesting results along these lines have
been obtained by Reimann on H-type groups [18], by Warhurst on filiform
groups [22], jet spaces [23] and free algebras [24], and by Ottazzi on Hes-
senberg manifolds [16].

In this paper we address the following problem: if 1t has step two and we
are given certain canonical bases {X;} of n; and {Y;} of 1, is n rigid re-
lative to the “finest” multicontact structure, that is, when each n(f) is just
the span of the basis vector X;? Our main theorem answers this question
positively. Its proof is based on a method suggested by Eastwood [14] and
combines prolongation notions together with genuine differential geo-
metrie constructs and provides a method for bounding explicitly the di-
mension of M once the structure of 1t is known.

2. The multicontact system.

2.1 — Choice of bases.

Let 1 denote a two-step stratified nilpotent Lie algebra. This means
that n = ny; + ng as a direct sum of vector spaces, where 117 is a subspace of
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dimension 7 which generates the m-dimensional subspace ng under
bracket, that is

[y, 1] = ne.

We select bases {Xi,...,X,} and {Y1,...,Y,,} of 1y and ny, respectively,
and we assume that (*)

(@) 3(n) = ng, that is, 3(1) N n; = {0}, where 3(n) is the center of n;

(b) for every k € m there exist ¢,j € 7 such that Y}, = [X;, X;]:

(c) for every i € 7 there exist j € 7 and k € m such that [X;, X;] = yijk,
where yg is a nonzero real constant.

Clearly, assumption (a) does not harm generality, for otherwise 11 would
split as a direct sum of an abelian Lie algebra and a nilpotent Lie algebra
that does satisfy (a). Further, we can always select bases such that (b) is
satisfied. Indeed, once we choose a basis {X3,...,X,} of nj, the brackets
[X;, X;] generate 1y by assumption, so we can select a basis of 1z among
them and denote its elements by {Y71, ..., Y, }. As for (c), we do not know if
all two-step nilpotent Lie algebras satisfy it or not.

Observe that, by assumption (b), which is not restrictive, for any fixed
k € m there exist distinct indices 7,7 € 7 such that [X;, X;] = Y}. Hence
there cannot be more directions in ng than distinet pairs (¢,7) € % x %. This
implies that m < n(n —1)/2.

2.1.1 — Examples.

We list below two classes of two-step nilpotent Lie algebras that satisfy
our hypotheses. We remark that in all these cases rigidity in our sense is
essentially known (see [18] when the center has dimension at least three,
and [4, 16]). Our result can thus be seen also as a unified approach.

H-type algebras. For the notation and basic properties of the Heisen-
berg type algebras, introduced first in [6], we refer to [3]. Following
standard notation, an H-type algebra is a direct sum b + 3, where b = 14
and 3 = ng, that is orthogonal with respect to a positive definite inner
product (-,-) and for which a map J : 3 — End (v) is defined that satisfies
(JyX, X"y = (Y,[X,X']) for all Y € 3 and all X, X' € v. Evidently, Jy is
skew-symmetric with respect to (-,-). The defining condition for such an
algebra to be called of Heisenberg type is that J% = —|Y|21 (so Jy is non-

(%) If n is a positive integer, we write 7@ = {1,...,n}.
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singular for every Y). Among the several properties of J, we have
X, JyX1 = XY
for every X € v and every Y € 3.

Now, for a fixed Y # 0 with |Y| = 1, the endomorphism Jy of b is skew-
symmetric and non-singular. Hence b is even dimensional and we can se-

lect a basis X, ..., X, relative to which
0 I,
=5, o)

We may obviously normalize |X;| = 1 and obtain
—[X;, Xiyp] ifi<p

Y = [Xi,JYXi] = { [Xi,Xifp] if 7 > D,

so that setting Y = Y7, and completing to a basis of 3 by choosing vectors
Ys,...,Y,, among the various brackets [X;, X;], yields a basis that satisfies
(b). Indeed, for every i there exists eitherj =1+ p (ifi < p)orj =1 —p @if
i > p) and k = 1 such that [X;, X;] = £ Y7 where y%j = +1.

Hessenberg algebras. This is a class of nilpotent algebras that includes
algebras of arbitrary step. They were introduced first in [12], [13] and then
studied in [16] from the point of view of rigidity, where it is shown that
most of them are rigid, in the multicontact sense that we are interested in.

Given a simple Lie algebra g with Iwasawa decompositiong = f +a + 1
and with root system X one selects a subset R C 2 of positive roots which
satisfy the following Hessenberg-type condition: if # € R and « € 2" sa-
tisfy f—o € 21, then f — « € R. The most important property of Hes-
senberg type sets is clarified by the next proposition, which is essentially
contained in all of the aforementioned references.

PROPOSITION 2.1. A subset R C X is of Hessenberg type if and only if
the vector space N = >° @, s a (nilpotent) ideal of nwhere R' = X \ R.

7eER’

ProOF. Suppose R C 27 is of Hessenberg type and let y € R’ and
peR.IfB+ye 2T, then necessarily f + 7 € R/, for otherwise f+y € R
and this implies that y € R, contrary to the assumption. Therefore 1y is an
ideal in 1, obviously nilpotent.

Conversely, if ny is an ideal in 1, then it is nilpotent and the following
property holds: if y € R’ and f € R are such that f+y € X", then ne-
cessarily B + 7 € R'. This means that if § + y € R for some positive roots y
and f5, then both f and y must belong to R for otherwise at least one of them
is in R’ and, by assumption, so is their sum. O
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We stratify n by height, that is, n; is the sum of all root spaces of height
equal to 7, where the height refers to the number of simple roots that occur
in the (unique) decomposition of a positive root as a sum of simple roots.
Evidently, if R is of Hessenberg type, then 1ny is a stratified ideal and
therefore the quotient nz = n/ny is again a stratified nilpotent Lie al-
gebra, which we shall refer to as a Hessenberg algebra. Among the more
interesting sets R of Hessenberg type are those that include all positive
roots of height smaller than or equal to a positive integer p. If we denote by
R, such a set and let 1) = ng , the sum of the root spaces with roots in R,,
then it is clear that n® has step exactly equal to p.

For example, if g = 3[(n, R), then R = Ry may be identified with the
set of indices that correspond to the first two superdiagonals of an n x n
upper triangular matrix, i.e. {(z,7) : 1 <j — ¢ < 2}. Thus 1y consists of the
upper triangular matrices whose nonzero entries can only occur in the
upper-right corner whose entries a;; satisfy j — ¢ > 2, and therefore n® is
the quotient of the (strictly) upper triangular » x % matrices 11 modulo 1.

It is natural to identify its first stratum n<12) with the first superdiagonal

and its second stratum n(ZZ) with the second superdiagonal.
Obviously, {X; :Ei,i+1 :1<i<n-—1} and {Y}; =FEpp0:1< k<n-2}
satisfy both (b) and (c), because
X, Xj] = {YZ =il
0 ifj#1+1
[Xi7 Yk] =0 mod Npr

1
@ [Y,,Y,]=0 mod ng.

We remark that the dimension of n(lz) is exactly n — 1, which can thus be any
positive integer.

2.2 — Multicontact vector fields.

A vector field V on the connected simply connected stratified group N
with Lie algebra denoted by 1 is said to be a multicontact vector field
relative to the basis {Xj,...,X,}, if it satisfies

() [V, Xi] = 4:X;

for all 7 € w and for some smooth functions 4y, ..., 4, on N. The vector field
V is not assumed to be left invariant, so we write

3) V= thXt+ngYk

ten kem
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where the f; and the g* are smooth functions on N. Here and in the following
we use subscripts to indicate components along the first stratum and su-
perscripts to indicate components along the second stratum.

In preparation for what follows we recall some basic notation used for
computing Lie brackets. A bracket of elements in 1, is of course in ng. For
1,] € m We write

(€N (X, X1 =)oY,
kem
where the of; are real constants. Evidently, o, = —of; and of; = 0 for all

k em if and only if [Xj, X;] = 0. Moreover, if [X;, X;] = y5Y} as in as-

sumption (c), we have of. = V% and of; = 0 for all £ # k. Finally, ¢;; stands

for the Kronecker symbol.

LeEmMA 2.2.  The vector field V e X(N) as in (3) is a multicontact vector
field on N if and only if for all i,t € m and all k € m

® X = Yok

ten

(6) Xi(fy) = — ditla.

Proor. For i € n we have

X = |3 X+ 30X

ten kem

= > (flXe, Xil - Xi(fdXe) = > X"V

ten kem
=Y ( > i Y — Xi<ft>Xt) = > X"V
ten “Nkem kem
Equating the coefficients of X; and Y}, we get (5) and (6). O

2.3 — Rigidity.
In this section we prove the following
THEOREM 2.3. Under the assumption (c), the Lie algebra M of mul-

ticontact vector fields on a two-step stratified nilpotent connected and
stmply connected Lie group is finite dimensional.
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2.3.1 — Prolongation.

The procedure of prolongation has a long history. It may be traced back
to the work of Elie Cartan and was developed by many people in several
ways (seee.g.[1,7,8,9,15, 19, 20] and references therein). A formulation of
prolongation in the language of exterior differential systems may be found
for example in [2], while from the algebraic point of view the notion was
formalized by Tanaka [19]. As explained in [1] the main idea is that “a
generic overdetermined system of partial differential equations may be
rewritten as a first order “closed system” in which all first partial deri-
vatives of the dependent variables are expressed in terms of the variables
themselves. To do this, we must introduce extra dependent variables for
unknown derivatives until all derivatives of the original and extra vari-
ables can be determined as consequences of the original equation”. In this
sense, a system may or may not “close up”. We prove in this section that
our system does indeed “close up”. This can also be expressed by saying
that our system admits a finite prolongation.

The linear nature of the equations that express the various “jet”
variables as functions of the others allows us to prove rigidity as follows.
As usual we first define a vector bundle whose fibers have as many
dimensions as the number of variables that have been introduced. Then
we introduce a connection on this bundle in such a way that finding a
solution to the original system is equivalent to finding a covariant con-
stant section of the bundle. Since the space of parallel sections cannot
have dimension exceeding the dimension of the bundle, we infer the
finite dimensionality of the space of solutions. Furthermore, equality is
achieved in the flat case and we show that our connection is indeed flat,
thereby obtaining precise dimension counts. Our approach is inspired by
that of Eastwood [14].

In this section we focus on the heart of our proof, showing that taking
sufficiently many derivatives yields a closed system. Since the computa-
tions are slightly involved, it is perhaps helpful to keep in mind the the
following picture:

Y
{fi} = {af})
gl <
w_ |
Y\*{At}—y»{bf}/

{0}

X



106 Irene Venturi

This means that we consider the real valued functions on N labeled f;, g*
and ;, with ¢ € @ and k € m. We then take derivatives with respect to X;
and Y}, of the functions f;, ¢* and /; and produce new variables af and b¥. All
Y-derivatives of af and all X-derivatives of b} are zero for all choices of the
indices if the functions f;, g are the coefficients of a multicontact vector
field as in (3) and if the /; satisfy (2). Hence the system associated to our
multicontact problem “closes up”, that is, the prolongation is finite. The
extra variables are defined by

af =Yi(f), tem, kem;
Vi =Y, tem, kem.
For computational reasons, we also introduce the variables
e =Yiah), tem, L,kecm,

although in fact they all vanish in the multicontact case (see Lemma 2.16).

From now on we shall use the symbol yk to mean nonzero real constants
that satisfy assumption (c) without appeahng explicitly to it. Evidently, we
assume (5) and (6).

The following lemma describes Y.(g*) for all possible pairs (k,¢) €
€m X m.

LEMMA 2.4.  For any k, ¢ € m and all i,j € T for which [X;,X;] = y%Yk
we have
) Yilg") =~k + 4p).

ProoF. Fixk € 7 and take 4,5 € 7 such that [X;, X;] = 7% Y}. Then for
any ¢ € m, by (5) and (6)

YY) = [X:, X;1g")
= Xi(X;(9") — X;(X;(g")

(k) ()

ten ren
2 : l 2 : 0
ten ren

— {9, L.
= — oyidi + oyl

Now, [Xl,X 1= yUYIC implies that oc = 0 if ¢ # k, whereas if ¢ =k, then

oy = —a; = 7l # 0. O
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COROLLARY 2.5. Let k € m and i,j €  be such that [X;, X;] = yijA

(i) Ifthere exist p,q € n such that oc]’;q # 0, then 4; + Aj = Jp + Ag;

(ii) of there exists p € m with p # j such that “ﬁi # 0, then A; = Jp.
Proor. By (4) and (7)
[X,, X105 = 3 o, Yilg")

lem
AT Y i)
tem, ik
k
= — O‘pq(ﬂvi + )Lj).

But by (5) and (6)
(%, X106 = X, (3l i) X, (3 o 1)
ten ren
= — Z O(ffq5pt/1t + Z “I;péqrir
ten ren

= — ol Uy + 2g).
Hence, if ocfgq # 0,then 4; + 4; = A, + Aq, as claimed in (i). Now, if “;Cn' #£ 0 for
some p # j, then by part (i) 4; + 4; = 4; + 4,, whence 4; = 4,. O

Next we analyse the functions af, showing that the only indices
(1, k) € m x m for which ai? is possibly nonzero are those for which we can
find j € 7 such that [X;, X;] = %Y}

LEmMMA 2.6. Let 1 €n and k€ m. If there is no j € n such that
[X;, Xj] = V%Yk, then a¥ = 0.

Proor. Fix k € m. By assumption (b), there exist i, v € % such that
[X,,X,] =Y. Thenfor any ¢ € »
af = Ye(f) = [X,. X, 1(f5) = XX, (f) — X, (X (f3).
Thus, if there does not exist j € 7 such that [X;, X;] = ink, then i & {u, v}
and so by (6) X,,(f;) = 0 = X,(f;), whence a¥ = 0. O

LEMMA 2.7. Let1,j,t € m with i # j. Then
0 if t ¢ {i,7}
® > abat = X)) ift=i
tem -X;(4) ift=j.
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Thus, if k € m and 1 ] e n are such that [XZ,X] = kak, then af =0 for
t & {i.5}, Xi(y) = —yaf and X;(%) = yhaf.

ProoF. By definition of af, for any t €

S abal =3 dlYi(f) = X, XA = XX () — XiXi(£)),

lem tem

hence (8) follows from 6). If [X;,X;] = VZ Y}, then the sum on the left hand
side reduces to y a¥ and the conclusions follows from (6). O

LEMMA 2.8. Lett € m.

(@) Forany k.l e mwith k # ¢, > afiaf —0.

ten
(i) Ifj € m and k € m are such that [X;, X;] = y’ijk, then
€) Xi() = 270f

PrOOF. Since 1 is two-step, for any ¢ € % and any k, ¢ € m we have
0 = [X;, Ylg") = Xi(Yi(g") — Yi(Xi(g").

Thus, if ¢ # k, then by (7) Yi(¢*) =0 and so using (5) and the defi-
nition of af

0= YiXi(g) = Vi (Yo ohfi)= DoY) = Y ol

ten ten ten

Next take £ = k and suppose that ¢,j € 7 are such that [X;, X;] = yk Y. Then
by (7) we have Y,.(¢*) = — (4; + ;) and so by (5) and (8) we have

0 = [X;, Yi1(g™)
= X:(Yi(d") — Yi(Xi(g")
= —Xi(Zi +4) = Yy (Z “fz‘ft>

ten
= —Xi(4) + V Z anat
ten
X (il) + Vya - y]za’ - Z O(L‘Lat

ten

t#j

= -X;(4) + 27” i Z (xnat ,

A
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where we have used that oc7 yu Finally, by Lemma 2.7 we have at =0
for allt ¢ {i,j} and when t = i we have o, = 0, so that all summands in the
last sum vanish. |

Observe that (8) and (9) describe X;(4;) for all possible pairs
('67]) EN XN.

LEMMA 2.9. Ifk € mandi _7 Enare such that [X;, X;] = kak and there
exists p € m, p # J, such that oc . 7 0, then a =0.

Proor. By (i) in Corollary 2.5, /; = 4,, so that X;(4;) = X;(4,) and thus,
by Lemma 2.8 and Lemma 2.7, respectively, we obtain

l] a; Z“m P Z“m P

lem Qi;f

since a =0 When p & {,j}. Now, either ocp = 0 for all ¢ € m with ¢ # k,
in Wthh case a =0, or else there exists ¢ € m with /¢ ;A k such that
ocm #0. We show now that for all such indices ¢ we have ap =0, so that
the sum on the right hand side vanishes, whence the result. Fix any such
¢; according to Lemma 2.6 we may suppose that there exists q¢ € mw such
that [X), X,] = 75, Yy, for otherwise a;, = 0. Two cases arise: either ¢ # j
or ¢ = j. In the first case, by (ii) in Corollary 2.5 necessarily 4; = 4, and
hence 4; = 4,, which gives X,(4,) = X,(4,). By (9) and (8), respectively,
we obtain

2qu p_z%q p_ypq p7

seEm

the latter equality expressing [X,,X,] = yqug Therefore a =0 as de-
sired. In the second case, [Xp,X ] = y‘ Y, and [X;, X;] = Yk, by Lemma
2.8, We obtain that X;(4;) = 2yj a and X;(45) = 2;/;(11, respectlvely, SO
2yjp p = —2)/17 ak Arg'umg as above we flnally get

00
a _Zam ap —27@7 i 27}.7’10%'

tem

#k

Therefore af; = 0 as desired. O

LEMMA 2.10.  Letk, ¢ € mwith ¢ # kandlet,j,p € wwith p # j be such
that [X;, X;] = ngk and [X;,X,] = yf.ng, then ai = 0 for any s € m.
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Proor. By Lemma 2.7 and item (i) of Lemma 2.8

kol — o
0= Z“SJ s*yijaﬁ“m%

sEM

_ k
0= Zaw s Vwa +O‘7pa7

sEm

We show now that a' =0 Whenever ¢ # k. This is obvious from the first
equation if oc =0. Suppose then a ; 7 0. By item (ii) of Corollary 2.5, ne-
cessarily 1; = lp, which gives X;(4; ) = X;(4y). By (9) and (8), respectively,
we obtain

N N A )
Zyipap = ym-ap.

Therefore a =0 and from the first equation a! = 0, as desired.
Next we show that a¥ = 0. This is obvious from the second equation if
= 0. Suppose then oc » 7 0. By item (ii) of Corollary 2.5, necessarily
/1 = /j, which gives X; (/11) = X;(4). By (9) and (8), respectively, we obtain

27’27“ = _Vw 7

Therefore aJ’? = 0 and from the second equation af = 0, as desired.
Finally, take s € m for every s ¢ {¢,k}. If there exists no ¢ € @ such
that [X;, X,] = yqus, then aj = 0 by Lemma 2.6. Conversely, if [X;,X,] =
= quY for some ¢ € % then the previous argument with ¢ in place of p and
s in place of ¢ gives a} = 0. O

Observe that by Lemma 2.6, Lemma 2.7 and Lemma 2.10 the structure
of the m x n matrix a = (af) is subject to many constraints. Indeed, if we
fix both the row index k and the column index ¢ and we cannot find another
column index j for which [X;, X;] = y’; Yy, then Lemma 2.6 says that a¥ = 0.
Therefore for any fixed row k, the only column indices ¢ for Wthh ak is
possibly nonzero are those for which [Xl,X 1= yZYk for some j. Take such a
pair (4, j). By Lemma 2.7 any other a¥ vanishes. Hence for any fixed row k
there is at most a pair of column indices ¢ and j for which the corresponding
entries do not vanish, i.e., every row contains at most two nonzero entries.
But more is true: if for two different rows, say the k' and the /*, we find a
coinciding column index, say 4, then by Lemma 2.10 we have a} = 0 for
every s. Therefore, every column contains at most one nonzero entry. It
follows that, after reordering, we may assume that the matrix a = (a) has
the following form
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* % 0 0 0 - 0 0 0
0 0 * *

0 O 0 0 * % 0 0 0
0 0 * 0 0 0
0 0 0 * 0 0
0 0 0 - 0 0 0
[0 T 0 --- 0 0O --- 0

The stars refer to nonzero entries; evidently, each block of rows (those
with two, those with one and those with no nonzero entries) could be
empty. Next we investigate the functions b

Lemma 2.11.  Leti,t € m and k € m. Then
(10) Xi(ay) = —6ybf

and if there is no j € T such that [X;,X;] = yZ.Yk, then X;(af) = —bF = 0.
ProoF. Since 1 is step-two, using the definitions of af, b%, and (6)

0 =[X;, Yil(f2)
=X;(Yi(fp) — Yi(X;(f2))
=X;(aF) + 0 Y3 (A)
=X;(a}) + oubf,
thereby showing (10). It follows from Lemma 2.6 that if there isnojen

such that [Xi,)(}]:y’ijk, then af =0, in which case (10) implies
0= Xi(a) = — b O

Observe that (10) describes Xi(a;?) for all possible triples (i,7,k) €
€n xn x m. Also, Lemma 2.6 says that if there is no j € # such that
[X;, X;] = yi?ij, then af = 0; under these circumstances, because of (10),
we have a fortiori that b¥ = 0.
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Lemma 2.12. If k € m and i,j € m are such that [X;, X;] = y%-Yk then
b = b, |
J

ProoF.  Since [X;, Xj] = Y, (8) gives
X;(0) = aga; = sal.
lem

By the definitions of b, bJ’? and by (9) and (10)

b = Yi(h)
= [X;, X;1(4)
= Xi(X;(2) — X;(X;(4))
= X,(fab) - X;@75af)

— i + 2
where V]fj = 0, hence the result. O

LEMMA 2.13. Leti,j,t e nwitht #jandt & {1,5}. Then

Z afjbf =0.

lem
Thus, if k € m and i,j € W are such that [X;,X;] = yg-Yk, then bF =0 for
t g {i,j}

ProoF. Apply X; to the left hand side of (8), use (10) and Lemma 2.7. [

LEMMA 2.14.  Letk € mand i,j € 7 be such that [X;, X;] = yZ-Yk. Ifthere
exists p € T, p # j, such that off; # 0, then bf = 0.

Proor. By Lemma 2.9 af = 0. Applying X; and (10) to af =0 we
obtain that b = 0. O

Lemma 2.15.  Let k, ¢ € m with £ # k and 1,5,p € = with p # j be such

that [X;, X;] = yijk and [X;,X,] = yprg then

(@) b} =0 for any s € m;
(i) bf = b} =0 forany q €.
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Proor. By Lemma 2.10 o] = 0. Applying X; and (10) to a; = 0 we ob-
tain that b7 = 0 for any s € m. This proves (i). As for (ii), first of all we know
from Lemma 2.13 that b} = 0if ¢ ¢ {i,j} and b, = 0if ¢ & {4, p}. As for the
remaining indices,by part (i) b =0 for any s € m and by Lemma 2.12
bf = b = 0 and b, = b} = 0. O

Lemma 2.11 tells us that the matrix b = (bk) has the same general shape
as the matrix a = (a ). Furthermore, Lemma 2.12 says that whenever a
row contains two nonzero entries, they actually coincide. Finally, Lemma
2.15 implies that no row may contain a single nonzero entry. The general
shape of the b matrix is thus

*x x 0 O - 0 O0]O0 -0
0O 0 = x - 0 0

0O 0 0 0 x x| 0 0
0 0] 0 - 0
0 0] 0 - 0

LEMMA 2.16. Forallt c mandall .k € m cfk =0. Foralli,j € m and
all k e m

(11) X;(0%) =0

PRrOOF. Assume first i # j. By Lemma 2.11 we have X;(¢¥) = —b¥ and
X;(ak) = 0. Hence,
X;b9) = Xi(Xj(af) — X;(Xi(ah) = X5, Xi)a) = Y aYilah) = ) e,

i G
lem lem

In particular, if k € m and ¢,j € w are such that [X;, X;] = kak, then

X;(bf) = ykc* and by Lemma 2.12 they are both equal to X;(bf). Smnlarly,

X (bk) = X (b’“) = ykc’“k Hence (11) will follow (for all p0551ble indices 1, ]

and k) from the fact that c =0forallt € wandall £,k € m.

Fix now k,¢ € m. By assumption (b) there exist 7,57 € #» such that
[X;, Xj] = Yk We show next that for any /¢ e m we have c‘”“ = ct =0
whenever tgz {?,7}. Indeed, by Lemma 2.7 af = 0 for t ¢ {i, j} so that
using the definition we obtain c Yg((l ) = 0 for any ¢ € m. Further, by
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definition and by (10)

0 t ¢ {i.j}
ek = Yia)) = Xi(X;(ap) — X;(Xi(ap) = ¢ X)) t=1i
~X;(00) =3,

whose first line proves our claim.

Hereafter we fix k¥ € m and we assume that i,j € w are such that
[X;, X;1 = 75 Y. We show next that ¢} = ¢/* = 0. By definition of bf, ci¥, by
(9) and Lemma 2.12

0 = [X;, Yil(4)
= X;(b}) — Y(2yfal)

= X;(bf) — 2Y,(5al)
- e - ekl
the latter equality followmg from X; (bk) = y’f] T which was shown
above. This proves that c =0 and an analogous argument shows that
kk = 0.

Finally we show that whenever ¢ # k we have ¢/* = ¢t = 0for ¢ € {i, j}
hence proving the lemma. To this end, we observe that by assumption (b)
we may choose p,q € % such that [X,,X,] = y" Y, and two cases arise:
either {p,q} N {7, j} =0 or, by symmetry we may assume p = i. In the
first case, Lemma 2.13 implies bf = bf = 0 and hence computing as above
further implies that

0 t & {i, j}
L = i Yap) = { XD  t=i
X)) t=j

we get that the second and third lines vanish, whence ¢/’ =0 for all
tem. Slmllarly, by Lemma 2.13, bf = bf = 0 and hence computlng as
above that c{ =0 for all ¢t € 7. In the second case, that is p =1, we
compute that

0 t & {i.q}
yZCf‘ = wak(af) = X;(Xj(a)) — X;(Xi(a))) = X005 t=1
0 t=q
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and by Lemma 2.15 b} = 0, so that ¢/ = 0 for all ¢ € 7. Finally

0 t & {17}
yf,qcfk = Vf)qu(af) = X0 t=i
0 t=j
and by Lemma 2.15 b¥ = 0, so that ¢{* = 0 for all ¢ € 7. O

Inthe end we have that all Y -derivatives and all X-derivatives of af are zero
for all choices of the indices, so the system “closes up”. Indeed, all the deri-
vatives of the functions g, f;, /1, a¥, b¥, for any ¢t € mand k € m are expressedin
terms of the functions themselves, as indicated by equations (5) through (11).

2.3.2 — The connection.

Recall that our strategy to prove rigidity is to introduce a connection on a
vector bundle in such a way that finding a solution to the multicontact system
is equivalent to finding a covariant constant section of the bundle. The bundle
we are referring to is a trivial subbundle of the trivial r-plane bundle
n: T — N over N,whosetotalspaceis T = R", withr = m + 2n + 2mn. The
idea is the following: once the multicontact structure has been selected, that
is, the bases {Xi,...,X,} and {Y1,..., Y} have been fixed in such a way
that assumptions (b) and (c) are satisfied, we choose only those directions
along which the coordinates of a prolonged multicontact vector field are
possibly non vanishing, as described by the lemmas of the previous sections.
The fiber coordinates will thus be indexed by arrays of the form

f a
o)
L b

where, first of all, f, 1 € R", g € R™. As for the vectors a and b, they will be
labeled a = (af) and b = (b]‘f) respectively, with indices (¢, k) and (j, £) run-
ning only in those index sets that correspond to non vanishing coordinates of
multicontact vector fields. As already illustrated, the results of the previous
section show that for each k& € m there exists a set A, (consisting at most of
two indices) such that af = 0 if p ¢ A, whenever af, is the prolonged co-
ordinate of a multicontact vector field. Notice that if ¢,j € Ay, it may well be
that af # af. We thus introduce the index set

A={@k enxm:1ie€A}

in order to parametrize the a-vector, that is we take a = (af) with (i, k) € A.
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Similarly, for each ¢ € 7 there exists a set By (consisting at most of two
indices) such that bé = 0if ¢ & B, whenever bfl is the prolonged coordinate
of a multicontact vector field. However, if i # j are in By, then b} = bf . We
thus define a new index set B, consisting at most of a single index in order
to achieve a parametrization of the b-vector, by choosing one of 7 or j.
Finally, we introduce the index set

B={(,)enxm:jec B}

and consider b = (bf-) with (4,£) € B. Hence a € R and b € R“® where
c(A) and c(B) are the cardinalities of A and B, respectively. The bundle we
shall be concerned with is therefore p : E — N where the total space is
E = R® with s = m + 2n + ¢(4) + ¢(B).

The sections S € I'(E) of E are mappings S: N — E such that
no S =idy that we arrange in arrays as follows

f@)  alx)
(12) r—S) = | g() )
AMx)  b(x)

where g is a column vector in R™, £, 4 are s row vectors in R” and @ € R°@
and b € R°® are vectors whose entries are arranged in (mostly empty)
n x m matrices. For practical purposes, it is convenient to think of ¥ as a
subbundle of 7' and hence to regard a and b as n x m matrices whose
entries are zero in the complement of the index sets A and B. Omitting the
dependence on x, one may thus think

ai - oa)
fo oo fa '
g' ay’ ay’
S = :
g b ... bl
Ao A S
R

and remember that most a’s and b’s are zero for S € I'(F).
An affine connection on N is an R-bilinear map V : X(N) x I'(E) —
— ['(K), written V(X,S) = VxS, with the following properties:
(i) VxS =¢VxS forall p € F(N) all X € X(N) and all S € I'(E);

(i) Vx(@S) = X(@)S + VxS for all p € F(N), all X € X(N) and all
S e I'E).



Rigid Two-Step Nilpotent Lie Groups Relative etc. 117

We will define a connection on E by specifying its values V.S for all
t € nand Vy,S for all k € m and then using (i). We shall do so by using the
right hand sides of the various (affine) equations that have been obtained in
the previous section. In order to write explicitly the definition, we para-
metrize S as in (12). Instead of writing VxS and Vy,S as large arrays, we
introduce the dual bases (¢°)", f/", ;, (@})" and (b;)". Here is the definition of
the various components of Vy,S:

@) (Vy,S) = Yi(g*) + ks (i + 4)

. (V) -k if (k) A
ft(vyks){Yk(ﬁ) : if (t,k) ¢ A

Yi(hy) — b if (t,k) € B
Yi () it (t,k) ¢ B

(@) (Vy,S) = Yi(a})
) (Vy,S) = Yy(bp).

13) i) = {

For the sake of precision we remark that in the first line one picks any
pair (i,7) with the property that [X;, X;] = y5;Y} (with ) # 0), certainly
existing by our hypotheses, and the sum /; + /; is independent of such
choice; further, the last two lines are defined for (¢,s) in A and B,
respectively. Similarly, the definition of the various components of
VXiS is:

@' (Vx,S) = Xi(¢") = Y _ i fi

ten

17 (Vx,S) = Xi(fy) + ditda
XG0 = > agay ift#i

s (t,0eA
W AV =1 x,0,) — 2fat if t —iand (j,k) € A

X:(%) if t =iand (j,k) ¢ A
(@) (Vx,S) = Xi(a)) + 0ibf
6" (Vx,S) = X;(b)).

Here again the last two lines are defined for (¢, s) in A and B, respectively; as
for the value of 7;(Vyx,S), the index j appearing in the right hand side is an
index such that [X;, X;] = y5: Yy (with 7 # 0), certainly existing by our hy-
potheses.
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ProposITION 2.17.  Formulae (13) and (14) define an affine connec-
tion on E.

Proor. Let X be any vector field in the basis and let S be a section. We
temporarily change notation and write S as a vector with components S;
with ¢ ranging in the index set I and observe that formulae (13) and (14) are
all of the form

(Vx(8));=XES) + Y CiSkij,

jel

where j— k(j) is some mapping of I and C; is a possibly zero constant.
Property (i) is automatic from our definition. As for (ii), for any smooth
we have

(Vx@S)); = XS + Z CiwSk(j)
Jel
=XW)S; +yX(S) + Z CiwSi)
jel
=XW)S; +y(Vx(S));,

as desired. O

2.3.3 — End of proof.

Summarizing, the vector field (3) is a multicontact vector field if and
only if the functions {f;, 4, ¢°, @}, bj : ¢ € m, s € m} satisfy the equations (5)
through (11) and this in turn happens if and only if the section S defined by
(12) is a covariant constant section of the bundle p : £ — N with respect to
the connection V, that is, if it satisfies VxS = 0 for any X € X(N). Recall
that the bundle we shall be concerned with is therefore p : £ — N where
the total space is £ = R®, with s = m + 2n + ¢(A) + ¢(B). Thus, there are
at most s linearly independent such sections, and this proves that the space
of multicontact vector fields is at most s-dimensional.

There are no a priori conditions on the f, 1 € R", g € R™. Therefore,
they may contribute up to 2n 4+ m dimensions. Moreover, we consider
a = (af) with (i,k) € A and b = (b)) with (j,0) € B. Hence a € R"Y and
b e RB ), where c(A) and c¢(B) are the cardinalities of A and B, respectively.
We achieve the total number of s.

In the next section we improve our result by proving that the connec-
tion V is actually flat.
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3. Flatness.

The curvature operator R(X,Y): I'(E) — I'(E) associated to V is of
course

RX,Y)S = VxVyS — VyVxS — Vix 1S

for any X,Y € X(N) and any S € I'(%). Evidently, R is known whenever
R(Y3, Yy, R(X;,Yy) and R(X;, X;) are known, for any k,¢ € m and ¢, € 7.
The intricacy of some of the computations that follow calls for some
notational simplification. In particular, we shall adopt a slight abuse of
notation and, instead of the precise version appearing in formula (13) that
distinguishes among pairs (¢, k) € A and pairs (t, k) & A, we shall write

fi (Vy,8) = Yi(fy) — af

for all pairs (¢, k); the understanding is that af = 0 if (¢,k) ¢ A. The same
kind of convention is used for the definition of /;(Vy,S) and 1;(Vx,S).

Finally, we stress that the combinatorial structure of the sets A and B is
described by the various Lemmas of the previous section. We shall
therefore appeal to them when needed, with the understanding that if the
Lemma states that some jet variable a! (of a prolonged multicontact vector
field) vanishes in a certain configuration, then evidently (¢,k) ¢ A in the
same configuration, and similarly for B.

LemmMa 3.1. R(Yy, Y)S =0forall k.t € m.

Proor. Since [Y},Y,] =0 for any k.4 € m, R(Y}y,Y))S = Vy, Vy,S —
—Vy,Vy,S. By (13) and by symmetry, a straightforward calculation
shows that

S (R(Yy, Y)S) = 2; (R(Yy, Y)S) = 0

for allt € w and

(@) (RYr, YS) =0, (b)) (R(Y, Y)S) =0

for all (¢, s) in A and B, respectively. Let ¢,k € m with ¢ # k. By assumption
(b) we may choose 4,j,p,q € 7 such that [Xj,X;] = 7Y} and [X), X,] =
= Vfquz. By (13) we obtain that for every s € m

@) (Vy,Vy,8) = Yi (Yi(g®) + 06sCp + 49)) + S5 (Ye(hi) — b + Yo(4y) — bj)
@) (Vy,VyS) =Y, (Yk(gs) + Ops(Ai + ,17)) + s (Yk(ip) _ bf; + Y30y — bf;).
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Therefore, recalling that all the Y’s commute and subtracting the previous
formulae
b+ 0k ifs=1¢

@) (RO YOS) = { —bf — bt if s =k
0 if s ¢ {0k},

In all cases (p,k),(q,k) € B and (3,¢), (j, ¢)¢ B. Indeed, this is very clear
when {p, ¢} and {3, j} are disjoint pairs and follows from Lemma 2.15 when
they are not. Hence (¢°)*(R(Yy, Y,)S) = 0, as desired. O

LemMa 3.2. R(X;, Y;)S =0forall i € wand all k € m.

Proor. Since [Xi7 Y. 1=0, R(X“ Y,)S = VXfVYkS — VykinS for any
1 €m,k € m. By (13) and (14), using again [X;, Y;] = 0, a straightforward
calculation shows that

JFRX,YS) =0, (@) (RX;, YpS) =0, ()" (RX;, Yi)S) =0

for all £ € m and for all (£, s) € A and B, respectively.

In order to show that for any given 7 €% and k €m we have
i (R(X;,Y)S) =0 for all ¢ € % and (¢°)"(R(X;, Y)S) = 0 for all s € m, we
must distinguish between the following possibilities:

(i) there exists j € % such that [X“X 1= yUYk,
(i) fornoj € mwehave [X;, X;] = Vi kY, and hence, by assumption (c),
we can find x € m, withk £k, andj e n such that [X;, X;] = yl] P

In case (i), by (13) and (14) we have

Xi(Yk(it) — bf) — Z O‘thk(a ) ift£i
15 4 (Vx,VyS) = (t.0eA
Xi (Vi) = 0f) —2Vilad) it =i

and
Yie(XiGh) — Y ogap) — Xif) i t £
(16) 2 (Vy, Vx.S) = t.hHeA

Since [X;, Yi] = 0, by subtraction we get 4; (R(X;, Y;)S) = 0. Next, by (13)
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and (14)
@")' (Vx,Vy,S) = X; (Yi(g®) + Oks(li + ) — Z o (YVi(f) — af)

ten
@) (Vy,Vx,S) = Yi(Xi(g") = > o i) + 0 (XiCij)+ 50 + Xi(h) — 235
ten

Once again, [X;, Y;] = 0 and subtraction yield

@) (RX;, Yi)S) = osaf + Srs(iaf).
ten
If s # k, by item (i) of Lemma 2.8, the sum on the right hand side vanishes.
If s =k, by Lemma 2.7 (t,k) ¢ A whenever ¢t ¢ {%, j} and hence

Z oaf + el = —yhal + faf = 0.
ten
In case (i), 1 €m and k € m are such that for no j € # we have
[X;, X1 = ngk. Our assumptions come now into the picture as follows: by
assumption (b) we can find i,j; € 7 such that [X; X, 1= yffk i Y. where
1 & {1, Jr }; furthemore, by assumption (c) we can find x € m with k # k
and j € m such that [X;, X;] = y;FjYK.
Now, using again (13) and (14) we obtain equations analogous to (15)
and (16), but with « in place of k, and we conclude that 1; (R(X;, Y;)S) = 0.
Finally, using one last time (13) and (14) we get

@) (Vx,Vy,S) = X; (Yr(g®) + s (i, + 45,)) — Z o (Yi(f) — af)

ten
@) (Vy, Vx,S) = Vi (Xilg") — > aiify)
ten
+ Oks (Xi(hg) — Z of jar +Xi(,) — Z o at ).
(ig,0)EA (ig,0)EA

Therefore, since [X;, Y;.] = 0, we subtract the two previous equalities and
obtain

(gS)*(R(Xi,Yk)S):Za;afwks( > oaa+ > ocfkiafk)
ten (i,0)EA (ig;,0)€A

If s # k, by item (i) of Lemma 2.8, the sum on the right hand side vanishes.
If s = k, by Lemma 2.7 (t,k) ¢ A whenever t & {i,jx}. Hence
@) (RX;, Y)S) =20k 0k +afaf)+ > wlbial + > ol al

U Y, NI
(i, OEA L#k Ur,OEAF#R
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By Lemma 2.9, if oc ; 70 then (i,k) € A because © # j. Similarly, if
# 0 we have that (_];mk) ¢ A and so

GYREYOS) = > g+ Y %
(i OSA L4k (GeOEA b4k

]/2

We show now that for all indices ¢ € m with ¢ # k, the sum on the right
hand side vanishes, whence the result. Fix any such ¢. We prove that
ol al = 0 By Lemma 2.6, (i, /) € A only if there exists p e % such that

U Ik

(X, X, kang Suppose that oc ; 70, for otherwise ot a! =0. By

(IRl TA

Lemma 2.9, if p #1 we have that (zk,é) ¢A. If p=1, that is [X,,, X;] =
= yl ;Y by Lemma 2.10 (i, £) ¢ A for any ¢ € m. An analogous argument
shows that ocj 1(17 =0 for any ¢ € m. Hence (¢°)"(R(X;, Y;)S) = 0 for all
s Em. O

LEmma 3.3. R(X;,X;))S =0foralli,j €.

PRrOOF. Clearly, R(Xi,ij)S = invXjS — vvaXiS — V[XhXj]S for any
1,j € m. The tensoriality in X of VxS and (13) give

(@) (Vix,x31S) = (@) ( VZ " 7S Z o Yi(ay)

lem lem

O (Vix,x)S) = )" VZM = i Yu(by).

tem lem
Using (14) and symmetry, a straightforward calculation shows that
@) (R(VxVx)S) =0 (b)) (R(Vx,Vx)S) =0

for all (t,s) € A and B, respectively.
Next (14) yields

@) (Vx,VxS) = Xi (X;9") = Y _afi) = > o (Xi(f) + i)

ten ten

By (b), for all s € m , there exists is,j; € 7 such that [X; , X ] = 7 i Y and
by (13)

@) (Vix, x18) = Z Oﬂfj (Ye(9") + 6us(2i, + 45))

lem

= Zoc Yo' + oc”(% + 4;,)-

lem
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A straightforward calculation gives
(@) (BX;, X))S) = o;(2i + 47) — oi(Ai, + 24,).
By Corollary 2.5, for all s such that o # 0 we have that 4; + 4; = 4;, + 4;,,

therefore (¢*)"(R(X;, X;)S) = 0.
Next, by (13), (14) and symmetry we obtain that

> ogal if t ¢ {ij}
fi(RX;, X))S) = | tem
0 if t € {i,j}.

By Lemma 2.7, the sum on the first line vanishes; so f;(R(X;, X;)S) = 0.
We are left to show that for any given t€n we have that
i (R(X;, X)S) = 0.
By assumption (b) there exist u,ve€mn and k,x € m such that
[X;, X, ] = yé“qu and [X;,X,] = 7Y By (13) and (14) we obtain

Xi(XiG0— Y agal) — 3 aly(Xiah+,0f) if 1 {i.])

(t0)eA t,HeA
s L V4 : o
2 (Vx,Vx.S)= Xi(X;(4) — 2hay) — Z oj; (Xj(ay) + b7) ift=j
/ (j,0cA
X (X;() — Z agar) — 2%, (X;(al) + 9,bf)  ift=1.
(i,0)eA

A straightforward computation, gives

> ob; if t & {i, j}
lem
1K 03 oy
)LZ(R(Xl,Xi)S) — 2)/‘;-{‘,,5“,()1, + 2 (%B OCZ]b] if ¢ =]
—25,05b5 +2 > abbf if t =i,
(i0eB

By Lemma 2.13, the first line vanishes. We show now that for all ¢ € m, the
sums on the second and third lines vanish, whence the result. Two cases
arise: either j = y or j # u. In the first case, of; = 7%, and of; = 0 for any
¢ € mwith £ # k, so

0 if t ¢ {1, j}
1 (R(Vx,Vx)S) = { 2/,0ub) +205,bF if t=j
=2k bE 2k bF if t =
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By Lemma 2.12 b} = b, thus the third line vanishes. Next, if i = v then
75 = =75 & =k and by Lemma 2.12 we obtain

I
275,

Sinbls + 28 b = 2% bF 4+ 29ff b = 0.
Otherwise, if © # v, by Lemma 2.15 (j, k) ¢ B.

In the second case, j # u (clearly i # v, for otherwise we obtain the
configuration just discussed). We rewrite

0 if ¢ & {1, j}
by +205bF +2 Y agbi ift=j

i (R(X;, X)S) = (.OEB 12 I}
o057 + 20505 +2 Y apbf ift=i.

(1.0€B ¢ {kx}

By Lemma 2.14, if o # 0then (4, x) ¢ B. Similarly, if aZ = 0then (1,x) € B.
Next, suppose that exists ¢ € m with ¢ & {k,x} such that ocfj #0, for
otherwise the sum on the right hand side vanishes. Fix any such /: by as-
sumption (b) there exists p, ¢ € % such that [X,,, X,] = yﬁqu and two cases
arise: either {7, 7} N {p, ¢} = 0 or, by symmetry we may assume, p = j. In
the first case, by Lemma 2.13 (7, ¢) ¢ B and (j, ¢) ¢ B. In the second case, by
Lemma 2.13 and by Lemma 2.14 (i, £) € B and (j, /) ¢ B respectively. Thus
the second line vanishes and an analogous argument works for the third
line. Therefore 4; (R(X;, X;)S) = 0. O

We have proved:

THEOREM 3.4. The connection V introduced in Section 2.3.2 is always
flat.

As a consequence, the dimension of Lie algebra M of multicontact
vector fields is always equal to the dimension of the bundle, because flat-
ness implies the existence of a maximal number of covariant constant
sections. This allows simple dimensional computations.

3.1 — Examples.
We now look at some of the examples considered in Section 2.1.1 and

either compute explicitly the dimension of the Lie algebra M of multi-
contact vector fields, or we give upper bounds.
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3.1.1 — H-type algebras.

Consider first the Heisenberg algebra, that is, let {X;,...,X5,} be a
basis of 1y and let {T'=Y;} be a basis of ny. If [X;, X;,,]=T and
[X;, X;] = 0in all other cases we obtain of course the Heisenberg algebra.
The dimension of the Lie algebra M of multicontact vector fields is 3p + 2.
Indeed, by Lemma 2.7 and by Lemma 213 a!=05!=0 for all
1€{1,...,2p}. Next, by item (i) of Corollary 2.5, we obtain that

A+ lp+1 =+ },pﬂ'

forany ¢ > 2;50 4,1 € sp{/1,...,Ap41} for any ¢ > 2. The functions f; for all
te{l,...,2p}, As for all se{l,...,p+1} and g may be linearly in-
dipendent and the total count is exactly 3p + 2, as desired.

Look now at any H-type algebra and follow the notation of Section 2.1.1.
Arguing as we just did, 4,,; € sp{A1,...,2p+1} foranyi > 2andalsoal = 0
and b} =0, for all i € {1,...,2p}. Fix k € {2,...,m}, by Lemma 2.10 o/
vanish, and hence by Lemma 2.11, bf = 0. Indeed, every Y}, with k # 1 is of
the form [X;, X;] and ad X; sends either X;,, or X;_, to £Y7, so that Lemma
2.10 implies af = 0 and therefore a’; vanish for all (¢, k) € 7 x m; similarly
for j. The functions f; and ¢* for allt € {1,...,2p} and k € {1,...,m} may
be linearly independent and 4, ..., 4y;1 is a maximal number of linearly
independent elements among the /;. The total count is less then or equal to
3p + 1 + m. The dimensional bound is thus sharp.

3.1.2 — Hessenberg algebras.

Consider now the Hessenberg algebra n® associated to $((n, R). For
the case n = 3 it was shown by Michael Eastwood [14] that the dimM is
eight. Incidentally, this is just the previous case for p = 2. Now, we show
that the dimension of the Lie algebra M of multicontact vector fields is 9 if
n =4 and 3n — 4if n > 4, in agreement with [16]. The brackets are asin (1).

By Lemma 2.15 we obtain that b¥ =0 for all i € {1,...,n 1}, k €
€{1,...,n — 2}. By Lemma 2.7 we have a} = Owheneveri € {1,...,n — 2}
and j ¢ {i,i+1}. Next, by (90 we have that X;(4;)=2¢a;,, and
Xi(4;) = —2ai-{ for any i € {2,...,n — 1}. So, for any such %, by the above
equalities and by Lemma 2.10 we obtain that

i il i il
Qi1 = =015 a;=a; =0.

If n = 4, the various conditions on af yield

2 _ 1 1_ 2
a3 = —ay, ay =ay = 0.
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Therefore the function {fi,f,fs, 41,42, 43,9, %, a1} may be linearly in-
dipendent and the dimension of the Lie algebra M is nine.

If n > 4 we have that af = 0 for all index ¢ and for all index k, then the
function are fi,....fu—1,21s---,u-1,9", ...,¢9" 2 are linearly indipendent
and dimM = 3n — 4, whence the result.

Acknowledgments. 1 would like to thank Prof. Filippo De Mari for
suggesting the topic and for many useful remarks.
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