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Generalized Derivations on (Semi-)Prime Rings and
Noncommutative Banach Algebras

FENG WEI (*) - ZHANKUI X1A0 (¥)

ABSTRACT - We first give several polynomial identities of semiprime rings which
make the additive mappings appearing in the identities to be generalized de-
rivations. Then we study some pairs of generalized Jordan derivations with
power values on prime rings. Let m, n be fixed positive integers, R be a non-
commutative 2(m + n)!-torsion free prime ring with the center Z and u, v be a
pair of generalized Jordan derivations on R. If u(x™)x™ + x"v(x™) € Z for all
x € R, then p and v are left (or right) multipliers. In particular, if x, v are a pair
of derivations on R satisfying the same assumption, then g = v = 0. Then ap-
plying these purely algebraic result we obtain several range inclusion results of
pair of derivations on Banach algebras.

0. Introduction.

Let R be an associative ring. An additive mapping x : R — R is called a
generalized derivation of R if there exists a derivation d of R such that
wley) = u(x)y + xd(y) for all x,y € R, where d is called the associated
derivation of u. If u is a generalized derivation of R with the associated
derivation d, then u satisfies the following relations

n—1
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(02) u(ﬁc”) — /1(9071711@)907” 4 xnfmd(xm)
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for all x € R, where m,n are positive integers with 1 <m <n —1. It
seems natural to ask under what additional assumptions the converse is
true. More precisely, under what additional assumptions an additive
mapping u, which maps a ring R into itself, satisfying one of the relations
(0.1) and (0.2) is a generalized derivation. Bridges and Bergen [4], Vuk-
mann and Kosi-ulbl [25] have considered the similar problems for the
case of derivations on rings. In this paper we will give affirmative an-
swers to just mentioned questions under mild conditions.

Inspired by the relations (0.1) and (0.2) we consider much more common
generalized forms of skew centralizing mappings involved pair of (general-
ized-)Jordan derivations with power values on a prime ring R. Precisely
speaking, the generalized forms are

@) u@E™a" + x™vx™) € Z;
(b) d@™)x™ + x"gx™) € Z;
() a™d(x)x" 4+ xPg(x)x? € Z,

where m, n, p, q are positive integers, x, v are a pair of generalized Jordan
derivations on R, d, g are a pair of Jordan derivations on R and Z is the
center of R. In fact, some similar identities with (generalized-)deriva-
tions have been studied by many people in various way, see [1], [9], [11],
[14], [24], [27] and [28]. In the present paper we prove the following re-
sults. Let R be a noncommutative 2(m + n)!-torsion free prime ring . If
(a) holds for all x € R, then x and v are left (or right) multipliers. In
particular, if (b) holds for all x € R, then d = g = 0. If (¢) holds for all
x € R, then d = g = 0. All these results generalize many existed conclu-
sions in this field.

On the other hand, many authors use pure algebraic techniques
(especially, the techniques concerning (semi-)prime rings) to study the
range inclusion problem of derivations on Banach algebras, which are
related to the well known noncommutative Singer-Wermer conjecture.
Various partial answers to this conjecture are obtained. Most results in
the field of range inclusion deal with one derivation, while pair of deri-
vations on Banach algebras was more less considered. In this paper we
apply the algebraic results in the previous paragraph to discuss pairs of
derivations on Banach algebras. Let A be a noncommutative Banach al-
gebra with the Jacobson radical rad(A) and d, g be a pair of derivations on
A If d@™)a”™ + «"g(x™) € Z4 for all © € A and fixed positive integers m,
n, then d(A) C rad(A) and g(A) C rad(A). The case of a pair of Jordan
derivations on Banach algebras is our next goal. Let A be a non-
commutative Banach algebra with the Jacobson radical rad(A) and d, g be
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a pair of continuous Jordan derivations on A. If d®™)x" + x"g(x™) €
e rad(A) for all xe€.A and fixed positive integers m,n, then
d(A) C rad(A) and g(A) C rad(A).

1. Some Additive Mappings are Generalized Derivations.

Throughout this section R always denotes an associative ring. If R has the
identity element e, we can adopt the convention that 2 = eforallz € R \ {0}.
Recall that a ring R is prime if for all a, b € R, aRb = 0 implies that either
a = 0or b = 0, and is semiprime in case aRa = 0 implies that a = 0. An ad-
ditive mapping d : R — R is said to be a derivation if d(xy) = d(x)y + xd(y)
for all for ., € R and is called a Jordan derivation if d(x?) = d(x)x + xd(x)
for all x € R. Every derivation is a Jordan derivation, but the converse is in
general not true. A classical result of Herstein [12] asserts that any Jordan
derivation on a 2-torsion free prime ring is a derivation. Cusack [6] extended
Herstein’s result to the case of semiprime rings and proved that every Jordan
derivation on a 2-torsion free semiprime ring is a derivation. Let u be a gen-
eralized derivation of R with the associated derivation d. Then y satisfies the
relation (0.1). We find that under additional assumptions, the converse is also
true for a class of additive mappings on semiprime rings.

THEOREM 1.1. Let n > 1 be a fixed positive integer and R be a n!-
torsion free semiprime ring with the identity element e. Suppose that there
exist additive mappings it : R — R, d : R — R such that

n—1
w@™) = plae)a™ 1 + Z " d(ae)ae? T
j=1

forall x € R. Then u is a generalized derivation on R with the associated
derivation d.

Proor. The assumption implies that

n—1
(1.1 p@") = pp ™t =3t Id@)alt =0
=1

forallx € R.By (1.1) we immediately get d(e) = 0. Substituting x + Ay for x
in (1.1) we obtain

APy, ) + JEPa(xt,y) + - - - + APy, y) = 0,
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where A € Z,x,y € R, P;(x,y) denotes the sum of terms involving 7 factors
of y in the expansion of

n—1 . .
e+ 2y)") — p + A + )" = @+ Ay de+ )+ dy) T = 0.
=1

By [5, Lemma 1] it follows that

(1.2)  Pi(e,y) = p@@" ty + " Pyx 4 - 4y Y — !

_ /z(ac)(x”_z 71—2)

y+a" Py + -+ ya”
n—1 n—1

o Z (xnfjfly NI yx”’j’l)d(ac)xj’l _ Z xnfjd(y)xjfl
=1 =1
n—1

= @@ Py 4w Py 4 g2l ) =0
J=1

for all 2,y € R. Taking x = e into (1.2) leads to
nu(y) — p(y) — (n — Dule)y — (v — d(y) =0
for all y € R. Note that R is n!-torsion free. So we have
(1.3) 1Y) = ey + d(y)
for all y € R. Replacing y by «" in (1.3) yields
u@") = ple)r™ 4 d(ax™)
for all # € R. This implies that

n—1
1.4) e + d@") = p(wx" " + Z " d(w)w’
j=1

for all € R. Combining (1.4) with (1.3) we get
(1.5) d(x") = Z "I d ()l
=1
for all x € R. Substituting « + Ay for x in (1.5) leads to
APy (0, y) + J2Ps(a, ) + - - + A"Py(,y) = 0,

where 1 € 7,2,y € R, P;(x,y) denotes the sum of terms involving 7 factors
of y in the expansion of

A+ )" =Y @+ dy)" Vde + Ay + i) =0,

J=1
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By [5, Lemma 1] again we obtain

nn —1)

(16)  Pyle,y) =——5—d@y*) =Y (v —jyd@) -
=1

~ (= Dy = 0
=1

J

for all ¥ € R. Note that R is n!-torsion free. So
dy®) = dy)y + yd(y)

for all y € R. This shows that d is a Jordan derivation on R and hence is a
derivation on R. Thus the identity (1.3) shows that u is a generalized de-
rivation on R with the associated derivation d. O

As a direct corollary of Theorem 1.1 we have

COROLLARY 1.2 [25, Theorem 1]. Let n > 1 be a fixed positive integer
and R be a n!-torsion free semiprime ring with the identity element e.
Suppose that there exists an additive mapping d : R — R such that

d@") = a"Jde’ !
j=1

J
forall x € R. Then d is a derivation on R.

According to the definition of generalized derivation, if 4 is a general-
ized derivation of R with the associated derivation d, then x also satisfies

another relation (0.2). Analogously, under mild conditions, the converse
also holds for a class of additive mappings on semiprime rings.

THEOREM 1.3. Let n > 1 be a fixed positive integer and R be a n!-
torsion free semiprime ring with the identity element e. Suppose that there
exist additive mappings 1 : R — R and d : R — R such that

'u(xn) — ﬂ(w%*M)wﬂl + xnfﬂld(x”ﬂ’t)
forall x € R, where m is a positive integer with1 <m <mn — 1. Then uisa
generalized derivation on R with the associated derivation d.
Proor. The assumption implies that
a.m 1) — p™ ™)™ — """ d@™) =0

for all x € R. Then it is easy to see that d(e) = 0. Substituting x + Ay for x
in (1.7) we obtain

APy, y) + 2Pa(a,y) + -+ - + J"Py(x, ) = 0,
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where A € Z,x,y € R, P;(x,y) denotes the sum of terms involving 7 factors
of y in the expansion of u((x+ Ay)")— u((@+ Ay)" ") + iy)™ —
— (@ + )" "d((x + Ay)™) = 0. It follows from [5, Lemma 1] that

(1.8)  Pi(a,y) = u@" ty + 2" Pyx + - 4 yx" D)
— @y T — @@y + " Ryt 4 g™
— @y 4 g Dd (™)
— A" Yy ™ Py 4wy g™ ) =0
for all x,y € R. Taking « = ¢ into (1.8) yields
nuy) — (n — m)u(y) — mule)y — md(y) =0
for all y € R. Note that R is n!-torsion free. So

1.9) wy) = ue)y + dy)
for all ¥y € R. Combining (1.9) with (1.7) we get
(1.10) d™) = d@™ ™)™ + " " d(x™)

for all x € R. Substituting x + Ay for x in (1.10) leads to
AP1(x,y) + A2Po(a,y) + -+ + A" Py, y) = 0,

where 1€ 7, x,y € R, Pi(x,y) denotes the sum of terms involving 1
factors of y in the expansion of d((x + Ay)") — d((x + Ay)" ™) (& + iy)" —
— (@ + )" "d((x + Ay)™) = 0. By [5, Lemma 1] again we have

nn —1)
2

(n — m)(z— m— l)d(yz)
m(m — 1)
2

(1.11)  Pyle,y) = dy?) —

—(n —mymd(y)y — (n — m)ymyd(y) — d@w?) =0

for all ¥y € R. In view of the torsion free fact of R, we see that

dy®) = dy)y + yd(y)

for all y € R. This shows that d is a Jordan derivation on R and hence is a
derivation. Thus the identity (1.9) proves that u is a generalized derivation
on R with the associated derivation d. O

As an immediate consequence of Theorem 1.3 we have

COROLLARY 1.4. Let n > 1 be a fixed positive integer and R be a n!-
torsion free semiprime ring with the identity element e. Suppose that there
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exists an additive mapping d : R — R such that
d(x’ﬂ,) — d(xﬂ/*’in)xm/ _|_ xnfmd(xm)

forall x € R, where m is a positive integer with1 <m <mn — 1. Then disa
derivation on R.

An additive mapping u: R — R is called a generalized Jordan deri-
vation of R if there exists a Jordan derivation d of R such that
w(@x?) = u(x)x + xd(x) for all x € R, where d is called the associated Jordan
derivation of u. Obviously, any generalized derivation is a generalized
Jordan derivation. But, the converse statement is not necessarily true. It
has been proved that any generalized Jordan derivation on a 2-torsion free
semiprime ring is a generalized derivation [27]. Thus, if x is a generalized
Jordan derivation on a 2-torsion free semiprime ring R, then u(xyx) =
= u(@)yx + xd(yx) for all 2, € R. Under mild assumptions, the converse
also holds for a class of additive mappings on a 2-torsion free semiprime
ring. But, the condition that R contains the identity element e is not ne-
cessary here, which is different form the additional assumption of Theorem
1.1 and that of Theorem 1.3.

THEOREM 1.5. Let R be a 2-torsion free semiprime ring, u: R — R be
an additive mapping and d be a Jordan derivation of R. If u(xyx) =
= u(@)yx + xd(yx) for all x,y € R, then u is a generalized derivation with
the associated derivation d.

Proor. The linearization of the assumption

(1.12) u(eyx) = px)yx + wd(yx)
gives
1.13) weyz + zyx) = wWwyz + xd(yz) + p@@ye + zd(yx)

for all 2,9,z € R. Taking z = 2? into (1.13) we obtain

(1.14) waeyx® + aPyx) = p@)ya® + xdya?) + @y + e>dyx)
for all ,y € R. Substituting xy + yx for y in (1.12) yields

1.15) u(oczyoc + xyac2) = p(x)eyx + ,u(ac)yacz + xd(xyx) + xd(yxz)

for all x,y € R. From (1.14) and (1.15) we have
(1.16) A@)yxe =0
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for all x,y € R, where A(x) denotes u(x?) — u(x)x — xd(x). It is sufficient to
prove that A(x) = 0 for all x € R. In (1.16), we replace xyA(x) for ¥ and
then get A(x)xyA(x)x = 0 for all x,y € R. By the semiprimeness of R it
follows that

1.17) A(r)e =0

for all € R. Left multiplication of (1.16) by « and right multiplication of
(1.16) by A(x) lead to xA(x)yxA(x) =0 for all x,y € R. In view of the
semiprimeness of R, we get

2A@) =0
for all x € R. The linearization of (1.17) leads to
(1.18) Ax)y + Bx,yp)x + Aly)x + B, y)y =0

for all x,y € R, where B(x,y) denotes u(xy + yx)— u(e)y — uly)x —
—xd(y) — yd(x). Replacing —x for «x in (1.18), we have

(1.19) A(x)y + B(x,y)x — A(y)x — Blx,y)y =0
for all x,y € R. Combining (1.19) with (1.18), we obtain
A(x)y + B(x,y)x =0

for all x,y € R. Right multiplication of the above relation by A(x) leads to
A(x)yA(x) = 0 for all 2,y € R. In view of the semiprimeness of R, we get
A(x) = 0 for all & € R. This proves that u(x?) = u(x)x + xd(x) for allx € R
and that u is a generalized Jordan derivation of R with the associated
Jordan derivation d. By [27, Theorem 2.6] it follows that u is a generalized
derivation with the associated derivation d. O

2. Pair of Generalized Derivations on (Semi-)Prime Rings.

Let R be a ring with the center Z. A mapping f : R — R is said to be
skew centralizing f(x)x + xf (x) € Z for all x € R. The study of skew cen-
tralizing mappings was motivated by a well-known theorem of Posner
which says that the existence of a nonzero centralizing derivation on a
prime ring R implies that R is commutative [18]. This theorem has been
generalized by many researchers in different ways. One interesting branch
of all related works is to consider a common generalization of skew cen-
tralizing mappings which involves pair of generalized Jordan derivations
on prime rings. In this section, one much more common generalized form
of skew centralizing mapping such as u(x™)x" + x"v(x™) € Z will be stu-
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died, where m,n are fixed positive integers, 1 and v are a pair of gen-
eralized Jordan derivations on prime ring R.

For the proof of our main result of this section, we need some basic
facts. Through out this section R always denotes a (semi-)prime ring and U
is the left Utumi quotient ring of R. U can be characterized as a ring sa-
tisfying the following properties:

(a) R is a subring of U.

(b) For each q € U, there exists a dense left ideal I, of R such that
I qCR.

(¢) If ¢ € U and Iq = 0 for some ideal I of R, then ¢ = 0.

(d) If¢: 1 — Risaleft R-module homomorphism from a dense left
ideal I of R into R, then there exists an element q € U such that
¢(t) =g foralli el

Up to isomorphisms, & is uniquely determined by the above four
properties. The center of U is called the extended centroid of R and
denoted by C. It is well known that C is a Von Neumann regular ring. It
turns out that C is a field if and only if R is a prime ring. The set of all
idempotents of C is denoted by £. The element of £ are called central
idempotents.

Another related object we have to mention is the generalized differ-
ential identities on (semi-)prime rings. A generalized differential poly-
nomial over U means a generalized polynomial with coefficients in / and
with noncommutative variables involving generalized derivations. A gen-
eralized differential identity for some subset of I/ is a generalized differ-
ential polynomial satisfied by the given subset. Obviously, the definition of
a generalized differential polynomial(or identity) is a common general-
ization of the definition of a differential polynomial(or identity). Before we
state the main result of this section, several useful lemmas are given.

LEmMA 2.1.  Let n be a fixed positive integer, R be a nl-torsion free ring
with center Z. Supposeyy, ys, - - s Yn € R satisfy Jy1+12ys + - + Ay, € Z
for2=1,2--- n Theny; € Z forall .

The Lemma 1 of [5] has been used many times in section 1 and Lemma
2.1 is actually one generalization of this result. The proof of Lemma 2.1 is
completely analogous to the proof of Lemma 1 of [5].

LEMMA 2.2 [26, Theorem 2].  Let R be a semiprime ring and I be a dense
ideal of R. Then any generalized derivation u on I can be uniquely ex-
tended to a generalized derivation of U. Furthermore, the extended gen-
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eralized derivation p has the form u(x) = ax + d(x) for all x € U, where
a € U and d is a derivation of U.

Now we are ready to give the first main result of this paper.

THEOREM 2.3. Let m,n be fixed positive integers, R be a non-
commutative 2(m + n)\-torsion free prime ring and w, v be a pair of gen-
eralized Jordan derivations on R. If u(x™)x" + x"v(x™) € Z for all x € R,
then u and v are right (or left) multipliers.

ProOF. Since x and v are generalized Jordan derivations on R, 1 and v
are generalized derivations on R by [27, Theorem 2.6]. It is well known that
R and U satisfy the same differential identities [16, Theorem 2] and hence
also satisfy the same generalized differential identities by Lemma 2.2. This
implies that

2.1 w(@x™)x" + 2" v(x™) e C

for all x € U. Note that U/ has the identity element e. It is easy to see that

2.2) ue) + v(e) € C.

Substituting « + Ay for x in (2.1) and applying Lemma 2.1, we get

@3) Pi(e,y) = pl@" My + 2" Py + -+ g Ha

@)@ty Py g D+ @y Py -y ™)
+a" @™ty " Py 4 -y ) e C

for all x,y €U, where A€ 7 and P;(x,y) denotes the sum of terms
involving 7 factors of y in the expansion of wu((x + iy)™)(x + Ay)"+
+(@ + Ay)"v((x + Ay)™) € C. Taking x = e into (2.3) leads to

2.4) mu(y) + nu(e)y + nyvie) +mv(y) € C.
for all y € U. It follows from (2.4) and Lemma 2.2 that
2.5) (m + n)ue)y + nyv(e) + mv(e)y + md(y) +mg(y) € C.

for all y € U, where d and g are the associated derivations of x and v,
respectively. Thus

(2.6) nlule)y + yv(e),yl + mldy) + g(y),yl =0
for all ¥y € U. Rewrite (2.6) as follows
@7 (nue),yl +mdy) + gy — yly, nv(e)] +md(y) +g¥)) =0
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for all ¥ € Y. By [3, Theorem 4.1] we have

2.8) nlute), yl +md(y) + 9(y)) = 0

2.9 nly, ve)] +mdy) + gy)) =0

for all y € U. Combining (2.8) with (2.5), we obtain

(2.10) m(u(e) + v(e))y + ny(ule) + v(e)) € C.

for all y € U. Note that u(e) + v(e) € C and R is 2(m + n)!-torsion free. So
(2.11) ule) = —v(e).

By Lemma 2.2, the relation (2.1) can be set

(2.12) u@)x™ " + x™v(e)a™ + d@™)x" + x"gx™) € C.

Replacing y by 2" in (2.8) and then right multiplication by x™ gives

n+m

nu(e)x™™ — na” ule)r™ = —mg(a™)xe™ — md(x" )™

for all x € U. According to the above relation and (2.12), we have

(2.13) —mg(x™)x™ — md@")e™ + nd@™)x" + nx"gx™) € C

for all x € U. Substituting « + Ay for « in (2.13) and applying Lemma 2.1
yields

2.14) —mg" y + " Pyx+ -+ ya" D™
—md(@" Yy + " Py + -+ oy ™
—mg@)@" Yy + 2" Pyx + - 4 ya™ )
—md(@)@™ Yy + " Py 4 - oy L)

+nd@" y + 2" Pyx + - 4y D"

m—1 mfl)

+na"ge™ Yy + 2™ Py 4 -y
+nd@™) @ty + 2" Py + -y
+n@" Ly + " 2y + -y g™ e C
for all x,y € U. Taking y = e into (2.14), we obtain
—mngx" a™ — mnd@" Ha™ — mEglc)e™ ! — mPd (™)™

2.15)  mndE™ Ha"” + mmc”g(xm‘l) + n2d@™" "t + nzx”‘lg(ocm) eC
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for all € . Continuing the process between (2.13)-(2.15) and applying the
fact that U is torsion free we ultimately get
— (n+m)g@)x + (n —m)d@)e — (n —mxd@®) + (n +m)xg(x) € C
for all x € Y. This is
[(n — m)d(x) — (n + m)g(x),x] € C
for all « € U/. By [18, Lemma 3] it follows that
(2.16) (n +m)g(x) = (n — m)d(x)
for all x € U.
CaSE 1. If m = n, then (n + m)g(x) = 0 for all x € Y. Due to torsion free
fact of the ring U, g(x) = 0. Thus (2.8) becomes as follows
[u(e),x] + d(x) =0
for all x € U. This leads to u(x) = u(e)x + d(x) = xule), which means p is a
right multiplier.
CASE 2. If m # n, by (2.8), (2.16) and a little computation, we have
2.17 (m + n)[ule), x] + 2md(x) = 0
(2.18) (m — w)ule), x] —2mg(x) =0
for all x € U. Replacing «™ for x in (2.17) and (2.18) leads to
(2.19) (m + n)[ute), ™1 + 2mdx™) = 0
(2.20) (m —m)lule),x™] — 2mg(x™) = 0
for all x € Y. Combining (2.11) with (2.12) we get
(2.21) 2mu(e)x™ " — 2ma” u(e)x™ + 2md(@x™)x" + 2ma"gx™) € C.
By (2.19), (2.20) and (2.21) we obtain
@mp(e)x™ — (m + n)u(e), ™ D" — & mule)x™ — (m — n)lu(e),x™]) € C
for all x € U. That is
(2.22) (n —m)[x"™™, u(e)] — (m + n)a™ "™, ule)lx™ € C
for all x € U. Let us set d,,)(x) = [x, u(e)]. Then (2.22) can be rewritten

(2.23) (n — M)y (@™ ™) — (M + n)x" d o (""" )™ € C
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for all x € U. Substituting x + Ay for x in (2.23) and applying Lemma 2.1
yields
224) (n — m)dye @ "y 4 " Ry 4 T
—(m + )@y + 2" Py -y e @™
— (m + )"y @)@y + " Ry + g™ )
— (m + M)y @y T Ry 4y ™ € C
for all x € U. Taking y = e into (2.24) leads to
(n —m)(m + n)d,,(e)(ac”*m‘l) — m(m + n)xm‘ldu(e) (&™)
—m(m + n)xmdﬂ@)(m”‘m)xm‘l — (n—m)m + n)xmdﬂ(e)(x”‘m‘l)acm eC
for all x € U. Since U is a 2(m + n)!-torsion free ring,
(2.25) (1 — m)dy @) — ma™ L d ) ("™
— " ) (@)™ — (n — M) d ey ("™ € C.
for all x € Y. Comparing (2.23) with (2.25), we have by induction
dye)(@®) — 3ad () € C
for all ® € U. That is
[[dye)(@), @], x] € C
for all « € U. By [15, Theorem 1] it follows that
dyey(@) = 0

for all « € U. This implies that u(e) € C. In view of (2.17) and (2.18), we have
d = 0 and g = 0. This shows that x and v are right (or left) multipliers. O

As a direct corollary of Theorem 2.3 we immediately get

THEOREM 24. Let m,n be fixed positive integers, R be a mon-
commutative 2(m + n)!-torsion free prime ring and d, g be a pair of Jordan
derivations on R. If d(x™)x" + «"g(x™) € Z for all x € R, then d = 0 and
g=0.

Using the orthogonal completeness method [2] we can extend Theorem
2.4 to the case of semiprime rings.
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THEOREM 2.5. Let m,n be a fixed positive integer, R be a non-
commutative 2(m + n)!-torsion free semiprime ring and d,g be a pair of
Jordan derivations on R. If dx™)x" + x"gx™) € Z for all x € R, then d
and g both map R into Z.

Proor. By Cusack’s Theorem [6] we know that d and g are derivations
on R. Let B be the complete Boolean algebra of £. We choose a maximal
ideal M of B. According to [2], MU is a prime ideal of &/, which is invariant
under any derivation of I. It is well known that the pair of derivations d, ¢
on R can be uniquely extended to be a pair of derivations on /. Let d, g be
the canonical pair of derivations on U = U/ MU induced by d, g, respec-
tively. The assumption implies that

[dx™)x" + x"g(x™),2] =0

for all ,z € R. It follows from [16, Theorem 2] that R and U/ satisfy the
same differential identities. Thus

[dx™)x" + x"g(x™),2] =0
for all x,z € U. Furthermore,
[dE@™z" +z"gx™),z] =0,

for all @,z € U. By Theorem 2.4 we know that either d(%) = 0 and g(%) = O or
[/, U] = 0. In any case, we have both

AU, Ul € MU
and

g, Ul € MU

for all M. Note that N{MU|M is any maximal ideal of B} = 0. Hence
dUOU,UT=0 and gU)U,U]=0. In particular, d(R)[R,R]=0 and
J(R)IR,R] = 0. These imply that

0 = d(R)[R? R] = A(R)RIR, Rl + d(R)IR, RIR = d(R)RIR, R]
and

0 = g(RIR? R] = g(R)RIR, R]+ g(RIR, RIR = g(R)RIR, R].

Therefore [R, d(R)IR[R,d(R)]=0 and [R,g(R)IR[R,g(R)] =0. By semi-
primeness of R we obtain that [R,d(R)] = 0 and [R, g(R)] = 0. These show
that d(R) € Z and g(R) € Z. O
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THEOREM 2.6. Let m,n,p,q be fixed non-negative integers, R be a
noncommutative 2(m + n)!-torsion free prime ring and d,g be a pair of
Jordan derivations on R. If x™d(x)x" + xPgx)x? € Z for all x € R, then
d=0and g =0, where m # p orn # q.

ProoF. Since d and ¢ are Jordan derivations on R, d and ¢ also are
derivations on R by Herstein’s Theorem [12]. It is well known that R
and U satisfy the same differential identities [16, Theorem 2]. This im-
plies that

(2.26) 2™ d@)x" + xPge)x? € C

for all x € U. Substituting x + Ay for x in (2.26) and applying Lemma 2.1
yields

2.27) Pi(x,y) = @" 'y + 2" Pyx + -+ ya" Hd@a” + 2" d(y)x"
+ " d(@)@" Yy + " Py + -+ gy Y
+ @y 4@ Py yaP g
+ &P g(y)x? + aPgla) @iy + i 2yx + - +yaxt ) e

for all x,y € U, where P;(x,y) denotes the sum of terms involving ¢ factors
of y. Note that U/ has the identity element e. Taking & = e into (2.27) we get

dy)+9y) eC
for all y € U. By the well known Posner’s theorem [18] it follows that
(2.28) d) +9) =0
for all ¥ € U. Using a similar computational way to (2.27), we also have
(2.29) Py(e,y) = myd(y) +nd@y)y + pygy) + 9y € C
for all y € U. Comparing (2.29) with (2.28) we get
(2.30) (n — Q)d(y)y + (m — pyd(y) € C

forally e U. If n — ¢ = m — p # 0, then d = 0 by the torsion free fact of U.
If n — g # m — p, linearizing the identity (2.30) yields

2.31) (m—d@y+ (n— Qdy)x + (m — plxd(y) + (m — p)yd(x) € C
for all x,y € U. Taking y = e into (2.31) leads to
(2.32) (n — @d(®) + (m — p)d(x) € C
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for all x € U. If n — ¢ = —m + p, then (2.30) becomes as follows
[d(y),yl€C

for all y € U. By Posner’ theorem we know that d = 0. If n — ¢ # —m + p,
then (2.32) also make d = 0. In any case of m # p or n # ¢, d = 0 always
holds. So g = 0 by (2.28). O

Similarly, we also adopt the orthogonal completeness method [2] to
prove the semiprime version corresponding to Theorem 2.6. Its proof is
completely analogous to that of Theorem 2.5 and is not presented here. We
only state it as

THEOREM 2.7. Let m,n,p,q be fixed non-negative integers, R be a
noncommutative 2(m + n)!-torsion free semiprime ring and d, g be a pair
of Jordan derivations on R. If x™d(x)x™ + aPg(x)x? € Z for all x € R, then
d and g both map R into Z, where m # p or n # q.

3. Pairs of Derivations on Banach Algebras.

In view of the above algebraic results, we will focus several range in-
clusion problems involved pair of derivations on Banach algebras in this
section. A always denotes a Banach algebra which is a complex normed
algebra and its underlying vector space is a Banach space. The Jacobson
radical of Ais the intersection of all primitive ideals of A and is denoted by
rad(A). The nil radical of A is the intersection of all prime ideals of A and
is denoted by nil(A). Let Z be any closed ideal of the Banach algebra A.
Then @7 denotes the canonical quotient map from .4 onto .A/Z. Moreover,
we assume that all mappings on Banach algebra A are linear mappings in
the whole paper.

At present, most of results in this field deal with one derivation, while
pair of derivations on Banach algebras was more less considered. On the
other hand, many results are proved under the assumption of continuity of
derivations. Our several results are proved without assuming the con-
tinuity of derivations. Let us begin this section with the following lemma.

LemMa 3.1 [23, Lemma 1.2].  Let d be a derivation on Banach algebra A
and J be a primitive ideal of A. If there exists a real constant k > 0 such
that ||Q7d"|| < k" for alln € IN, then d(J) C J.

Now we are in position to prove the main result of this section.
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THEOREM 3.2. Let A be a noncommutative Banach algebra and d, g be
a pair of derivations on A. If d(x™)x" + x"g(x™) € Z4 for all x € A and
fixed positive integers m,n, then d(A) C rad(A) and g(A) C rad(A).

Proor. Let J be any primitive ideal of .A. By Zorn lemma, there exists
a minimal prime ideal P of A contained in 7. Then d(P) C P and g(P) C P,
by [17, Lemma]. If P is closed, then d and g induce the derivations on the
Banach algebra A/P as follows

d@) =d@) + P, §@& =g +P

for all & € A/P and « € A. When A/P is commutative, both d(A/P) and
g(A/P) are contained in the Jacobson radical of A/P by [22, Theorem 4.4].
When A4/P is noncommutative, the assumption yields

[d@E™T" + &"g@"), 7] = 0

forallz,z € A/Pandw,z € A. By the primeness of A/P and Theorem 2.4, it
follows that d = 0 and g g= 0on A/P.In any case, we get both d(A) C 7 and
g(A) C J.If Pis not closed, then S(d) C P by [6, Lemma 2.3], where S(d) is
the separating space of linear operator d. By [20, Lemma 1.3], we have
S(Qf,(zl) = Qﬁ(/S\(d)) = 0, whence Qﬁd isA continuous on .A. This implies that
Q4d(P) = 0on A/P and hence d(P) C P. Thus d induces a derivation on the
Banach algebra .4/P as follows

d@) = d(x) + P
for all & € A/P and x € A. Thus we can define the following map
&d'Qp: A— AP — A/P— A)T

through ffanP(ac) Q7d"(x) for all x € A and n € IN, where ¢ is the ca-
nonical inclusion map from .A/P onto .A/.7 and ¢ indeed exists since P C 7.
By [20, Lemma 1.4], we claim that d is continuous on A/P and hence that
|Qzd"| < ||d||" for all n € N. By Lemma 3.1, we obtain d(.7) C 7. Using
the same argument with g, we also obtain g(7) C 7. Then the derivations d
and g induce the derivations on the Banach algebra A/ 7 as follows

d@) =d@) + 7, §@ =g@) +J

forallx € A/J and « € A. The remainder follows by a similar argument to
the case when P is closed since the primitive algebra A4/7 is prime.
Therefore we conclude that d(A) C J and g(A) C J. It follows that
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d(A) C J and g(A) C J for every primitive ideal 7, that is, d(A) C rad(A)
and g(A) C rad(A). This completes the proof of the theorem. O

As a consequence of the above theorem, we get

COROLLARY 3.3. Let A be a noncommutative semisimple Banach
algebra and d,g be a pair of derwations on A. If d@™)x"+
+x"g(x™) € Z4 for all x € A and fixed positive integers m,n, then d =0
and g = 0.

REMARK 3.4. Simulating the preceding proof ways which just appear
in this section, some similar results can be obtained. In fact, Theorem 3.2
and Corollary 3.3 still hold if the condition d(x™)x" + «"g(x™) € Z4 for all
x € A is replaced by the condition d(x™)x" + x"g(x™) € nil(A) for all
x € A. Here the assumption of continuity of derivations is not necessary.
We only state the final results without detailed proof.

THEOREM 3.5. Let A be a noncommutative Banach algebra and d, g be
a pair of derivations on A. If d(x™)x" + x"g(x™) € nil(A) for all x € Aand
fixed positive integers m,n, then d(A) C rad(A) and g(A) C rad(A).

COROLLARY 3.6. Let A be a noncommutative semisimple Banach
algebra and d, g be a pair of deriwations on A. If d@™)x"+
+x"g(@™) € mil(A) for all x € A and fixed positive integers m,n, then
d=0andg=0.

Let us consider the case of a pair of Jordan derivations on Banach al-
gebras.

THEOREM 3.7.  Let A be a noncommutative Banach algebra and d, g be
a pair of continuous Jordan derivations on A. If dx"™)x" + x"g(x™) €
€ rad(A) for all x € A and fixed positive integers m,n, then d(A) C rad(A)
and g(A) C rad(A).

ProOF. Let P be any primitive ideal of \A. Since d and g are continuous,
d(P) € Pand g(P) C P by [19, Lemma 3.2]. Then d and g can be induced to
the Jordan derivations on the Banach algebra A/P as follows

d@) = d(x) + P, §@ =g@)+P

forall € A/P and x € A. Since P is a primitive ideal, the quotient algebra
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A/P is prime and semisimple. Thus both d and ¢ are derivations by [12,
Theorem 3.1]. It has been proved that every derivation on a semisimple
Banach algebra is continuous [13, Remark 4.3]. Combing this result with
the well known Singer-Wermer theorem, we conclude that there are no
nonzero derivations on a commutative semisimple Banach algebra. Hence
we have d = 0 and § = 0 when .A/P is commutative. It remains to show that
d = 0and § = 0in the case when A/P is noncommutative. The assumption
of the theorem yields

forallz € A/Pandx € A. It follows from Theorem 2.4 thatd = 0 and § = 0.
In any case both d = 0and g = 0. This implies that d(A) C P and g(A) C P.
Since P is arbitrary, d(A) C rad(A) and g(A) C rad(A). This completes the
proof of the theorem. O

The following corollary is a special case of Theorem 3.7.

COROLLARY 3.8. Let A be a noncommutative semisimple Banach
algebra and d, g be a pair of Jordan derivations on A. If

dx™)x" + x"g(x™) € rad(A)

for all x € A and fixed positive integers m,n, then d = 0 and g = 0.
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