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GIT Quotients of Products of Projective Planes

FRANCESCA INCENSI (%)

ABSTRACT - We study the quotients for the diagonal action of SL3(C) on the n-fold
product of P%(C): we are interested in describing how the quotient changes
when we vary the polarization (i.e. the choice of an ample linearized line
bundle). We illustrate the different techniques for the construction of a quo-
tient, in particular the numerical criterion for semi-stability and the “ele-
mentary transformations” which are resolutions of precisely described sin-
gularities (case n = 6).

Introduction.

Consider a projective algebraic variety X acted on by areductive algebraic
group (. Geometric Invariant Theory (GIT) gives a construction of a G-in-
variant open subset U of X for which the quotient U//G exists and U is
maximal with this property (roughly speaking, U is obtained from X throwing
away “bad” orbits). However the open G-invariant subset U depends on the
choice of a G-linearized ample line bundle. Given an ample G-linearized line
bundle L € Pic®(X) over X , one defines the set of semi-stable points as

X55(L) = {xeX|Imn>0andse I'(X, L s t. s(x) # 0},
and the set of stable points as
X3(L) :={x e X5(L) | G - xis closed in X55(L) and the stabilizer G, is finite}.

Then it is possible to introduce a categorical quotient X5(L)//G in which two
points areidentified if the closure of their orbits intersect. Moreover as shown
in [10], X5(L)//G exists as a projective variety and contains the orbit space
X3(L)/G as a Zariski open subset.

(*) Indirizzo dell’A.: Dipartimento di Matematica, Universita di Bologna, Piazza
di Porta S. Donato, 5 - 40126 Bologna, Italy
E-mail: incensi@dm.unibo.it
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QUESTION. — If one fixes X, G and the action of G on X, but lets the
linearized ample line bundle L vary in PicG(X), how do the open set
X33(L) X and the quotient X55(L)//G change?

Dolgachev-Hu [4] and Thaddeus [11] proved that only a finite number
of GIT quotients can be obtained when L varies and gave a general de-
scription of the maps relating the various quotients.

In this paper we study the geometry of the GIT quotients for
X = PXC) x ... x PXC) = PXC)". We give examples for n = 5 and n = 6.
The contents of the paper are more precisely as follows.

Section 1 treats the general case X = P2(C)": first of all the numerical
criterion of semi-stability is proved (Proposition 1.1). By means of this it
is possible to show that only a finite number of quotients X%%(m)//G
exists (Subsection 1.2). At the end of the section we introduce the ele-
mentary transformations which relate the different quotients.

Section 2 is concerned with the case n = 5. Theorem 2.8 contains the
main result of Section 2: we show that there are precisely six different
quotients.

Section 3 discusses the case n = 6: the main results of this Section are
concerned with the number of different geometric quotients that may be
obtained (it is less than or equal to 38: Table 3.1) and with the singula-
rities that may appear in the quotients. In particular there are only two
different types of singularities: in Subsection 3.2 they are described,
using the Etale Slice theorem. Theorem 3.2 collects these results. At the
end of the Section two examples show how these singularities are re-
solved by “crossing the wall”.

1. The general case X = P?(C)".

Let G be the group SL3(C) acting on the variety X = P?(C)" and let o
be the diagonal action
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g: G x P2CY" — P2(C)Y"
g b) (xljﬂxn) = (gxla--wg%n)

A line bundle L over X is determined by L = L(m) := L(my,...,my,) =
= 7'[;(0:[)2(@)(7}%)), m; € 7.V, where 7; : X — P2(C) is the i-th projec-
i=1

tion. In particular L is ample iff m; > 0, Vi.

Moreover since each 7#; is an G-equivariant morphism, L admits a ca-
nonical G-linearization:

Pic%(X) = 7.

Thus a polarization is completely determined by the line bundle L.
Recall that a point « € X is said to be semi-stable with respect to the
polarization m iff there exists a G-invariant section of some positive tensor
power of L, y € I'(X, L% such that y(x) # 0. A semi-stable point is stable
if its orbit is closed and has maximal dimension. The categorical quotient of
the open set of semi-stable points exists and is denoted by X*S(m)//G:

k=0

X5(m)//G = Proj(é F(X,L®’°)G> .

The open set X5(m)/G of X55(m)//G is a geometric quotient.
We set XUS(m) = X \ X35(m), the closed set of unstable points and
X388(m) = X55(m) \ XS(m), the set of strictly semi-stable points.

1.1 — Numerical Criterion of semi-stability.

After fixing a polarization L(m), we want to describe the set of semi-
stable points XSS (m): using the Hilbert-Mumford numerical criterion, we
prove the following

n
ProposITION 1.1.  Let & € X and |m| := > m;. Then we have
i=1

Z mkﬁ@i'

kap=y

ZWSZ‘?—'

Jxier

(1) xeX%m) &

for every point y € PX(C) and for every line r C P*(C).
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Proor. Fixing projective coordinates on the i-th copy of P(C),
[wio : i1 = ®2], a point & € X ( C PUI(X, L(m))") = PN(C)), is described by
homogeneous coordinates of this kind:

n

Ji i pami—(Jitky)
Hmioxilxiz
=1

where 0 < j;, k; < m;, 5; + ki < m,.
Let 24y 5.4, be the one-parameter subgroup of G defined by 7, 4 4,#) =
= diag(t™,t™,t*) where oy + o1 + 0z = 0; We can assume og > o > 0.
The subgroup /s, ,, «, acts on every component of C¥*1, multiplying by

tao Zij,iJrc{l Zi ki+og Zi (mi—(Ji+k;)) )

By the definition of the numerical function of Hilbert-Mumford s (x, 1), we
are interested in determining the minimum value of

n n n
o0 Jitond kitoe Y (mi—(it+k)).
i1 i1 i1

This should be obtained when j; = k; = 0, V7 ;butif there are some x;» = 0,
then the minimum value becomes:
(2) o2 Z m; + o1 Z m; + oo Z my .
1,2i27#0 J,%j2=0,2;;#0 ke wre = =0
Thus « € X is semi-stable for the action of 4, ., ,, if and only if expression
(2) is less than or equal to zero.
Let
oy =Po+ P, =Py, oa2=—P;
it follows that f; > —2f,, f; > f, e f; > 0.
The expression (2) can be rewritten and the condition for semistability is

(3) /30( > om— Y mj)+/>’1< > mk—zmi)éo

k=1 =0 J,=0,2j1 70 ke atpo =11 =0 1,270

Fig. 1. - Plane §,, §,.
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The figure 1 shows that every couple (f,, ;) that satisfies (3) is a po-
sitive linear combination of v; = (1,1) e vo = ( — 1,2). Thus the relation (3)
must be verified in the two cases i, = f; = 1 e ff, = —1, f; = 2. After afew
calculations we obtain that x is semi-stable for the action of all 4, , 4, if and
only if

> my < Jml|/3, ye PO
hoe=y
> my <2iml|/3, rcPXO)

l,x;er

fory =[1:0: 0]and r the line x; = 0. Since every one-parameter subgroup
is conjugate to one of the form 4,, ., ,, the proposition follows. O

REMARK 1.2. The case with all m; =1 is a special case of [10] Pro-
position 4.3.

REMARK 1.3. x € X3(m) iff the numerical criterion (1) is verified with
strict inequalities.

The numerical criterion can be restated as follows: if KX and J are

subsets of {1,...,n}, then we can associate them with the numbers:
ym) = |m| =33 “my,  ypm) =2/m| -3 m;.
keK jed
In particular we have: yf(m) = —yﬁ(m); where J' = {1,...,n}\ J.
Now for every collection of disjoint subsets Kj, ..., K, of {1,...,n} with
|K;| > 2, we consider the set of configurations (xy, . . ., x,) where the points

indexed by each set K; are coincident and there are no further coin-
cidences:

Ug ..k, ={weX|if i#j, thenw; =x; < i,j € K, for some I} .

We write also
US ={veX|w#uifi#j}.

In the same way, for every collection of subsets J1,...,Jsof {1,...,n} with
|/;| >3 and J; € J, if | # p, define

L e X| if 4, j, k are distinct, then
Tiesds ™ x;, 2, % are collinear < 14, j, k € J; for some [ |
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Here by “collinear” we mean that there exists a line » containing x;, x;, x;
we do not require that these points be distinet.

correspond to points having precisely specified sets of coincident and
collinear points. Note that the points of the subsets U[% x, have ne-

cessarily some “implied collinearities” (for example, if x; = 22 then
x1, %2, x3 are collinear). It will be convenient to write Vl%w., x, for the subset

of UIC{I,”.., x, consisting of points for which there are no non-implied colli-
nearities. We write also

V};J = Uﬁ ..... 7, N Uwc
for the set of points with collinearities given by Ji,...,J5 and no coin-

cidences.

REMARK 14. We have UG NUY ;€ X5(m) if and only if

mig@ for all 7, ygl(m)EOforlglgr, yJLl(m)EOforlglgs.

Moreover, if any of these inequalities fails, then

The same holds for X5(m) if we replace all inequalities by strict in-
equalities. In view of this, when studying X35(m) and X5(m), it is suffi-
cient to consider the subsets UIC( N Uf or even Vg and VJL. In fact

Ve XSm) & m; < “;L—| for all i and y$(m) >0,

and

VECXSm) o m; < %‘ for all i and yE(m) >0,

with similar statements for XS (m).

1.2 — Quotients.

PrOPOSITION 1.5. Let
UCEN .— (x e X| a1, ..., 2, in general position} C X,

(i.e. every four points among {xi,...,x,} are a projective system of
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P2(C)). Then
1. X55(m) # 0 < USEN ¢ XS5(m) < m; < @for all i;
2. X5m) 40 < UN c XS5(m) & m;< @ for all i

Moreover, if n > 5,
X5m) #0 & dim(X35m)//G) =2 — 4).

Proor. Except for the final statement, this follows from Remark 1.4.
Since X%(m)/G is a geometric quotient, it is obvious that X5(m) # 0 =
= dim (X35(m)//G) = 2(n — 4). On the other hand, if X5(m)=0 but
X38(m) # 0, we must have m; = |m|/3 for some i. We can suppose

without loss of generality that i = 1. Every orbit in USFN contains a point
of the form

1 0 01 ... a

0101 ... 0],

0 01 1 ... ¢
with @, b, ¢ # 0. Acting by the one parameter subgroup 42 _; ;1 and letting
t — 0, we obtain

100 0 ... 0

0101 ... 0b6].

0011 ... ¢

This point belongs to the closure of the original orbit and remains semi-
stable. It follows that

XSS(m)//G = (PUCY B g, ... m,)

which has dimension less than or equal to n — 4. O

We know that the quotient X55(m)//G depends on the choice of the
polarization L(m): moreover Dolgachev-Hu [4] and Thaddeus [11] have
proved that when L(m) varies, then there exists only a finite number of
different quotients.

Now we give a proof of the same result in our case.

COROLLARY 1.6. There are finitely many different quotients
X55(m)//G.
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Proor. It follows from Proposition 1.5 and Remark 1.4 that

XSS(m) — UGEN U uSS(m),

where U%5(m) .= U{ Ug, .« N US| Ug,. & NUY, 5, € X¥@m)}. In
particular we can construct only a finite number of different sets /5% (m) and
as a consequence there exists a finite number of different open sets X55(m);

in conclusion only a finite number of quotients X®5(m)//G exists. O

REMARK 1.7. If n < 3, then X5(m) = 0; moreover X55(m) = () except
when n =3 and mj = ms = ms, in which case X5%(m)= USEN and
X5%(m)//G is a point. If n =4 and m; <|m|/3 for all i, then X5(m) =
= X58(m) = USFN and X5(m)/G is a point. Otherwise X®(m) = () and either
X55(m) = 0 or X35(m)//G is a point.

1.3 — Elementary transformations.

Let m be a polarization such that 38 divides |m| and
XS(m) # 0, X5(m) < X33(m); let us consider “variations” of m as follows:

m=m(0,...,0, 1 ,0,...,0).
\-,-/
(3
We can have two different kind of variations, depending on the value || :

L % m Ge. ||=2 mod 3);

2./ —% m (e || =1 mods3).

S

In both cases we have X5 (i) = X35(m); studying the relations between
values y7 C(m), VR L) and values yf(m) yK(m), we observe that

L w2 om
XS@m) ¢ X55(m) ) X3(m) = X35 (m) \ U Vi,
g ySm)=0V yEm)=0
XS5m) c XS(m), XS(m) = X5(m)\ U Vi,

i€ H,,H(m) =2V yL(m) 1

where V; is V¢ if y(m) = 0 or V% if y%(m) = 0 and in the same way
Vi is VG if yS0m) = 2 or V5 if yL(in) = 1.
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1
2. m—m

XS5m) c X5Sm), X5(m) = X55(m) \ U %3

ie J,yjc(m):O vy Em)=0

XStm) € XS@m), XS(m) = XS(@) \ U Vi

i HyGm)=1V yk(m)=2

where V; is V¢ if y¢(m) = 0 or V¥ if y¥(m) = 0 and in the same way
Vi is VS if ySem) = 1 or V& if yh(m) = 2.
At the end, we can illustrate the inclusions of the open sets of stable and
semi-stable points, with the following diagrams:
XSS(m) _ XS(m)C_O‘> XSS(m)

|

X*(m)

X99(m)

X5 ()

The inclusions X5(m) ¢ XS(m) ¢ X55%(m) induce a morphism

(4) 0:X5m)/G — X5(m)//G,

which is an isomorphism over X5(m)/G, while over (X55(m)//G)\
\(Xs(m) / G) it is a contraction of subvarieties. In fact, consider a point
&€ (X58(m)//G) \ (X5(m)/G): this is the image in X55(m)//G of different,
strictly semi-stable orbits, that all have in their closure a closed, minimal
orbit Gz, for a certain configuration x = (x1,...,%,) € X>5(m). In parti-
cular this configuration « has |/| coincident points, and the others n — |J|
collinear; by the numerical criterion, we get y$(m) =0 and y%(m) =0,
where J indicates the coincident points, while J' = {1,...,n} \ J indicates
the collinear ones.
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If there are no further coincidences, we can assume « has the form

1 ... 100 0 0 ... 0
0 ..010 1 1 .. 1 | pgec vk
0 001 B B v Buye

The orbits O that contain Gx in their closure, are characterized by
yg(m) =0 or y4(m) = 0; there are two different cases:

1. §(m) = 0: orbits look like

1 ... 100 4] o2 oo 05127|J|72
O=G-|0 ... 01 0 1 1 ... 1 ,p€CayeC.
0 ... 00 1 ppy pho oo PPuiy—2

2. yL(m) = 0: orbits look like

1 1 ... 1 0
0,=G-|0 61 ... 5|J‘,1 1
0 L I v 0

Now, calculating 9’1(5), it follows that:
071 = 07 (p));

by the numerical criterion, only one between Vf and V} is included in
XS(m). .
Dealing with an elementary transformation of the first type (m A m),
then
—ified =01 =0" (ViU Vﬁ)) = &(orbits of type Oy).
When n > 5, this has dimension:
(5) d=n-—|J]-3.
In fact, let us consider the minimal closed orbit Gux: all the orbits that

contain G in their closure and are stable in X5(i), are characterized
by the coincidence of |J| points (O; orbits).

—ified =07 =0" (gb(v_f U V_;)) — J(orhits of type Oy).
Now the dimension d of 671(¢&) is
(6) d=2n—-|J"1-1)-1.
Dealing with an elementary transformation of the second type (i N m),

then
(7 iedJ=d=2n—-|J|-1)-1; ted =d=n—|J|-3.
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2. X = PA(C).
2.1 — Number of quotients.

Let us study the case n =5: X = P2(C). Let m = (my,...,ms) be a
polarization such that
1
(8) 0<mi<§, m; > miy1,  |m|=1.
After normalization of /| and possible permutation of the factors, this is
equivalent by Proposition 1.5 to assuming that X5(m) # (. It is easy to see
that € X is unstable (that is, not semi-stable) if any of the following holds

three of the x; are coincident;

four of the x; are collinear;

there are two coincident pairs of x;;

any of the pairs x;,x; with 4 = 12,13,14, 23,24 are coincident.

In fact, if any of these possibilities satisfies the semi-stability condition,

1
there exists k with m;, > 3 contradicting (8). It follows that the following

sets are always included in XS(m):

(9) Viss: Vi Vis. Vi, Viss

while the following sets may or may not be included in X*(m):
Ve, v&, vy, V&, VL,

(10) L L L L L
V234 ) V134 ) V125 ’ V124 ’ VIZS :

In view of the excluded sets listed above and Remark 1.4, these are the only
sets we need to consider in order to determine X5(m) and X55(m). More-
over, the sets in (10) pair off in an obvious way and, for each pair, either one
member of the pair is contained in X%(m) and the other member is con-
tained in XUS(m) or both members are contained in X555(m).

We consider first the case in which XS(m) = X5%(m), so that
X558 (m) = (): then there are precisely six different possibilities and we will
show that there are exactly six different Geometric Quotients. In fact

0. in 45(m) there may be only sets V} : an example is the polarization
m = (1/5,1/5,1/5,1/5,1/5) ;

1. if in 45(m) there is one set V¢, it is V§: in fact, for i # j, we have
m; + My > My + M5, SO yg(m) >0= y405(m) > 0.
Example: m = (1/4,1/4,1/4,1/8,1/8) ;
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2. if in 45 (m) there are two sets Vg, they are V§, and V$: the argument
is similar to the previous one.
Example: m = (3/11,3/11,2/11,2/11,1/11) ;

3. if in 3(m) there are three sets Vg, we can have two cases:
(a) VL,V and VE , example m = (3/10,1/5,1/5,1/5,1/10) ;
(b) VG, VS and VE , example m = (3/10,3/10,1/5,1/10,1/10) .

4. if in U5(m) there are four sets V¢, they are V§, VE, VE and VE.
Example: m — (1/4,1/4,1/4,2/9,1/36) ;

5. the case of all V¢ sets in 25(m) is impossible, because V§, V§, V§,
V& are incompatible.

We have found six cases:

0. US(m) 2 UV, Ve, Visa, Vs, Viss: Visss Viis: Vass, Vais Vs
Lo Um) 2 UV, Viga, Visa, Viss: Vi Vits: Vigss Vi Vaiss Viis )
2. U(m)2 U{V2L34aV1L347V1L257V3C57V4C5»V1L35av1€157V2L9,57V2L45»V3L45}»
8a. US(m) 2 UV, Viss, Vi Vi, Vi Viss: Viass Visss Vaiss Vs »
8b. US(m) 2 UV Visas Vi Vi, Vg Viss: Vs, Vasss Vais Vs »
4. Um) 2 U{Viss, Vi, Vi, Vi Vi, Vigs, Vit Viss, Vaiss Viis ) -
Then there are only six different open sets of stable points and thus six
geometric quotients.

Now suppose X5(m) # X55(m). Then one or more of the pairs in (10) is

contained in X555(m). For such a pair, there are two distinct types of
strictly semi-stable orbit:

— an orbit O with ), = @y, K = {k1,k2}: O1 = V§;
— orbits O with wx;,, x;,, x;, collinear, i,142,13 € K'.

Orbit O; and all orbits Oy contain in their closure a closed, minimal,
strictly semi-stable orbit Oj2, that is characterized by xy, = x, and
X, iy, %, collinear:

xkl - xkg
o
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In the categorical quotient XSS(m)// G, orbits O; and O. determine the
same point; in fact O1p C (01 N Oy).

Let us examine the stable case more accurately: we know that only one
between O; and O is included in X®(m); when O; is included, it determines
a point of the geometmc quotient. In fact if for example V{ ¢ X5(m), then
(VL) = (Pz((f‘) ) (my, ma, m3, my +ms)/SL3(C) which is a point (see
Remark 1.7). When orbits Os are included in X3(m), they determine a
PY(C) in XS(m)/G. In fact if for example Vi, € XS(m), then we can assume

1 01 0 «
0:=G-{0 1 1 0 f],@peC\ {00}
0 0 011

Applying to Os a projectivity G, of P*(C) that fixes the line that contains
1, %2, 03 (G, = diag(/4, 4, 47%), with 1 € C*), it follows that

1010
Gi-xs|10 1 1 0 2
0 00 1 1
If o # 0, then we can assume 3= o~1; thus we obtain a5 = [1: o714 : 1];in
the same way if § # 0, then a5 = [« 1 : 1: 1].

Then it is clear that ¢(0z) = P}(C).

In the semi-stable case when V§,VE c X55(m), we know from the
above that V{ N V% # () is a single non-singular point of X55(m)//G, just
as in the stable case when V¥ is included in the open set of stable points.

In this way it follows that every categorical quotient X55(m)//G, where

XSS(m) D USENU{ Ve VE ..., VEVE, ... VLVE

stable sets semi-stable sets

is isomorphic to a geometric one X5 (m/)/G, where
XS5m)) 2 USEN y(ve vE, ..V, VE)

The polarization 1’ is obtained from m using elementary transformations
such that for each V{ N VE +£ 0 in X55(m), then V§ C XS(m/). This is al-
ways possible because the number of different quotients is finite.

THEOREM 2.8. Let X = PX(C)°: then there are six non trivial quo-
tients.
Moreover a quotient X55(m)//G is isomorphic to one of the following:
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PA(C) with four points blown up — (PA(C),)
P2(C) with three points blown up (P3(C)s)
PA(C) with two points blown up — (PA(C)y)

P2(C) with a point blown wp (P2(C)y)
PLC) x PYO) (PHCY);
P2(0)

Proor. The six different open sets of stable points (11) correspond to
six different quotients:

0. X5(m)/G =~ P*(C) with four points blown up
1. X5(m)/G = PXC) with three points blown up
2. X5(m)/G = P*(C) with two points blown up
3a. X5(m)/G = P*(C) with a point blown-up

3b. XS5(m)/G = PY(C) x PY(C)

4. XS5m)/G = PXC)

The proof examines the different cases pointed out in the description of
the open set of stable points X5 (m):

Case 4.

XS5(m) = UCEN U 1S(m).

S GEN L L
X°(m) 2 U U { 125> 15? VZo’ V35’ V45’ V1357 V1457 V235’ V245’ V345}

Stable configurations have x;x20324 in general position, while x5 is
free in P2(C) (in particular it may be coincident with the other
points).
Then

XS(m)/G = PXC).

Case 3a.

S GEN
X (m) 2U U { 125> 2347 V257 V357 V45’ Vl357 V1457 V235’ V245’ V345

There are two different kinds of stable configurations:

— x122x3%4 in general position, x5 cannot be coincident with x; (i.e.
applying the projectivity of P2(C) that sends wy,s, 3,24 to
[1:0:0],[0:1:0],[0:0:1],[1:1: 1],thenx5ePZ(C)\ {[1:0:01});

— 22314 collinear (“complementary” condition of x5 = x;); using a
projectivity of P%(C) we obtain:
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0 0 B

Then with another projectivity G, of P%(C), that fixes the line
containing xorzxy, we get: (G, = diag()f% AA),AeCh)

1000 1
010 1 2«
0 01 1 28

If o« # 0, then assuming 2> = o1, we obtain s = [1: 1: o f]; in
the same way if § # 0, taking /3 = f71, we get s = [1: 071 : 1].
Passing to the quotient we get a cover of P1(C).

10001
0101 al, (@pecC?\{0,0}.
11

Comparing this case to the previous one, in X5(m) the set U, (that
determines a point of the quotient) is substituted by Uk, that gives
PY(C) in the quotient. Then

X5(m)/G = P*(C) with a blow-up.

Case 3b. In this case, if x1,x2, 23, 24 are in general position, x5 cannot be
collinear with x1, x2. As in the previous case, the equality x; = x5
is replaced by the collinearity of x2, x3, x4, giving rise to a blowing-
up of the corresponding point of P*(C). The same applies to the
equality x2 = x5. The proper transform of the line joining w1, xe
corresponds to the equality x3 = x4, which is allowed, so we must
blow down this line to obtain P*(C) x PX(C).

The other cases are analogous to the first two. O

2.2 — Quotients P2(C)°//G.

The following diagram shows some birational maps between quotients
(the polarization is given in brackets with the corresponding quotient as a
subscript); for example if m = (22211), then XS(m) = PZ(C)g (.e. PA(C)
with three points blown-up) and there is a morphism

0 : X5(22211)/G = X5(44422) /G = P*(C); — X55(44322) //G = P}(C) x PL(C)

In fact m = (44422) is an elementary transformation of m = (44322) in the
sense of Section 1.3 and 6 is the map given by (4).
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The diagram has been obtained by direct calculation (some of the
techniques will be illustrated in Section 3); in particular it includes some
cases where X°(m) = () which are not included in the earlier discussion and
where the quotient has dimension smaller than two. For example:
X(21111) =~ (PI(C))4(1111) that determines a one-dimensional categorical
quotient, while X(33111) = P%(C) that determines a zero-dimensional ca-
tegorical quotient (compare the proof of Proposition 1.5)

(11111)p2(cy,

|

(21111 )p1(c

T

(22111) (p1(c))2

\

:

(22211)p2(cy,

(33111)po(c)

T

(33211) 1 ()2

— ]

\
/

(32211)p1(c)

/
\

l

(22221)p2 ()

(32221)p2 (), (22222)p2(c),

(66522) (P1(C))? 66432 (]Pl((C))2 (65442)]92(@)1 (54444)]1»2(@)4
(33311)p2(c, (33221)p2(cy, (32222)p2 (0,

!

\
/

(33321)p2 (g

/
\

(33222) 1 ()2

(33322)p2(c),
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3. X = PO,
3.1 — Number of quotients.

Now we study the case n = 6: X = PZ(C)G; as in the previous case we
first determine how many different quotients we can get when
X5(m) = X55(m) and the polarization varies.

For a polarization m = (my,...,mg) such that XS(m)#( and
X5(m) = X55(m), then

X5m) = USEN U tS(m).
We want to describe the structure of the sets US(m); assume that
1
0 . —
<m;< 3

We are interested in those sets Vg K that are included in XS(m):
some are always included in XS(m):

V36 ’ V46 ’ V56 ’

y M > Mgy, m| =1.

and others may be included in X5(m): the general sets V§

C C C C C C C C C
Vl5 ’ Vlﬁ ’ VZS ’ V24 ’ V25 ’ V26 ’ V34 ) V35 ’ V45 )

C C C C C C
V156 ’ V256 ) V345 ’ V346 ’ V356 ’ V456 ’

and also their “combinations” Vg Ky With |Kq| = [Ks| = 2, disjoint subsets
of {1,...,6}. Aswe shall see the number of different sets L{S (m)is 38: so the
number of chambers in which the G-ample cone of Dolgachev and Hu [4] is
divided is less than or equal to 38.

First of all the minimum number of general sets V¢ with |K| = 2, in-
cluded in X5(m) is five: in fact for example consider only the sets
V& VS VE; that are always included in X5(m), then obviously

1 6 . .
My + mg > Mg + Mg >= = Zmz >1 : impossible.

1
, Mg +Mms > 5, 3
i=1

3 3
In a similar way it is impossible to have only four sets V5 (K| =2) in
XS(m).

Then for five sets V¢, we have V, VG, VS, VG, VE: in fact with another
5-tuple (for example Vi, VS, VS VG VE), we have |m| > 1, which is im-
possible. Moreover with these combinations, it is impossible to obtain a set
as V§ with |K| = 3.

Going on with the calculations, we are able to construct the following table,
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TABLE 3.1.
Ve, No Vg, 1set VY, | 2sets VY, | 3sets VE, | 4sets V,
K| =2 K| =3 K| =3 K| =3 K| =3 K| =3
Ve VS VS, v
No™ No No No
VGV 11—1(222221)
VC7VC7VC7 ‘/ V4%6
lg 22 33 1 1 No® No No
Vis: Vie: Vi | — (333221) | — (444221)
14 17
Vi Vs, Vi 4 Vi Ve Viss | Vi Viser | Viser Vare:
Vi Vie: Vs ) . . . Viis 1V3€16»V3€15
g@21111) | = (332111) | T (442211) | —(552221) | 75 (331111)
Vi Vs Vi, v Vi Vige: Viss | Visss Vi
VG VE.V, S I
Vis 1 309911y | Lassarn | L sassiny | L 644311
11 14 17 19
VC VC VC
o AR v Viss Ve Viss | Viser Vise: )
Vas: Vig: Vi, 1 uz9901) | Lsageon) | Lstssen) | L saz21) No
V& 14 17 26 16
Vie Vi Vi | Ve | VELVE,
Vie:Vis, Vi l(443321) l(554321) i(775421) Nof? No
V& 17 20 26
V1%7V2%7V3047 v VC Vc VC V4%67V3%67
Vis Voo Vi | 1 339921) | 1 4:;6221 1 4556533325(1; Vi Nof”
C C — _ _
Ve Vs | 3¢ ) | 16¢ )| 15¢ | L 7ras31)
25
Vi Vi, Vs, v Vi Vise: Viss | Visss Vise:
Vis Vis Vi, Vi No®
Ve Vs | L 1 1 1
15 (33321) | S (T66421) | o (T65521) | oo (T55521)
Vi Ve Vi | v Vs Ve, VS,
VC VC VC N () N
s 0w 5l L gesnan) | L (s65322) | - (432211) ° °
Vi V& |81 26 13

Segue
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TABLE 3.1. Segue.
Ve, No Vg, 1set VS, | 2sets VS, | 3sets VK, | 4sets VK,
K| =2 K| =3 K| =3 K| =3 K| =3 K| =3
Vl%: Vl%: V2%> v V4056 VAE')()’ V3%6 Végfﬂ V§§567 V4%67 V3C56’
Vi Vis: Vi, Vise le%@ Vise
Vg V4% V5% 1 1 1 1
) 7467 —(222211) | — 211) | —(443311) | — 411) | == (555511
10( ) 13(333 ) 16( 3311) 25(766 ) 22( )
EVEVEl .| g,
Via Vi, Vi 1 (533202) | Ls111) No™ o o
VL VG VS| 1T 10
VRV
VZCQS’ Vi’%’ V3C§’ 1 NoffP No No No
VS VL VG| S (@11111)
o 7
v
56

(*) This case is not possible, because there is not any available term; 1
) V?is is not included in XS(m), because otherwise mg + my + Mmz< 3
1

me + mg < 3 = mp > 3 which is impossible;

() Vs, Viis: Viig € X5(m);
(") Viie Viser Vias: Viie Viss € XS(m);
(") Vg, Viis Vase Vias Vg Ve Vizs € X5 (m).

that shows all the possible cases (in the “admissible” cells we exhibit an ex-
ample of a polarization that realizes the geometric quotient). In particular it is
not possible to have more than ten sets Vg (K| =2) in XS(m): we would
obtain |m|<1.

3.2 — Singularities.

In this section we study the singularities which appear in the catego-
rical quotients when X555(m) # (.
We suppose always that X®(m) # (), so that m; < |m|/3 for all i. Suppose
that |m| is divisible by 3 and that there exist strictly semi-stable orbits
(included in X355(m)); then we can have different cases depending on some
“partitions” of the polarization m € 720
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1. there are two distinct indices 7,7 such that m; +m; = |m|/3; as a
consequence, for the other indices we have m;, + my + m; +m, =
= 2|m|/3.

.LZ:.L]
[

In X55(m)//G these orbits determine a curve Cj; = P(C).

If there do not exist indices &, [, distinct from each other and from ¢

and j with my, + m; = |m|/3, then all the orbits are closed.

1.1 particular case: m; +m; = my, +my = my +m, =|m|/3 for
distinct indexes (i.e. there is a “special” minimal, closed orbit
other than the orbits previously seen, characterized by
X =X, %y = Xy, L) = Ly ).

Ti = Ty
[ J [ )

[ )
T = Tn
2. there are three distinct indices %, ¢, such that m;, + m; +m; = |m|/3;
as a consequence for the other indices it holds mey, + m; + m, =2|m|/3

(i.e. there is a minimal, closed orbit such that x, =x; =x;, and &z, 27, ¢,
collinear and distinct for the numerical criterion).

Tp =X = 15
[}

Let us study minimal, closed orbits and what they determine in
X5(m)//G.

3.2.1 — x; = zj and xy, 3, 21, T, collinear.

Consider a polarization m = (my, ..., mg) as previously indicated and
an orbit G such that x; = x; (m; +m; = |m|/3), and the other four points
X, T, X1, Xy, collinear (my, + my, + my + my, = 2|m|/3).
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Gx is a minimal, closed, strictly semi-stable orbit and its image in
X58%(m)//G is a point & € Cj;. For the sake of generality, suppose that
Xy, T, X1, &, are collinear, but distinct; for example assume « as:

110000
=10 01 0 1 1}, abeC* a#b.

00 01aadd

Now let us apply the Luna Etale Slice Theorem, to make a local study
of &: in fact it states that if Gx is a closed semi-stable orbit and ¢ is
the corresponding point of X%%(m)//G, then the pointed varieties
X5 (m) //G, &) and (N, // Gy, 0) are locally isomorphic in the étale topology,
where N, = Ngy/x . 18 tlr}e fiber over x of the normal bundle of Gx in X (for
more details about the Etale Slice Theorem, see [9], [12] and [5]).

In our case the dimension of the stabilizer G, is equal to one and
G, = {diag(fz, 2y A), A € C*} = C*. Moreover the orbit G is a 7-dimen-
sional regular variety in C'? and the space T,C'? = C'* can be decom-
posed G -invariantly as the direct sum 7,Gx & N,.

For a local study, first we dehomogenizate each copy of P%(C), the first
four copies of P%(C) via the unique non-zero coordinate, the last two copies
via the second coordinate; in this way x € P%(C)°® can be considered locally
in C'2 as

(0 000 0O
xr =

. 12
0000 a b)_(o,o,o,o,o,o,ovo,ova,o,b)e(\/ .

Let us consider C2 with coordinates (y1, ..., ¥12): the equations of the
7-dimensional tangent space T,,Gx and of the 5-dimensional normal space
N, are

y1+y3=0
y1—ys=0 Y2 +y1=0
Y2 —Ys=0 Y5+ Yo +y11=0
T.Gx: S ys +ayr —yy=0 Ny i § Y7+ ayg + by =0
Y5+ byr —y1n =0 Y6 + Y10 +y12=0
(@ —b)ys + abla —b)ys+by1o —ay12 =0 abys —ys =0
ay10 + by12 =0

Then a basis for N, = C° is determined by {v1,...,vs}, where:

V1 = (1707 _170707070707070707 0)7 V2 = (07 1707 _1707070707()’070; O)a
V3 = (070a0707 1,0,(1,0, _1707070)7 Vg = (070707()’170’[)’070)07 _110)5
v5 = (0,0,0,0,0,a — b,0,abla — b),0,b,0,—a).
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Now, by the Etale Slice Theorem, we have to study the action of the
torus C* on N,: this action is induced by the diagonal action of SL3(C) on
PHO) (m):

C* X P2(C) - P2(0)
200
({ o 20 oL@ wel) — A g A Aae]
0O 0 1
Then on the coordinates (y1, ..., y12) of (12 we have:
Y= /r0 — /U w0 = Py
Yo = w12/ /() = Ay
Y3 = Xo1 /%20 — A/ Pw) = Ays
Yo =Do/T20 — I/ Pw) = My
Ys = 30/ — A wso/Uwm) = 2ys
Yo = T32/031  —  Axsa/(Aw31) = Y
Y1 =Qa/T — A xa/Uxg) = Ay
Ys = Xu1 /a2 —  Axar/(Axs2) = U
Yo = as0/Ts1 A ws/Uas) = APy
Yo = Ts2/%51 —  Awse/(Axs1) = Yo
Y11 = Xeo/xer — A “weo/Ure) = A yn
Y12 = Xe2 /%1 —  Axez/(A261) = Y2
The action on the basis (vq, . .., v5) of N, = % is

V1= },37)1; Vg — 137)2; Vg +— ).737)3; Vg — },73?)4; V5 — V5.

In this way a local model for (X5S(m)//G, &) is (C°//C*,0) with “weights”
3,3, —3,—3,0), that is the 4-dimensional toric variety Y. Using (21, .. .,%5)
as coordinates of C°( = N,,) with respect to the basis {v1,...,v5}, thering of
invariant functions is generated by

Ty =223, Te:=z124, T3:=2023, Ty:=2024, T5:=25,
and the coordinate ring of Y is
ClTy,...,T51/(T1 Ty — TsTs).

In conclusion, the variety (X%(m)//G, &), where ¢ is a point of the curve
C;; = PY(0), is locally isomorphic to the toric variety Y: it is singular and
there are different ways to resolve it ([2], [6]).
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3.3 —x; = x), Xy = Xpy, Tpp = T

This study is analogous to the previous one.
Consider a polarization m such that it is possible to “subdivide” it as
m; +mj = my, + my = my, +m, (for different indexes); we are examining
the configuration x, with x; = x; , %), = x;, 2, = x, (this configuration is a
particular case of the previous one).

In the quotient X55(m)//G the image of the orbit Gz is a point Ojj
that lies on the three singular curves Cj;, Cjy, Cyy.

The orbit G is minimal, closed and strictly semi-stable: assume x equal to

110000
xr=10 011 0 0].
000011

Let us apply the Etale Slice Theorem as we did in the previous
case: the stabilizer G, is isomorphic to a 2-dimensional torus
G, = {diag(/, u, 2 '), 2, € C*} which implies that dimGx =6 and
the space T, = C!2 can be decomposed G, -invariantly as the direct
sum T.Gx ® N,, where T,Gx and N, are both 6-dimensional.

After the dehomogenization of each copy of P*(C) via the unique non-
zero coordinate, the configuration « € P2(()% can be considered in C12 as

0000 O0TUO
x:<0 00 0 0 0):(0,...,0).

Let us consider with coordinates (y1,. .., ¥12): the equations of the
6-dimensional tangent space T,Gx and of the 6-dimensional normal space
N, are:

Clz

C —Y3=0, y2—y1=0, y5—y7=0, -6
T G — c 2 Y1—Y3 ) ) ~ (6
o {y | Yo —Ys =0, yo—yu1 =0, yio—y12=0

< +y3=0, y2+ys=0, ys+yr=0, 6
N,={dyec % o~ (6
N {y | Yo +ys =0, Yo+yu=0, Yyio+y2=0

Then a basis for N, = C° is determined by {vi,...,vs}, where:
V1 = (1a07 —1,0,0,0,0,0,0,0,0,0), V2 = (03 1703 _170a070a070,030,0),
V3 = (05070507 1>Oa _17070707070)7 Vg = (0707070707 1707 _170707070)7
Vs = (07 07 07 07 07()’ 07()’ 17 Oa _17 0)7 Ve = (07 07 07 07 07 07 0,0, 07 la 07 _1)

Now, by the Etale Slice Theorem, we have to study the action of the
torus {diag(4, x, Al e (= (C*)? on N,: this action is induced by



24 Francesca Incensi

the diagonal action of SL3(C) on P2(C)%(m). In this way on the coordinates
1, ..., y12) of C12 we have:

1

Glueyn, A%y, Alueys, A%y, ctys, 2Ry,

Wtyr, A ys, Py, Mlyo,  Pueyn, Ml y).
The action on the basis (v, ..., vg) of N, = C8is

V1 )L_l,u V1 Vo /1_2/[1 V2 v Au ! vy

v A2 g vs— A2 s ; Vg — A - Vg .

It follows that a local model for (X55(m)//G,O;i k) is given by
Y = (C5 //(C*)z,O), where the action of (C*)? can be written (in the co-
ordinates (z1, . . ., 7¢) of N, = C%) as

(12) (@1, ... 26) — U pen, 220 Y, A Yoy, A %2y, PP iz, M)

Thus we obtain a 4-dimensional toric variety Y: the ring of invariant
functions is generated by

T1:=z123, To:==zoz5, T3:=2z42¢, T4:=212425, T5:= 222324,
(13)

and the coordinate ring of Y is:
(14) ClTy,...,T51/(T1T2Ts — TyTs) .

Its singular locus is given by three lines s; = {(£,0,0,0,0),t € C},
sg = {(0,¢,0,0,0),t € C} and s3 = {(0,0,¢,0,0),¢ € C} that have a common
point, the origin. These lines correspond to the curves Cj;, Cy, Cyy,.

A toric representation of Y is determined by a rational, polyhedral cone
o C RY, such that Spec(c¥ NZ*) = Y. The generators of the semi-group
¢’ N 7% are Wi, ..., W5 € 7% and satisfy w; + we + w3 = w4 + w5 . Assume

w; =(1,0,0,0), w:=1(0,1,0,0), ws=1(0,0,1,0),
Wy :(070703 1)7 Ws = (171717_1)'

The primitive elements of ¢ are:
n; =(0,0,1,1), ny=(1,0,0,0), n3=1(0,0,1,0),
ny=(0,1,0,1), n5;=(1,0,0,1), n¢=1(0,1,0,0).

It is clear that the cone o is singular.
Let us intesect o with a transversal hyperplane 7 of R* and then con-
sider the projection on n. With 7 : y; + y2 + y3 + ¥4 = 2 we get the poly-
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tope IT of R?, with vertices
U1 :(0;07 1)7 U2 :(27()’0)7 us :(07052)7
u4:(05170)7 u5:(170a0)7 /LLG:(O,Z,O).

ug W

5 > s,

Uy

Fig. Polytope I1.

In conclusion the pointed variety (X55(m)//G, Oj; k) is isomorphic to
the toric variety C[T4i,...,T5]1/(T1T2Ts — T4T5), where the action has

weights
-1 -2 1 -1 21
1 -1 -1 -2 1 2)°

3.4 —x), = x; = xj and Xy, 07, T, collinear.

Consider a polarization m such that my, +m; +m; = |m|/3 and
my, +my +my, = 2|m|/3 (for different indexes); then let us study the
configuration x where: x), = x; = x; and x, ¥, %, collinear.

The orbit Gx is minimal, closed, strictly semi-stable and its image in
X5%(m)//G is a point Oy;. In particular a,x;, x,have to be all distinct.

As in the previous cases, by the Etale Slice Theorem, we obtain a local
model for (X5(m)//G,0y;): this is determined by Y :=(C%//C*,0),
where the action of C* over C° with coordinate (21,...,25) has weights
3,3, 3,3, —3). Y is a 4-dimensional toric variety that corresponds to the
smooth affine variety with coordinate ring

C[Ty,..., Ty =C*.

In conclusion the corresponding point Oy; in X5(m)//G is non-
singular.
We have classified the different singularities of X55(m)//G:
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THEOREM 3.9. Let X = P*(O)% and m ¢ Zio a polarization:
1. m s.t

- 3“m|7

- m;<|m|/3 W1,

then the quotient XSS(m)// G :XS(m)/G is geometric and non-
singular;

2. m s.t.
-3 ‘ |’Vﬂ|,
- m;<|m|/3 V4,
— for all couples and triples of indexes we have m; +m; # |m|/3 or
my, + m; +m; # [m|/3,

then the quotient X35(m)//G = X5(m)/G is geometric and non-
singular;

3. m s.t.
- 3 |ml,
— there exists an index 1 s.t. m; = |m|/3, while for the other indexes

J#i,m;<|m|/3,

then the quotient is (PLO)Y(m!) //SLa(C); its dimension is equal to
two, and the polarization m' € Zio 1s obtained from m by elim-
mating m;

4. m s.t.

- 3 [|ml,
— there extst two different indexes 1, s.t. m; = m; = |m|/3, while for
the others h # 1,j,m), <|m|/3,

then the quotient is (PI(C))‘l(m” )//SLo(C) = PI(C); the polarization
m" € 72, is obtained from m by eliminating m; and m;

5. m s.t.

- 3 |ml,

- my;<|m|/3 V4,

— there ave two different indexes 1,j s.t. m; +m; = |m|/3,

then the categorical quotient XS(m)//G includes a curve

C;; = PY(C), that corresponds to strictly semi-stable orbits s.t. x; =
O Ty, T, X7, T, collinear. In particular points & of Cy; are singular:
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locally, the variety (X®S(m)//G, &) is isomorphic to the toric variety
ClT1,Ts, T3, Ty, T51/(Th Ty — ToTs) .

6. m s.t.

= 3| |m|,

- m;<|m|/3 V1,

— there is a “partition” of m such that m;+m; =my +my =
= My + My,

then the categorical quotient X5%(m)//G includes three curves Cyj, Cyy,
Ch, =2 PY(C), that have a common point Ojj 1t jen-

In particular Oy is singular: locally the variety (X55(m)//G, Oy i) is
1somorphic to the toric variety

C[T1, T, T3, Ty, T5]/(T1ToTs — T4T5) .
7. m s.t.

- 3| |m,
- m;<|m|/3Vi
— there are three indexes h,1,j s.t. my, +m; +m; = |m|/3,

then the categorical quotient X55(m)//G includes a point Oy that
corresponds to the minimal, closed, strictly semi-stable orbit G
such that x), = x; = x; and xy, 2,2, are collinear. The point Oy is
non singular.

3.5 — Examples.

Now we provide two examples that illustrate how to get explicitly a
quotient, via its coordinate ring, or via an elementary transformation.

3.6 — P2(()5(222111).

|m| = 9. Sinee m; < |m|/3 for all ¢ and, for example, m; + my = |m|/3,
we have X5(m) # 0 and XS(m) ¢ X55(m).

Moreover it is easy to verify that there are nine Cj; curves, six Oy
points and one Oy;; point (Oys6).

Let us study the graded algebra of G-invariant functions Rg(m)G. A
standard tableau t of degree k associated to the polarization m looks like
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a; a3 @
1 .2 .3
al a2 «a
o Q3 0y

(15) =1 3k
ag ay aj
ay af a

where a} denotes a column vector in the i-th column of 7 with all coordinates
equal to j. If |af| is the length of @}, we have

laj| = 2k, HES |az| + la3| = 2k,

la3| + |a3| + |af| = 2k, ay| +|af| + |af| =k, |oZ| + |ai| =k,
4 1 5 9 5 3
Z|az‘:ka E|a1|:3k7 Z|a’z‘:2k
=2 =2 =3

Let g := |ad|, o4 := |a}|, B3 := |ad|, By := |al|. Then it follows that:

lai| = 2k, la3| =k + ag + o4, la3| = Bs,
a3 =k — (a3 +ow),  |af| =2k — (a3 + fy),  |af] = By,
|ag| = o, 0l =k — (u+ By, |ad] =2k — By + By,
|ag] = o, |aZ| = fs + By — k, |ag] = k.

Moreover og, o4, f3, B, must satisfy the inequalities:

0 < ag,oq,fB3,fy <2k, og+204 <P, ag + oy <k,
k+oy <P+ <2k, Ps<k+og+tos, 2f5+p<3k+o.

Assume
X = 0y, ?/3:OC3+0547 Z3:ﬂ37 w:ﬁ3+ﬁ47

the standard tableau 7 (15) is completely determined by the vector
(x,y,z,w) that satisfies:

0<x<y<k, 0<z<w<2k, 0<y+z—a<2k,
r+y<z<y+k, z<w<k+z O0<w+rx—z2<k w>x+k.

After a few calculations we find out that for any k, there are
1
S (k* + 6K* + 15k% + 18k) + 1 (= dim (RS(m){))

standard tableaux. Thus the Hilbert function of the graded ring Rg(m)G is
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equal to
1-#
-0

j{:(%(k44—6k34—15k2%—18k)+—1>#5:
k=0

This suggests that the quotient X*5(m)//G is isomorphic to a cubic hy-
persurface in P°(C).

By the First Fundamental Theorem of Invariant Theory we know that
the algebra of invariants Rg(m)G is generated by bracket functions: to each
tableau we can associate a tableau function that is a product of bracket
functions. Let us see in details. A configuration & € X can be written has a

matrix 3 x 6
Xor Xo2 ... Lo
rX= 121 %12 ... x16 |,
X21 Y22 ... X9

where the i-th column contains the coordinates of the i-th point. The
bracket function det; ;,;, on the space of 3 x 6 matrices is equal to the
maximal minor of x formed by the columns ji, j2 and js: det;, j,;,(x) =
= [J172Js].
T Tiz T3
... | withrrows and 3 columns, we
[Trl Tr2 771‘3:|

Now for each tableaut =

define the tableau function

r

t = ][z 7iz sl

i=1

In particular, each such function is an invariant for the group SL3(C).
Now for m = (222111) we have six standard tableaux t; of degree k = 1:

[124] [123] [123]
o= |135|, 7= |135|, w=(134],
| 236 | | 246 | | 256 |
[123 ] [123] [123 ]
3 = 125 , T4 = 124 , Tp = 123 |.
| 346 | | 356 | | 456 |

Then we get the following invariants of Rg(m)G:

to = [124][135][236], ¢ = [123][135][246], ¢z = [123][134][256],
i3 = [123][125][346], ¢4 = [123][124][356], t5 = [123][123][456].
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For every (i,7) # (2,3),(3,2), the product ¢;; is a standard tableau function
from Rg(m)g . Applying the straightening algorithm (that allows one to
write any tableau function as a linear combination of standard tableau
functions), we obtain:

(16) tots = t1ty —u +t5( —tg + 11 —to — t3 +t4 — t5).

So the standard monomial » = [123][123][123][145][2461[356] can be ex-
pressed as a polynomial of degree two in the ;.

If we take a tableau function ¢(,, ..k corresponding to a standard ta-
bleau 7(. ;%) (15), we can write it as

thromshrime gk g <wtk, w<k+z—w
fotp—z g2—a—Y h+y— —x—
t tow zti x yt3 Y wtff x ktaé r<x+k y<z-—ua;
(e, 2w,k) — —y— -
gilrowma U gk >k, w < 8k 4o -2
t?k%—x—y—ztlg-&-y—wtz;fztguzfxfk7 2>x+ k7 y < 2k +x — 2.
In other words ty, . . ., 5 are the generators of Rg(m)G.

Applying the straightening algorithm to the non-standard product tyu,
we have:

tou = t1t4(ty — b2 —t3 + 14 —t5).
Then by relation (16), it follows that
to(tits —tats +ts(—to +t1 —ta—t3 + ts—t5)) =tits(ts —ta —ts + ts —t5) =
to(—tats +ts(—to + 11 —ta—t3 + ts—t5)) =tata(—to + tr —t2 — b3 + ta —t5) =
(—to+1t1 —ta —t3 + by — t5)(tols — t1ts) — tolats = 0
Let
(A7) F3=(-To+T1 —To— T3+ Ty —T5)ToT5 — T1T4) — ToT2Ts,
there is a surjective homomorphism of the graded algebras
ClTo,T1,T2, T3, T4, T51/(Fs(To, T1, T2, T3, T4, T5)) —>R2(m)G .

Thus the quotient X55(m)//G is isomorphic to the cubic hypersurface
F3(To,T1,T2, T3, Ty, T5) = 0.

We want to verify that its singular locus is given by nine C; curves with
six Oy 1 kn points; moreover we want to identify the non-singular Oy,; point.

Using the software Reduce, we find that the singular locus of
X58(m)//G corresponds to nine projective lines r;: these lines meet three



GIT Quotients of Products of Projective Planes 31

by three in six “special” points Ay: each line contains two “special” points.

7’1:{T0—T4:O, Tl—T5:07 TQZTgZO};
Tg:{To—leo, T()—T4=07 TQ-TgZO, TZ—T4+T5:0};
7"3:{T0=T1=T3=0, Tg—T4+T5=0};
7"4:{T()=T1=T2:0, T3—T4+T5=O};
7"5:{T():T1=T4:0, T2+T5:O};

7’6:{T0:T2=T4:0, Tl—Tg—T5=0};
T7:{T0:T1=T4:0, T3+T5=0};

Tg:{T0:T3:T4:0, T17T27T5:0};

Tg:{To—leo, T2=T3=0, T4—T5=0}.

“Special” points:

A; =[1:1:0:0:1:1]; A €, 19,19
A, =[0:1:0:0:0:1]; Ag € 11,76,75;
A3 =[0:0:1:1:0:-1]; Az € 1ro,75,77;
Ay =[0:0:1:0:0:-1]; Ag€r3,rs,73;
A; =[0:0:0:0:1:1]; Ay € 73,714,719 ;
Ag =[0:0:0:1:0:-1); Ag € ry,rg,77.

The lines 71, . .., 79 lie in (X55(m)//G) \ (X5(m)/G); they correspond to
the nine curves Cj; = PYC): for example, 7, = Css, because

[124][135][236] — [123][124][356] =0, [123][135][246] — [123][123][456] = 0,
[124][134][256] = [123][125][346] = 0.
In the same way

ro=Cr, 13=C15, 74=0C2, 15=Coy,
16 =Cuy, 11=C3, 13=Cs, 79=Cy.

The points Ay, ...,As correspond to the points Ojjux, With i,k k €
€ {1,2,3} and j,l,» € {4,5,6}:

A1 = 0162534, Az =Oups36, Az = 0162435,
Ay = 0152135, As = 0152631, A = O142635.

Finally the point Oy € X55(m)//G corresponds to [1:0:0:0:0:0]
which is non-singular.

3.7 — P2(()8221111).

|m| = 8; since || is not divisible by 3, we have X5(m) = X55(m) .
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In order to determine this geometric quotilent, we have to introduce the
elementary transformation m = (221111) 1 (222111) = m, and conse-
quently

0: X5(m) )G — X55(m)//G .

First of all let us study 5_1(0456): by relation (6) its dimension is equal to
d = 3; the semi-stable orbits of X%(m) that determine Oys in the quotient
X55(m)//G and are included in X3(im), are characterized by x1, s, x3 col-
linear. Each orbit of this type contains a point of the form

1 01 0 ay Qg
(0 11 0 b b ) ,
0001 1 1

where (a1, by, az, by) € C* \ {0}. Two such points belong to the same orbit if
and only if they differ by the action of the group {(, 4, %)}, i.e. the point
above is in the same orbit as

1 01 0 2ay Pas
01 1 0 by 2bs
0001 1 1

It follows that 6~ (Ogs6) = P3(C).

Then @fl(é), ¢ € Cyj; studying how semi-stable orbits change going from
X55(m) to XS(m), there can be two different cases: coincidence or colli-
nearity.

1. Consider the curve Cy4: by the numerical criterion for X5(i), orbits
which have xs, x3, x5, g collinear are stable. In particular by relation
(6), the dimension of 01(¢)), & € Cy is equal to d = 1: in fact

(18) 071(E) = PYO).

2. Consider the curve Css: by the numerical criterion for X5(i) orbits
which have &3 = X are stable. In particular by relation (5), the di-
mension of 01(&), & € Csg is equal to d = 1; in fact

(19) 071(&) = PYO).

Let us study E’I(Oij’hlﬁ;m); consider O142536. Strictly semi-stable orbits
that contain the orbit G (x; = x4, 22 = x5, 23 = ) in their closure, are
characterized by one of the following properties:
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1. x; = x4 and x1, X2, x5 collinear; 2. 1 = x4 and xy, x3, 26 collinear;
3. 22 = x5 and a1, %2, ¥4 collinear; 4. o = x5 and a2, x3, X6 collinear;
5. x3 = x¢ and x1, x3, x4 collinear; 6. x3 = x¢ and x2, 23, x5 collinear.

In particular configurations 1,2, 3, 4 are unstable for the polarization 77,
while 5 and 6 are included in X5(7); moreover these sets have a common
configuration: (xg = x¢, x1, 3, x4 collinear, xs, x3, x5 collinear):

Each one of these two sets of stable configurations determines a copy of
PYC) in the quotient XS(ﬁL)/G: thus these two copies of PYC) have a
common point.

67X O i) = PH(C) U PL(C) with a common point .

We can get this result in a different way, by constructing a subdivision
of the polytope I7 (figure 2).

Since XUS(m) c XUS(in) and (XUS(m) \ XUS(m)) c X555(m), we de-
termine (locally in N,), which strictly semi-stable orbits for the polar-
ization m are unstable for m. By the machinery of the theory of
homogeneous coordinates for a toric variety ([1],[2], [3]), the local re-
solution of (X35(m)//G, O142536) = (C°/(C*)?,0) in the quotient X5(7)/G
is determined by (C®\ Z)//H, where C®\ Z =%\ {z € (52124 = 0,
zoz3 = 0,2924 = 0}, and H is the 2-dimensional torus H = {(/11,22,/1;1,
A e, 05t ddgh), Ay de € CF)

The set C%\ Z describes a particular resolution of I7

Fig. 3. - Subdivision of type (221111) of I7.
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We can find three simplicial polytopes: figure 4.

uWuS

Ug

Uy

Fig. 4. — The three polytopes of the subdivision (221111) of I1.

The toric representation of Y, described by the polytope I7, is de-
termined by the cone o: to solve its singularities let us construct a fan X,
refinement of o. By the theory of toric varieties, there exists a proper,
birational morphism ¢

Xy 22 (CO\ 2)//H = (CO\ 2)//(C*? L (CO//(C*)P) = (N, //Ga) = X,

induced by the identity over the lattice R*: this application allows us to
specify the map 6:

0 : X5(m) /G — X55(m)//G .

First of all let us take a cover of (C° \ Z): for example the three open
sets Uy, Us, Us:

U =C\{zeC 2124 =0};  Up=0C%\{2€Cf z23=0}
U3 = ‘CG \ {Z S ‘CG | 2oR%4 = 0}

Now let us consider the action of H = (C*)? on these three open sets and

construct the three quotients: in the first case, the quotient U; = Uy //H is
the smooth variety C[g{(l,Xg,Xg,le,X(;]/(Xg — X4X6).
_ In the same way Us = Uz//H = C[Y1, Y3, Y3, Y5, Y7]/(Y3 — Y5Y7) and
Us = Us//H = ClZy,Z3, Z3, 2, Zy] | (Z1 — ZsZy).

How do these quotients U;(i = 1,2,3) fit together? We have the fol-
lowing “gluing”

X1 =Y =237y Y1 =X =ZgZy Zo =X Xg=1Yo
X3 =Y5Y7 =273 Yo = XyXs = Z2 Z3 =X3 =Y5Y7
Xy =Y1YoY: =773 Y5 =X1X3Xg=Z2375 Zg :X6_1 =YY,
Xo=WYD) ' =250 Yi=XiXe) ' =Z5" Zg=Xi X =Y;!

(20)

The birational maps 51- : l~]l — Y that resolve the singularities of Y are
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described by the pull back of the generators of the ring of G,-invariant
functions (T, Te, T'5, T4, T5):

0;(Ty) = Xa, 05(Ty) = Y1, 05(T) = ZsZy,
03(T2) = XuXs,  O3(T2) = Yo, 03(T>) = Zs,
0;(T3) = Xs, O5(Ty) = YsYr,  05(T3) = Zs,
03(Ty) = Xu, 05(Ty) = Y1 YoYq, 03(Ty) = ZoZs,
0;(T5) = X1 XsXs, 03(T5) = Vs, 03(T5) = Z32Zs.

The point O14.25 36 corresponds to the origin in Y let us study 5{ L)

0:1(0) = (0,0,0,t) = C,  0,(0) = (0,0,0,) = C,
05(0) = (0,0, 5, u9) = CUC

where t1,u1,t2, ug € C and toug = 0.

In particular the fiber 5; L) is isomorphic to the union of two copies of
C that have a common point (0,0,0,0) € l~]3. Moreover by the gluing (20),
t1,t2 € C give a cover of P, just like uy,ug € C.

In conclusion the resolution of 0149536 in X5(221111)/G is determined
by the union of two copies of PL(C) that have a common point

0 (014.95.36) = PY(C) UPY(C)  with a common point.

Let us calculate the resolutions of the three singular curves Ci4, Cos, Cs¢
that meet in Oy49536: We know that there is a correspondence between
Cij,Cu,Cry and the three lines s3 = {(0,0,¢,0,0)}, sz = {(0,,0,0,0)},
s1 ={(¢,0,0,0,0)} of Y. Now let us calculate the fiber of a “generic” point of
each line s;, for the maps a

Let & € Cyy: 071(E3) = (0, 1,0, 1), 0, 1(&3) = Imposs., 05 1(&5) = (0,£, 771, 0);
thus

071(E) = PUC), Ve eCu & # Oyntgn-
In the same way for & € Co5 and &; € Csg, &1, & # Ojjjukn We obtain:
07(E&) = PHO), 671 (E) = PO,
In conclusion the map

0: X5m)/G = (P)%(221111)/G — (P%)%(222111)//G = X5 (m)//G
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determines the quotient XS(m) /G: in fact 0is an isomorphism over

XS()/G \ ( U 51@) = XSm)/G,
eS
where S = {¢ € X55(m)//G}. ~
Then the map 0 is a contraction of subvarieties over |J 6~ 1(%):

~ éeS
— if & € Cyj, then 071(&) = PY(O);
— if & = Ojpin, then 071(&) = P(C) U PY(C), with a common point;
— if & = Oy, then §71(&) = PP(O).
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