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A Duality Result for Moduli Spaces of Semistable Sheaves
Supported on Projective Curves

MARIO MAICAN (*)

ABSTRACT - We show that the map sending a sheaf to its dual gives an isomorphism of
the moduli space of semistable sheaves with fixed multiplicity and Euler char-
acteristic and supported on projective curves to the moduli space of semistable
sheaves of dimension one on the projective space with the same multiplicity but
with opposite Euler characteristic.

Let k be an algebraically closed field of characteristic zero. Let P" be
the projective space of dimension 7 over k. We recall that a coherent
algebraic sheaf F on P" has support of dimension one if and only if
its Hilbert polynomial Pr has degree one that is, if we can write
Pr(m) =rm + y. Here r =r(F) is a positive integer called the multi-
plicity of F, while y is the Euler characteristic y(F) = h°(F) — h(F).

We fix integers » > 1 and y and we denote by Mp« (7, ) the moduli space
of semistable sheaves on P" with Hilbert polynomial P(m) = rm + x. In
this paper we will prove that M (r, y) and Mp«(r, —y) are isomorphic. The
isomorphism maps a point represented by F to the point represented by
the dual sheaf Ext"1(F, wp»). We will use the concept of semistability due
to Gieseker and defined in terms of the lexicographic order on the coeffi-
cients of the reduced Hilbert polynomial, cf. definition 1.2.4 in [12]. We
recall that a sheaf F on P" with one-dimensional support is semistable
(stable) if and only if it is pure, meaning that there are no subsheaves with
support of dimension zero, and for every proper subsheaf £ C F we have

2(E) 2(F)
@ =@
It was first noticed in [5] that F — Ext!(F, o) gives a birational map

from M.z (v, y) to Mpz(r, —y) when r and y are mutually prime.
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We begin by recalling the Beilinson free monad. Let F be a sheaf on P".
A monad for F is a sequence of sheaves

0—C?— ... —C— ... —C1—0

which is exact, except at C°, where the cohomology is . If each C' is a direct
sum of line bundles we talk of a free monad. In the sequel F will be a co-
herent sheaf on P". According to [1], cf. also [4], there is a free monad for F

0—C"— ... —C— ... —C—0
with
C'= P HPFe@p)eo(—p).
0<p<n
Lemma 1. Consider a free monad for F

0—A"— ... —A— . A —0

with A' = Wi, ® O(— p), where W;, are vector spaces over k of di-
p P

0<p<n .
mension wi,. Then wy, =h"P(F @ QP(p)) for all i and p if and only if each
map Wi, ® O(—p) — Wiy, @ O(— p) occuring in the monad is zero.

Proor. The two spectral sequences 'E and "E converging to the hy-
percohomology of A* ® Q/(j) are given by

'EL =HP(P", HI(A" & Q/(j))),
"ER =HI(P", AP @ Q'())).
By hypothesis HY(A* ® Q/(j)) is F @ Q'(j) for ¢ = 0 and is zero for q # 0.
Thus
/qu — Hp(]: ® Q](]))a for q = 07
z 0 for g # 0,
which shows that 'E degenerates at level two. The differentials in the
second spectral sequence "E?? — "EP*1 are induced on cohomology by
the maps A" @ Q/(j) — AP @ Q1(5). According to Bott’s formulas on p. 8
in [15] we have h%(Q’(j —4)) =0 for ¢ #j, 0<i<n or for ¢ =7, i #7,
0 < i < n. Thus "E}? = 0if ¢ # j and we have the identification
"ER = W,; @ H(P", Q7)) ~ Wy

The differentials f,; : "E?/ — "E?*'7 are identified with the maps from the
monad W), ; ® O(—j) — W1, ® O(—j).
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Assume now that all maps f,; are zero. Then "E degenerates at its first
term and, comparing 'E with "E, we get

W (F @ () = dim('EL’) = dim(E”.) = dim("EP,) = dim("E! /) = w, ; ;.
Conversely, assume that f); are not all zero. Then "E degenerates at level
two and we have

W (F @ Q/(5)) = dim("E”) = dim("E5 ) <dim("E? /) = w,_; ;

for at least one choice of indices p and j. This finishes the proof of the
lemma.

CorOLLARY 2. All  the maps Hi(F ® Q') @ O(—p) —
— H"™(F @ QP(p)) @ O(—p) occuring in the Beilinson free monad
for F are zero.

In the sequel we will assume that the schematic support of F has co-
dimension ¢ in P". The dual sheaf FP of F is defined by FP = Ext*(F, wp).
We remark that the hypothesis on the dimension of the support of F en-
sures that the extension sheaves Ext!(F, wp+) vanish for 0 < i<c, see (iii)
7.3 in [9].

LEMMA 3. Let F be a coherent sheaf on P" with support of codimension
c¢>1 Let

0—C?— ... —C— . .. —C—0

be a free monad for F. Asswme that Ext'(F,wpn) = 0 fori > c. We consider
the dual bundles Cry = Hom(C™* ¢, wp). Then the dual sequence

0—Cpl ™ — ... =) — ... — ) —0
is a free monad for FP.

Proor. We compare the spectral sequences 'E and “E converging to
the hyper-derived functor ExtP*4(C*, wpr). They are given by

/EIINI = 590tq(C_p, CO'[)W),
”qu = gﬁﬁtp(Hiq(C*), CU'[)V!).

Since C' are projective sheaves, we have’ E? = 0for g # 0. This shows that
'E degenerates at level two. The same is true of "E because "Eb? = 0 for
q # 0. By virtue of the hypothesis and of the remark preceding the lemma,
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we have
g {77 frp=e
D=
0 forp#ec.

In conclusion, the zero row of 'E; provides the desired monad for FP.

For any sheaf F on IP” there is a natural homomorphism F — FPP
which is injective if and only if F is pure. We recall that a sheaf with
support of dimension d is called pure if it does not have a nonzero subsheaf
with support of dimension smaller than d. We say that F is reflexive if the
map F — FPP is an isomorphism. According to 1.1.10 in [12] the hy-
potheses of lemma 3 are satisfied for pure sheaves of dimension one and for
reflexive sheaves of dimension two.

REMARK 4. Let F be a sheaf on P" with support of dimension one. We
assume that F is pure and we notice that this is equivalent to saying that
has no zero-dimensional torsion. According to lemma 3.1(i) and proposition
3.3@v) from [7], this is further equivalent to saying that at every closed
point x in the support of F we have depth(F,) > 1. From this we see that F
satisfies Serre’s condition Sy ,,1:

depth(F,) > min{2, dim(Op» ;) — % + 1} for all x € Supp(F).

From 1.1.10 in [12] we conclude that F is reflexive.

PROPOSITION 5. Let F be a coherent sheaf on P" with support of
codimension n — d = ¢ > 1. Assume that Ext'(F,wp) = 0 for i > c. Then
for all i, j we have

h'(F © QI(j) = h"(FP @ Q" (n — j+ 1)).

Proor. We apply lemma 3 to the Beilinson free monad for 7. We get a

monad for FP with terms

b =Hom(C ", op) = P HPF e (p) ©O0p -n-1).

0<p<n

We tensor the above monad with O(1) to get a monad for F D(1). In view of
corollary 2, this monad satisfies the necessary and sufficient condition from
lemma 1. We conclude that for all 7, p

h*P(FP @ QP(p + 1)) = W~ P(F @ Q" P(n — p)).

This proves the proposition.
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COROLLARY 6. Let F be as in the previous proposition. Then for all i, j
we have

h'(F) = h" (7).

REMARK 7. The above corollary also follows from Serre duality
and the degeneration of the Ilocal-to-global spectral sequence
EXT = HP(P", ExtY(F, wpn)), which converges to Ext’ (F, wpn).

Next we would like to relate the Hilbert polynomials Pz and P o of F,
respectively FP. We recall that P+ has degree equal to the dimension of
Supp(F). As the support of FP is included in the support of F, we have
deg(P ) < deg(Px).

COROLLARY 8. Let F be as in the previous proposition. Then for all m
we have

Pyo(m) = (= D'Pr(—m).

In particular, if F is pure of dimension one with Hilbert polynomial
Pr(m)=rm+y then the dual sheaf has Hilbert polynomial
Po(m) =rm — y.

LEMMA 9. Let F be a coherent sheaf on P*, n > 2, pure of dimension
one. Then F is semistable (stable) if and only if FP is semistable (stable).

Proor. According to 1.2.6 in [12], the sheaf F is semistable (stable) if

and only if for all pure one-dimensional quotients G of F we have

7(9) 7(F)

— >(>) —/—.

1@ =)
Take a pure one-dimensional destabilizing quotient G = F /K. Since K has
support of dimension one, we have Ext" 2(K, ) = 0, hence GP is a sub-
sheaf of 7P. From corollary 8 we get

1) _ 19 ) _ )

"GP Q) rF) wFD)

Thus GP is a destabilizing subsheaf of FP. This proves sufficiency. Ne-
cessity follows from the fact that F is reflexive, cf. remark 4.

Two semistable sheaves F and G on P" with Hilbert polynomial P give
the same point in M« (P) if and only if they are S-equivalent, meaning that
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there are filtrations by subsheaves
Oifonlc...Cf,(_1CfK:f,
Oigng1C~~-ngc—1ng:g»

such that all quotients F;/F;_; and G;/G;_; are stable and there is a per-
mutation o of the set of indices {1,...,x} such that for all ¢

Fil Fic1 =~ Goiy/ Goti)-1-

For stable sheaves S-equivalence means isomorphism. In other words, if
the above conditions are satisfied, then F is stable if and only if G is stable
andthen x = 1 and F ~ G. A Jordan-Holder filtration of a semistable sheaf
is a filtration as above by subsheaves such that all quotients are stable.

As in the proof of 9.3 from [14], a Jordan-Hélder filtration
O=FpgCcFCc..CcF1CF.=F

for a semistable sheaf of dimension one on " gives a Jordan-Hélder fil-
tration

0=(F/F® c(F/Fe)® C...c(F/F)P c (F)F)P = 7P

for the dual sheaf with quotients (F;/F - 1)P. The latter are stable by virtue
of lemma 9. We arrive at the following lemma:

LEmMMA 10. Let F and G be semistable sheaves on P with the same
Hilbert polynomial P(m) = rm + y. If F and G are S-equivalent, then so
are their duals.

LemMaA 11.  Let S be an algebraic scheme over k and let F be an S-flat
coherent sheaf on S x P". Assume that for every s in S the restriction
Fs = F < has support of codimension c. Then for all i <c we have

gﬂﬁtl(]:, wSxf[')"/S) =0.

Proor. Without loss of generality we may assume that S is affine. Asin
the proof of (iii) 7.3 from [9], we reduce to showing the vanishing of
Ext'(F, wg.pns(q)) for large ¢. By 11.2(f) on p. 213 of [8] we have the duality

Extl, , (F, wg.5(@) = Homoy(R"£.(F(~ ¢)), Os)

where f: S x P" — 8§ is the projection onto the first component. As
n —1 exceeds the dimension of each restriction F(-— q);, we have
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H"{(F( - q)s) = 0 for all s in S. From exercise (iii) 11.8 in [9] we deduce

that R"'f.(F(—q)) = 0, so the above extension group vanishes.

In the sequel we will need the following relative version of the Hilbert
syzygy theorem. Let S be an algebraic scheme over k and F a coherent S-
flat sheaf on S x IP". Then there exists a locally free resolution £& — F of
length at most %n. Such a resolution can be constructed using the relative
Beilinson spectral sequence with first term

E? = RU.(F(m) @ g"Q7P(— p)) X Opn(p),

which converges to F(m) in degree zero and to 0 in degree different from
zero (see 4.1.11in [15]). Here f : S x P" — S and g : S x P" — P" are the
canonical projections. If m is large enough, then E = 0 for ¢ # 0 and the
push-forward sheaves f.(F(m) ® g*QP(— p)) are locally free. Thus the
spectral sequence degenerates at level two and the zero row of E; provides
a locally free resolution of F(m). We can cover S with open affine subsets
U, such that the restriction of each term of the resolution to U x P" is a
direct sum of line bundles of the form ¢g*Opn( — I).

LEmMA 12.  Let S be an algebraic scheme over k and let F be an S-flat
coherent sheaf on S x P". Assume that for every s in S the restriction
Fs = Fsyxrn has support of codimension ¢ and that Ext' (Fg, wpn) = 0 for
1> c. Then

Et'(F,wgypr/s) =0 for i+#c.

Moreover, the sheaf F D — exte(F, WG P /S) 1s flat over S and (F. S)D ~ (FP )s
forall sin S.

Proor. Consider a finite locally free resolution £& — F. The exten-
sion sheaf EwtP(F,wg,p/g) is the p-th cohomology of the complex
Hom(E", wgypr/s)- We fix a point s in S and denote 7 : {s} x P" — S x P"
the canonical inclusion. The functor Hom(_, wg,/s) sends projective
sheaves to i*-acyclic sheaves, hence there is the Grothendieck spectral
sequence (see (viii) 9.3 in [10])

qu =LP¢* RqHOWL(_, g P /S)(]:) = TO?"?;X'M (E%t(%sxw" (]:, wSXP"/S)7 O{s}fo")a

which converges to the hyper-derived functors L7 9i*(Hom(E", wgy pr /8))-
We recall that the above is the second term of the spectral sequence as-
sociated to the bigraded complex obtained by taking a fourth-quadrant
Cartan-Eilenberg resolution of Hom(E", wgy ;) and then applying ¢*. The
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other spectral sequence associated to the bigraded complex is given by
'EM = LY (Hom(EP, g5 /8))-
'E degenerates at level two because 'E{? = 0 for ¢ # 0. Thus
LP3 (Hom(E", g, ) ~ 'EX = "B’
is the cohomology at position i*Hom(E ™, wg, pn s) of the complex
FHom(E, wsyprs) = Hom(i*E, " wg,pn js) = Hom(E,, wpn).

As every term of the resolution £ — F is S-flat, restricting to {s} x P" we
obtain a locally free resolution 8;, — Fs. Thus, for all j,

L3 (Hom(E", g pr js)) = Ext (F g, oopn).

By hypothesis the above sheaves are zero for j # ¢, forcing EX? = 0 for
P + q # c. Assume ¢ <n. From the vanishing of

EY = EY' = Ext"(F, wgpn/s)s

for an arbitrary point s in S, we deduce that Ext"(F, wg,p/s) = 0. Thus
EL" = 0 for all p, forcing EY" ' = E%""1. If c<n — 1 we can repeat the
argument and conclude that Ext"1(F, wg, ss) = 0. By induction we obtain
that the sheaves Ext(F, wg,p /s) vanish for ¢ > ¢. Inview of lemma 11 they
also vanish for ¢ < c. Thus E5? = 0 for ¢ # ¢ and E degenerates at level two:

EL’ = ER o~ LPY (Hom(E", wgrpn s)) = ExtPH(Fy, wopn).
For p = 0 we arrive at the isomorphism (F D)S ~ (F, S)D. For p = —1 we get
TOT?SW' (FP, Ogsyxpn) = 0.
From this we deduce that FP is S-flat. Indeed, localizing at a point x
lying over s, we obtain
Tor{*(FP),, O, ®o, k(s)) = 0.

Here k(s) denotes the residue field of s. We now use the local criterion of
flatness 4.1.3 in [13] to conclude that the stalk (FP), is flat over O,.

Before we proceed any further we need to review the construction of
the moduli space Mp»(P) of semistable sheaves on P" with fixed Hilbert
polynomial P. There exists an integer m > 0 such that for every semi-
stable sheaf 7 on P" with Hilbert polynomial P the twisted sheaf F(m) is
generated by global sections and the higher cohomology groups H(F(m)),
1 >1, vanish. Thus h(F(m)) = P(m) and F occurs as a quotient
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p: Ve O(—m)— F,where V is a fixed vector space over k of dimension
P(m). We consider the quotient scheme @ = Quotp(V @ Op( —m), P)
and the universal quotient sheaf F on QxP". Let R C Q be the
open subset of equivalence classes of quotients [p: V ® Opn( — m) — F]
for which F is semistable and the map on global sections
Ho(p(m)) .V — H%F(m)) is an isomorphism. The reductive group SL(V)
acts on @ via its action on the first component of V ® Op:( — m). Clearly R
is invariant under this action. If m is chosen large enough, then M« (P) is
a good quotient of R by SL(V). We denote by 7 : R — Mp»(P) be the good
quotient map.

THEOREM 13. For any integers n > 2, » > 1 and y there is an iso-
morphism
M'[,m (7", X) — M‘[)Nf (7", *%)

which maps the S-equivalence class of a sheaf F to the S-equivalence class
of FP.

ProoOF. According to remark 4, corollary 8, lemma 9 and lemma 10 the
above map, call it 7, is well-defined and bijective. It remains to show that 7 is
a morphism. By symmetry it will follow that 4! is also a morphism.

We put P(m) = rm + x, so PP(m) = rm — y. We adopt the notations
preceeding the theorem. The sheaf 7P on R x P" defined by FP =
= Ext"1(F, gy /R) is coherent and, by the previous lemma, R-flat.
Moreover, for each s in R, its restriction F D'to {s} x P" is isomorphic to
(F)P. According to corollary 8, the latter has Hilbert polynomial PP. The
moduli space property of My (PP) gives a morphism zP : R — Mp(PP)
which maps s to the S-equivalence class of FP.

From lemma 10 we see that 7P is constant on the fibers of z. The
good quotient property of 7 shows that zP factors through a morphism
M (P) — My (PP). This morphism is 5, which finishes the proof of the
theorem.

REMARK 14. If P has degree at least 2, then the above proof yields a
morphism
U—Mp(P?),  [FI—I[F"],

defined on the open set U in Mp:(P) of isomorphism classes of stable
sheaves F with FP stable and satisfying Ext'(F,wp) = 0 for i > ¢. For
sheaves supported on surfaces the last condition is equivalent to saying that
F is reflexive. We notice that U is nonempty for all P of degree 2 for which
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there is a smooth surface X in P" and a line bundle £ on X with Hilbert
polynomial P. This is so because any locally free Ox-module of rank one,
with X areduced subscheme of P", is stable as a sheaf on IP”. Moreover, £ is
reflexive as a sheaf on P”, which can be seen from the isomorphism
(G, L)P ~ i,(LP), where i : X — P" is the embedding map.

In the remaining part of this paper we will apply the duality result to
the following situation. Assume that M (7, y) is the quotient of a certain
parameter space by an algebraic group. This could be the case, for in-
stance, if all sheaves giving a point in Mp«(r, ) are quasi-isomorphic to
monads of a certain kind. Constructions of moduli spaces of sheaves as
quotients of parameter spaces are ubiquitous in the literature, mostly in-
volving actions of reductive groups, and, more recently, as in [2], [3] or [6],
for actions of nonreductive groups. Under the above hypothesis on
Mpn (7, ), we will show that Mp«(r, —y) is the quotient of the “dual para-
meter space” modulo the “dual group.” This will generalize our partial
results from section 9 of [14], where we dealt with locally closed sub-
varieties inside M. (r, y) for certain choices of » and y.

We fix sheaves C' on P*, —p < i < g, that are finite direct sums of line
bundles. We fix a polynomial P(m) = rm + y. We assume that each semi-
stable sheaf on P* with Hilbert polynomial P(m) = rm + y oceurs as the
cohomology of a monad

0—c? e e,
For a monad of this form we write ¢ = (¢_,,, ..., ¢,_;) and we denote by F,

its cohomology. Let W** be the set of all those ¢ for which F, is semistable.
We assume that W** is a constructible subset inside the finite dimensional
vector space

W = Hom(C?,CP*Y) x ... x Hom(C?!,9).

We equip W* with the induced structure of a reduced variety. The alge-
braic group
G =Aut(C?) x ... x Aut(C?)

acts on W in an obvious manner: given g = (g, ...,9,) and a tuple ¢ as
above we put

g9 =9-pn0_, gzzlp e 7gq¢qflg;—11)'

We remark that, if at least one C' has a direct summand of the form
Opr(a) & Opn(b), a<b, then G is nonreductive, i.e. it has a nontrivial uni-
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potent radical, cf. 19.5in [11]. Indeed, the subgroup of Aut(Op»(a) & Op»(b))
given by matrices of the form

10

* 1

is a normal connected unipotent subgroup. This shows that the unipotent
radical of Aut(Op»(a) & Opx(D)) is nontrivial. A similar argument applies in
general to G.

Clearly F, and F, are isomorphic, so one is semistable if and only if
the other is. This shows that W** is G-invariant.

Let p : W* x P" — P" be the projection onto the second component.
We put C' = p*C'. On W* x " we have the universal monad

crin e I

with @1 ,0n = @;. Let F denote the middle cohomology of this se-
quence. Using arguments as in the proof of lemma 12 one can see that
its restriction 3:'(,, to any fiber {p} x P" is isomorphic to F,. In parti-
cular, all F » have the same Hilbert polynomial P. As W** is reduced we
deduce that F is W*-flat. The moduli space property of M« (P) yields a
morphism

WS —Mp(P), () = [F,]

Clearly = is G-equivariant. We will be interested in the case in which 7 is
a good or a geometric quotient.

We now apply the duality result to the above set-up. Under the hy-
pothesis that each sheaf giving a point in Mp»(P) is the cohomology of a
monad C* and by virtue of lemma 3, corollary 8 and lemma 9, we see that
each semistable sheaf on P" with Hilbert polynomial PP(m) = rm — y is
the cohomology of a monad

o oP op P e
—(] — —q—C — —C— —
0—Cpl™ =5 ... =) — ... 5 —0
with

i —i D

i) = 'HOWL(C ¢ 07 C()‘[im), v, = Hom((ﬂiifcfl, CL)‘[)'VL).

We let W be the set of all those tuples pP = (ga]quc, .. 7%?7071) for which
F o is semistable. We view W' as a subvariety inside the affine variety

Wp = Hom(Cp" %, Cp ™) x ... x Hom(Ch, ™', 2%
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equipped with the analogously defined action of the group of auto-
morphisms

Gp = Aut(Cp"™%) x ... x Aut(Ch ).
As before, there is a Gp-equivariant map
a2 Wi — Mp(PP),  2P@°) = [Fpl.

COROLLARY 15. 7 is a good (geometric) quotient map if and only if n°
18 a good (geometric) quotient map.

ProOF. First we notice that G ~ Gp and that the map ¢ — ¢P acts by
transposition, so it gives an equivariant isomorphism W% — W} .
According to lemma 3 this isomorphism fits into a commutative diagram

Wss —— W5
| .
1\'/[]917, (P) — M]}Dn (PD)
By virtue of the previous theorem the bottom map [F]— [FP] is an iso-

morphism, which proves the statement.

We finish with an example. Fix a vector space V over k of dimension 4.
According to [6] a sheaf F on P? = P(V) with Hilbert polynomial 3m + 1is
semistable if and only if it has a resolution

0—20(-3) 5 O(-D@30(-2) - 0eO(~1)—F —0
with ¢ not equivalent to a matrix of the form
* Kk x X
0 0 x %]
Moreover, M (3, 1) is a geometric quotient of the space of parameters (y, p)
modulo the action of the group of automorphisms. The concrete description

of the space of parameters W** is given at 5.2 in [6]. It consists of pairs (v, )
for which the sequence of global sections

o 0
0— 12 " ey g (8 o V) " $y o S2Y

is exact and either ¢, # 0 or the entries {¢ss, ¢o3, 024} are linearly in-
dependent as elements of V*.
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The above considerations tell us that each sheaf F on P with Hilbert
polynomial 3m — 1 is semistable if and only if there is (i, ¢) in W* and a
resolution

0—O(— )@ O(—3) 25 O(—3)®30(—2) X2 20(— 1) — F —0,

From the above corollary we deduce that M (3, —1) is a geometric quo-
tient of the space of parameters Wy of transposed matrices (¢P,yP)
modulo the group of automorphisms.

Acknowledgements. The author thanks the referee for providing sev-
eral corrections and improvements and for numerous helpful comments.
The referee suggested the proof of lemma 12, shortened our original proof
of lemma 3 and pointed out that the two conditions from lemma 1 are
equivalent (originally we stated only sufficiency).
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