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Holomorphic Extension from Weakly
Pseudoconcave CR Manifolds

ANDREA ALTOMANI (*) - C. DENSON HiILL (**) - MAURO NACINOVICH (**%*)
EGMONT PORTEN (*4%)

ABSTRACT - Let M be a smooth locally embeddable CR manifold, having some CR
dimension m and some CR codimension d. We find an improved local geometric
condition on M which guarantees, at a point p on M, that germs of CR dis-
tributions are smooth functions, and have extensions to germs of holomorphic
functions on a full ambient neighborhood of p. Our condition is a form of weak
pseudoconcavity, closely related to essential pseudoconcavity as introduced in
[HN1]. Applications are made to CR meromorphic functions and mappings.
Explicit examples are given which satisfy our new condition, but which are not
pseudoconcave in the strong sense. These results demonstrate that for codi-
mension d > 1 there are additional phenomena, which are invisible when d = 1.

1. Introduction.

The goal of the present article is to give improved geometric conditions
on a generic CR manifold M c C" which guarantee that all local CR
functions extend holomorphically to a full neighborhood of a given point.
This is well known to be true for strictly pseudoconcave CR manifolds,
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i.e. in the case where the Levi form has one negative eigenvalue in each
characteristic conormal direction. For hypersurfaces this is a classical
result of H. Kneser and H. Lewy; for M of higher codimension it was
proved independently by a number of authors (see [BP], [NV] for CR
distributions, and [HN4] for two different proofs, one very short). Despite
numerous efforts, the general problem to characterize those weakly
pseudoconcave manifolds for which one has extension to full neighbor-
hoods is still far from being completely understood, even for real analytic
hypersurfaces.

Subtle sufficient conditions (sector and ray property) are known for
weakly pseudoconcave hypersurfaces of finite type (see [BT2], [FR] for
results and references). In higher codimension there are several options
to approach the weakly pseudoconcave case. Manifolds which are Levi flat
at the reference point to a certain order, and have all relevant concavity in
the generalized Levi form determined by the next-order terms are stu-
died in [Bo]. Here we aim at the opposite case where effects of different
orders (counted with respect to bracket length) are combined. Actually
our main motivation stems from homogeneous CR manifolds which bi-
holomorphically look the same near every point. These higher codimen-
sional homogeneous CR manifolds are abundant, occurring naturally in
mathematics, and they have a strong tendency to be weakly pseudo-
concave (see [MN1], [MN2], [MN3], [MN4], [AMN]). The main result of
the present article reveals that there are additional phenomena which are
invisible in codimension one, and indicates that finite type together with a
suitable notion of weak pseudoconcavity should imply extension to a full
neighborhood. To avoid confusion, we stress that the problem under
consideration is different in nature from the problem of holomorphic
wedge extension, for which a definitive answer is known ([T1], [Tul], [J],
[M], see also [MP2]). In fact, this definitive answer was obtained without
having explicit control on the directions of extension, which is crucial for
the problem at hand.

Let M c C" be a smooth CR manifold. We denote by J the complex
structure tensor on T'C", by HM = TM N JTM the holomorphic tangent
bundle of M, which is the real subbundle of TM invariant under J, and by
HOM c T*M the characteristic bundle, defined fiberwise as the annihilator
of HM. We define the vector valued Levi form

Lyy=~Ly: HMxH,M — Ce(T,M/H,M)
by
LypX,Y) = ~[X,JY1(p) + X, Y1(p) mod C ® H,M,
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where X, Y € I'(M, HM) are smooth extensions of X, Y, respectively. The
usual Levi form Ly = L: is parameterized by the characteristic codir-
ections & € HgM. It is defined by Ly ¢(X,Y) = &(L,(X,Y)), for & € HgM,
X,Y € H,M (where we read ¢ as a form on C @ (T,M /H]?,M ) in the cano-
nical way). Most often we shall work with the corresponding real hermitian
forms £,(X) = £,X,X) € T,M/H,M and L:X) = L:X,X). The reader
should take note of the subtle difference in notation between £,(X) and
L:(X); the former is vector valued, and the latter is scalar valued.

A CR manifold M is strictly (weakly) pseudoconcave at a point p € M if
for every ¢ € HgM , ¢#0, L: has a negative (nonpositive) eigenvalue.
Replacing & by —¢, we see that £, has actually eigenvalues of both signs (in
the strictly pseudoconcave case). Following [HN1], we call M trace pseu-
doconcave at p € M if for every & € HgM , L is either zero or has eigen-
values of both signs. Trace pseudoconcavity isolates one of the properties
of essential pseudoconcavity introduced in [HN1]. We refer to that article
for background information.

Let G; be the sheaf of germs of smooth (real) CR vector fields on M
(i.e. sections of HM). For every positive integer k¥ we define inductively
Gr+1 as the sheaf generated by G and [Gi,Gil. Let Gy, C T,M be the
vector space generated by pointwise evaluations of germs in G, at a point
peM.We say that M is of kind k at p if G, ,=T,M but G;, & T, M for j< k.
We say that M satisfies the constant rank condition if the spaces Gy, have
dimension independent of p, i.e. if they form vector bundles G, = | Gyp.

Now we can formulate our main result. peM

THEOREM 1.1.  Let M be a smooth generic CR manifold in C" and
po € M. Assume that in a neighborhood of po, M is trace pseudoconcave,
satisfies the constant rank condition and is of kind less or equal to 3. Then
for every open neighborhood U of po in M, there is an open neighborhood V
of po in C" such that every CR distribution on U is smooth on M NV and
has a unique holomorphic extension to V.

We emphasize that Theorem 1.1 reveals a phenomenon which re-
mains invisible in codimension 1. In fact, in the hypersurface case its
assumptions imply that M is of kind 2, hence strictly pseudoconcave.
We expect the result to extend to arbitrary finite kind. In [HN1], the
weak identity principle for CR functions (coincidence on open sets im-
plies coincidence everywhere) was shown for essentially pseudoconcave
CR manifolds. For those CR manifolds covered by the assumptions of
Theorem 1.1 our result immediately yields the strong identity principle
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(coincidence of Taylor coefficients at some point yields coincidence in a
neighborhood).

Theorem 1.1 is proved in Sections 2-4. The rest of the article is de-
voted to applications, extensions and examples. In Section 5 we observe
that CR manifolds as in Theorem 1.1 enjoy the local extension property E
introduced in [HN2]. The results in [HN2], [HN3] yield far reaching
global consequences for fields of CR meromorphic functions on such
manifolds. Here CR meromorphic functions are funetions which are lo-
cally representable as fractions of CR functions. An alternative approach
to CR meromorphic mappings originates from work of Harvey and
Lawson [HL]. The idea is to require the graph to look like a CR manifold
with appropriate singularities. In general, extension of such mappings is
complicated. Based on [MP2], we prove in Section 6 that such CR mer-
omorphic functions extend meromorphically from manifolds with prop-
erty E to full ambient neighborhoods and are in particular representable
as local quotients. In Section 7 we present several classes of homo-
geneous CR manifolds to which all the local and global results indicated
above apply. These were discovered in a much broader context (see
[AMN]). For the reader’s comfort, we give a reasonably self-contained
presentation.

2. Preliminaries.

We will use some standard facts about the bundles Gy Cc Go C .. .: If
Gy = Gp41 then all Gy, j > k, are equal (the proof is an application of the
Jacobi identity). This means in particular that Gy is integrable in the
sense of Frobenius. Moreover the map associating to smooth sections
XerWU,Gy), Y € I'(U,Gy), the section [X, Y] mod Gy, € I'(U, Gy+1/Gr)
is tensorial, i.e. [X,Y](p) mod G}, depends only on X(p) and Y (p).

Let us now have a closer look at Gz. First we note that independently of
concavity Ge,/H,M is spanned as a real vector space by the image
C,={L,X): X € H,M} of the vector valued Levi form. Indeed,
L = spangC), is contained in Gz, /H,M by definition. On the other hand,
polarization shows that L ® C =span-{£,(X,Y):X,Y € H,M}. Since
the imaginary part of L£,(X,Y) is essentially [X,Y], we obtain
Gz, /H,M C L. The above is equivalent to the fact that Gz, is spanned by
the preimage of C, under the canonical projection 7,M — T,M /H,M.

A simple but crucial observation is that trace pseudoconcavity allows us
to replace linear spans by convex hulls.
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LEmma 2.1.  Assume that M is trace pseudoconcave at p € M. Then
Gap/HpM is the convex hull of C, = {L£,(X) : X € H,M}.

Proor. If the lemma fails, there is a nonzero linear functional & on
Gzp/HpM such that C, C {¢ > 0}. We may extend ¢ to an element of H?)M .
Since Gz, /H,M is the linear span of C, there is an X € C), with £(X) > 0.
Any Y € H,M with £,(Y) = X satisfies L:(Y) > 0. But this implies that L
has also some negative eigenvalue, in contradiction to C, C {& > 0} d

To keep track of directions of extension, we will use an analogue of the
analytic wave front set, denoted by WF,. It is defined for CR distributions
u via the FBI transform in [S], see also [T2]. For U open in M, let CR(U)
denote the space of continuous CR functions defined on U. We do not even
have to recall the definition of WF,, since the following basic properties
will suffice for our purposes:

(a) Letu be a CR distribution defined on U C M. Then WF,, is a cone,
closed in the pointed characteristic bundle H°U\o (o denoting the
zero section).

(b) WF,, N HgM = () holds if and only the CR distribution u extends
holomorphically to an ambient neighborhood of p.

(¢) Let u € CR(U). If CR extension from U holds at (p,X), p € U,
X € T,M\H,M, then for any ¢ € WF, ﬂHgM we have &(X) > 0.

In (¢) we use the following terminology: We say that CR extension from U
holds at (p,X),p € U, X € T,M\H,M, if there is a C2-smooth (dim M + 1)-
dimensional CR manifold M attached to U along some U-neighborhood U’ of
p such that (i) for a representative of X, JX points into M and (ii) every
u € CR(U) has a continuous extensions to M U U’ which is CR on M. Ne-
glecting the dependence on U, we will sometimes call (p, X) or just X, a di-
rection of CR extension. For (a), (b), see [S], whereas (¢) is observed in [T2].

Theorem 1.1 is a consequence of the following more precise result which
does not require kind 3.

THEOREM 2.2.  Let M be a smooth generic CR manifold in C". Assume
that on an open set U C M, M 1s trace pseudoconcave and that Gs, G3 are
bundles. Then for every continuous CR function u defined on U, we have
WF, C Gs.

Theorem 2.2 will be proved in the next two sections. It implies Theo-
rem 1.1 in the following way: Kind 3 means that Gy is the zero bundle near
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po. By (b) a continuous CR function u extends holomorphically to an
ambient neighborhood of every p contained in some neighborhood U’ of py
in M. By a standard gluing argument one obtains extension to an ambient
neighborhood V' of U, which may a priori depend on u. Note that holo-
morphic extension in particular shows that u € C*°(U’). Now a Baire ca-
tegory argument as in [HN2] yields extension to a neighborhood of V
whose size only depends on U. This proves the theorem for continuous CR
functions.

If u is a CR distribution, we may use a method from [BT1], [T], to re-
present it near pg as u = A%, f, where f is a continuous CR function. Here k&
is a sufficiently large integer, and 4, is a variant of the Laplace operator
which is defined in an ambient neighborhood of py and restricts nicely to
M. If f is a holomorphic extension of f, then the various properties of 4y,
imply that Aﬂ f is the desired extension of u. Hence Theorem 1.1 follows
from Theorem 2.2.

3. Proof plan for Theorem 2.2.

Here we will prove Theorem 2.2 modulo some more technical results on
CR extension which are postponed to the following section. Pick some
u € CR(U).

STEP 1. - WF,, C Gy . This will follow from trace pseudoconcavity. Itis a
consequence of the following lemma which holds without constant rank
assumptions.

LEmMMA 3.1.  Assume that M C C" is trace pseudoconcave at p € M.
Then for every continuous CR function uw defined mear p we have
WF, n HgM C Gz{p.

Proor. Let & e WF, N HgM . We will consider & both as a functional
acting on 7,M and T,M/H,M. By [Tu2], every element X € C, can be
approximated by directions of CR extensions X; € T,M/H,M. From
property (¢) and continuity we get £(X) > 0. It follows that & is nonnegative
on the convex hull of C,. Since this convex hull is the vector space
Gep/HpM, & vanishes on Gz, O

Notice that the lemma together with property (b) already imply ex-
tension to a full neighborhood for strictly pseudoconcave CR manifolds.
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STEP 2. — WF,, C G3. By Step 1 it suffices to show that a covector &,
that annihilates G but not G5 is not contained in WF,,. Let py € U denote
the base point to which &, projects. It is our aim to show &, ¢ WF,, by
constructing an appropriate CR extension and applying property (c).

Since the image C,, of the vector valued Levi form spans Gz ,,, /Hp, M (see
the remarks before Lemma 2.1), we may select vectors X, ..., X, € H, M
such that the vectors f’J = Ly p,(Xj),J =1,... k,formabasis of Gz, /H,, M.
Extending the X; smoothly to CR vector fields defined near py, we obtain a
local basis ffj(p) = Ly pX;) of Go/HM. Set Y; = [JX;, X;], and choose a local
basis Z1, ..., Z2y of HM. Then the Z; form together with the the Y; a local
basis of Go.

First we claim that Gg is spanned in some neighborhood of py by the Z;,
Y}, together with the brackets [Z;, Y;]. Indeed, by definition G3  is spanned
by Gz, and vectors of the form [Z, Y|(p) where Z € Gy, Y € Gz, for p near
po. Around p we may write Z = Y z,Z;, Y = > 2;Z; + > y;Y;, with smooth
coefficients z;, z;, ¥;. This yields

where R is a germ in Gz ,. This proves the claim.

In the sequel, we will only need the following consequence: Since &,
does not annihilate Gs,, there are i, jo such that &y([Z;,, Y;,1(po)) # 0. For
notational convenience we will write from now on Y = Yj, Z = Z;,.

The following proposition, which will be proved in Section 4, yields CR
extension at (py, Y(py)) realized by a CR manifold to which Y is complex
tangent in a neighborhood of py in M.

ProposITION 3.2.  Let M C C" be a smooth generic CR manifold of
CR dimension m and codimension d. Let py € M and let U be an open
neighborhood of py in M. Let X be a smooth CR vector field on U with
Lrp,(X) # 0. Then there is a local C*-smooth generic CR manifold M of
dimension dim M + 1 with the following properties:

(@) M N M is a neighborhood of py in U and M \M has two connected
components M*.

(b) The distribution on M N M spanned by HM and [JX, X] coincides
with (HM 0 TM)| 357

(¢) Denoting by M+ the side into which J[JX , X1(po) points, we have
CR extension from U to M.

Since & annihilates HpoM N Tp,M, there is a unique extension & e HgOM .
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We claim that £y ; has eigenvalues of both signs. Indeed, both Z and Y
may be extended to C*-smooth CR vector fields on M which we denote by
the same symbols. For Y we use here that Y is complex tangent to M along
M by Proposition 3.2. The fact that {, annihilates the image of the Levi form
of M implies Ly : (Z(po)) = Ly ¢,(Z(po)) = 0. Since &([Z, Y(po) # 0 is
essentially the imaginary part of the sesquilinear Levi form, Z does not lie
in the kernel of Ly - & Hence Ly = & (-) takes both positive and negative
values in every nelghborhood of Z(pg) in H pOM The claim follows.

Let X*, X~ be positive and negative elgenvectors of Ly z , respectively.
Since all vectors in H, M are null vectors of Ly : , we may assume, after
replacing X+ by an appropriate complex multlple if necessary, that X+
both point into M*. But now the following proposition, whose proof is
postponed to Section 4, yields for M two directions of CR extension
Y=+ e T,,M/H,M with &Y ") > 0 and (Y ) <0. This implies &, # WF,
by property (¢). Hence the proof of Theorem 2.2, and thus also of Theorem
1.1, will be complete as soon as we have shown the following.

PROPOSITION 3.3.  Let M, M, M* and py, € M be as above. Assume

that there is & € HY M and X € H,, M\T,, M pointing into M* such that

Ly (X)) > 0. Then there 18 a divection Z € T,,M/H, M of CR extension
from U satisfying &(Z) > 0.

4. CR extension.

In this section we will prove Propositions 3.2 and 3.3. First we
recall some basic material on Bishop discs introduced in the seminal
paper [B]. Consider a generic CR manifold M c C" of CR dimension
m and codimension d. A C*-smooth analytic disc is a mapping
AQ) = (Z(©O,W(Q) € C(4,C")y N O, C") where 4= {{ € C: |{|<1}. We
say that A is attached to M if A(S") Cc M.

For |u| <1 let 7, denote the Hilbert transform of a function
U :S' — R to its harmonic conjugate 7 ,U, normalized by the condition
that the harmonic extension of 7, U vanishes at { = . It is known that 7,
is a continuous linear operator on the Holder spaces k(S R) if k € N,
0<a<1. We shall use the same notation for the Hilbert transform applied
componentwise to vector valued functions of C**(S, R%).

We work in coordinates

1) z1=21+ W1, %m0 = Ty + Wi, W1 = Up + W1, ..., W3 = Uq + W



Holomorphic Extension from Weakly Pseudoconcave CR Manifolds i

centered at the origin in which M is locally given as a graph v = h(z, u) with
m0) = 0, di(0) = 0. The Bishop equation is the nonlinear functional equa-
tion

@) U=—T,0Z,U) +u.

Here U =U()) is the unknown function mapping the unit circle
St=/{|{{=1} c Cto Rd, whereas Z = Z({) is the boundary value of a given
holomorphic function from 4 to C™ and u € R? is a prescribed vector. It is
known that the Bishop equation can be solved in C**(S, R?) provided the
data Z(() are C**-small and |u| is small (see [MP4] for detailed information).
The solution U corresponds to a unique analytic disc A : 4 — C" whose
restriction to S is (Z(0), U + ih(Z(), U())). More precisely, A is holo-
morphic on 4 and C**-smooth up to S*. By construction, A is attached to M.

PROOF OF PROPOSITION 3.2. — The construction of M+ will be a refine-
ment of [HT, proof of Theorem 9.1]. We may assume py = 0 and choose

coordinates (z,w) as in (1). After appropriate rotations and dilations in z
and w, we may furthermore assume Ly ( 88 ) = i mod HyM. We will
X1 8%1
construct M+ as the union of real curves yp(s) s € [0, &1), having their initial
points at yp(O) = p € M and such that the segments yp((O 1)) foliate M+,
Let us start by the construction of y,. Following [HT], we first simplify
the defining equations by removing some of the pure terms. After a change

of the w;-variable

mel—z(Za o (O)]k+za

we have

i+ Z S k(O)ijk>

In(z,u) = ajxziz, + O3z, 0),
k=1
0
89(/'1 ) o 8_7/01
For a small &; > 0, to be specified later, and a parameter 0 < ¢ < /e1, we
let U; be the solutions of the parameter-dependent Bishop equation

3 Uy = —To(h(Wy, Up)), where Wy = (t£,0...,0).

with a; ;1 = 1. In particular, we still have £M0(

Since the data are smooth, we can solve this in the Hélder spaces
Ck’“(Sl, Rd) (k> 1, 0<a<1) for & sufficiently small. Let the A;(0) be the
corresponding holomorphic disc and set yy(s) = A 5 (0). One reads off from
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(3) that the curve y, starts at the origin and runs in the space

iRg ={z=u = = u,, = 0}. It is shown in [HT] that (1) (O) is a po-

sitive multiple of % and that (ii) y, is on [0, 1) as smooth as we please if g1 is
1

sufficiently small.

The curves y, will be obtained by varying the initial point in this con-
struction. To this end we first produce a family of coordinates (z,,w),)
centered at p such that T),_¢M = {v, = 0}. Clearly this can be achieved by
an affine linear change of coordinates @, which depends smoothly on p,
where p ranges in some JM-neighborhood of the origin. Thus (z,,w,) are
holomorphic for p fixed, but are only smooth in p. Next we rotate and dilate

in such a way that d®,(X) transforms to — at the origin and such that

0y

0
ﬁM‘O(a_gcl) 8%1 Then we modify (z,,w,) again as before in order to

simplify second-order terms. Clearly all this can be done by a family of local
biholomorphisms depending smoothly on the parameter p. In these last
coordinates, which we still denote by (z,,w)), we construct a curve 7,(s),
0 < s<e, verbatim by the same construction as above. Thus 7p(s) starts at
the origin in (z,,wy)-space, which corresponds to the point p, and its time

derivative at s = 0 is a positive multiple of G The desired curve y, with
1
7p(0) =pis then obtained by reversing the coordinate transformations. The

nature of the process implies that % (0) is a positive multiple of X(p).
We claim that M* UW = U  7,(s) is a manifold with boundary
peW, 0<s<g
W attached to M along W, provided W is a sufficiently small open
neighborhood of the origin in M, and ¢; is sufficiently small. Actually,
optimal regularity results for the Bishop equation yield that the solution,
which depends on a finite dimensional set of parameters, has arbitrarily
small loss of smoothness with respect to the parameters ([Tu2], see also
[MP4]). Thus we have that data depending C**-smoothly on all variables
and parameters lead to C"*~%-smooth solutions. As the smoothness in s is
as good as needed and we can assume k as large as we please, the mapping
(p,s)— 7,(s) is as smooth as we please. First, the inverse function theorem
implies the claim about M+uUW. Second, we may extend (p, s) — yp(s) to
W x (—n,e) for some 0<zn < 1, and obtain an extended manifold
M = U 7p(8) as required in (a). The before mentioned fact that

peW,—n<s<e

%(0) is a positive multiple of X(p) completes the proof of (b).
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The proof of (¢) is standard. One chooses an M-neighborhood W' cc U
of po so small that every « € CR(U) can be uniformly approximated on W’
by holomorphic polynomials P;, using the Baouendi-Treves approximation
theorem [BT1]. Restricting domains again, one restricts the above con-
struction using only discs attached to W’. Then the maximum modulus
principle applied to the dises implies that the P; converge uniformly on
M+ UW to a continuous function u., which is CR on M. The proof of
Proposition 3.2 is complete O

ProOF oF PrROPOSITION 3.3. — Let us first sketch the geometrical idea.
Since ¥ = LM,pO(X) is not complex tangent to M , it ~is classical (see [HT])
that appropriate C>*-small discs attached near py to M whose z-coordinates
are parallel to CX are nontangent to M along their boundaries, sticking
out along directions which are approximately ¥ modulo H pOM . This would
be enough in order to extend CR functions defined on all of M. In the case
at hand, we are only allowed to use discs attached to M+ UW. We will
construct a family of discs whose boundaries touch M quadratically in
exactly one point and obtain CR extension to a (dim M + 1)-dimensional
manifold (distinet from M+) contained in the union of the dises. Since es-
sentially the same construction is explained in great detail in [MP3, Section
5], it will suffice to give a concise review of what has to be done.

We will first construct a single dise attached to M*UW whose
boundary touches M at p,. Choose local coordinates

21,y 21, W1 = UL + W1, .., Wi = Ug—1 + W1
centered at po such that M is locally given as a graph v = h(z, w), with
h(0) =0, dh(0) =0. After convenient rotations, we may assume that
0 0 ~ . -m d-1
X = Fr ,CMOX = Bur mod HoM and ToM = iR,, & (/Z _____ s DR s

(by multiplying by some ¢ € S, we have rotated X so that JX € ToM)). For
technical reasons, we also arrange that

@ hz1,0,...,0,u1 ... ug1) = cla [P + O(G, W), ¢>0,

by eliminating pure terms of second order.
For Z,() = (r(1 — 0),0,...,0), 0<r <« 1, let

A Q) = (2D, U D + V(D) = (Z D), U + 1(Z:(D), Ur())
be the analytic disc obtained by solving the Bishop equation
(5) Ur = _Tl(h(zra U?))
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Note that A,(1) = 0. The crucial point is that »(1 — ) lies in the right z;-
halfplane and touches the imaginary axis quadratically at the origin, and
that the curvature of its boundary at the origin becomes large for » — 0.
First, it is proved in [MP3, 5.5] that for » >0 small, we have
A.(A\{1}) € M* and that A,.(S?) touches M quadratically at 0. There is a
geometric estimate for admissible » which is stable under C**-small de-
formations of . Second, the usual classical argument (see [HT]) based on
(4) shows that

®) V.

— p— /
2 . r(c,0,...,0)+ o(r),

with some ¢’ > 0 independent of » (here { = 1 + iz).

Let us take for granted, for the moment, that we can construct for a
small fixed 7 a (dim M + 1)-dimensional manifold M+ attached to M , and
containing the image A,((1 — ¢, 1)) of the segment (1 — &, 1), such that CR
functions extend from M to M+. Then (6) yields for the normalized out-
going direction at the origin

‘%”(1)/‘ 67’*(1)] —(¢,0,...,0), as 7 — 0.

But this implies that we can approximate the element gefined by é)i in
V1
ToM /HoM by directions of CR extensions. Since é( 5 ) > 0 we have
v
found a direction of extension Z as desired. Now since a sufficiently small
r > 0 has been fixed, we drop it from the notgtion and write A.

It remains (i) to construct the manifold M * and (ii) to establish CR
extension from M to M. The method for getting (i) is very similar to that
of the proof of Proposition 3.2. We construct a family of local holomorphic
coordinates

zl,zn s 7zm+1,p> wl,p» v 7wd—1‘p

coinciding with the above coordinates for p = 0 and satisfying the following
properties:

a) (zp,wp) depend C3-smoothly on the parameter p, which ranges in a
small M-neighborhood W” of the origin.
b) For p fixed, (z,,w,) are holomorphic and centered at p, and we have
~ yd—1
TOM - ZRZ/I[’ @ L/z2p < Rm+1p @ Rul.pwwud—l.p.
We apply the above construction with dependence on the parameter p.
This yields discs A, attached to M~ U W’ and touching M quadratically at
A,(1) = p. Using regularity results for the Bishop equation ([Tu2], also
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[MP4]), we see that A,({) depends cl/ 2—smoothly on p and { € 4. After a
further shrinking of W” and with a smaller ¢, we obtain a manifold

MtUW" = |J Ay — ¢ 1)) as required in (i).
peWw”

To show (ii) we just have to remember from the construction of M that
every u € CR(U) can be approximated by holomorphic polynomials P; which
converge uniformly on W’ U M. Hence the P; also converge on M+ UW” to
a continuous CR function extending . This yields (ii) and completes the
proofs of Proposition 3.3, and also of Theorems 1.1 and 2.2 O

5. Applications to CR meromorphic functions.

One of our motivations is to find concrete applications for the Siegel-
type theorems proved in [HN2], [HN3]. In these papers, far reaching
global consequences for the field of CR meromorphic functions are proved
for CR manifolds satisfying a local extension property E. For a C*°-smooth
generic CR submanifold M of a complex manifold N, property E means
that the canonical restriction mapping Oy, — CRy,, is surjective for ev-
ery p € M. Here Oy and CRy; denote the sheaf of germs of holomorphic
functions on N and the sheaf of germs of C*-smooth CR functions on M,
respectively, and Oy ;,, CRy, are their stalks at p. We obtain immediately
that a manifold satisfying the assumptions of Theorem 1.1 in a coordinate
neighborhood of each of its points has property E. Hence we obtain all
results proved in [HN2], [HN3] by carrying the local situation studied here
to general manifolds.

Actually the main results in [HN2], [HN3] concern CR meromorphic
functions rather than CR functions. Similarly as ordinary meromorphic
functions, we define CR meromorphic functions in the usual sense on
U C M as functions which are defined on a dense open subset of U and can
be represented near every point p € U as the quotient p/q of C*°-smooth
CR functions p, q, where ¢ does not vanish identically on any nonempty
open subset. If M has property E, every CR meromorphic function on U is
the restriction of a meromorphic function defined on some ambient
neighborhood of U in N.

Let M be a smooth compact locally embeddable CR manifold of CR
dimension m and CR codimension d, which at each point satisfies the hy-
potheses of Theorem 1.1. Then the field (M) of CR meromorphic func-
tions on M has transcendence degree k < m +d. If f1, ..., f; is a maximal
set of algebraically independent CR meromorphic functions on M, then
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(M) is a simple finite algebraic extension of the field C(fy, ..., fi) of ra-
tional functions of the fi,fs, .. ., fi. Assuming that M is connected, there is
also an equivalence between the algebraic dependence over C, and the
analytic dependence, of a finite set of CR meromorphic functions in K(M).
When M has a projective embedding there is an analogue of Chow’s the-
orem, and K(M) is isomorphic to the field R(Y) of rational functions on an
irreducible projective algebraic variety Y, and M has a CR embedding in
reg Y. For details, and further applications and remarks, see [HNZ2],
[HN3].

6. CR meromorphic mappings according to Harvey and Lawson

An alternative notion of CR meromorphic functions and mappings
was suggested by Harvey and Lawson in the context of the complex
Plateau problem and studied in [HL], [DH], [DS], [MP1], [MP2]. The
following definitions appear in [HL] for hypersurfaces and in [DS] for
CR manifolds of arbitrary codimension. Let M be a smooth generic CR
submanifold of a complex manifold N of CR dimension m and codi-
mension d, and let X be an arbitrary complex manifold. Then a CR
meromorphic mapping F in the sense of Harvey-Lawson of an open
U Cc M with values in X is given by a triple (¥, Dp, I'r) with the fol-
lowing properties:

(a) Dy is an open dense subset of U,

(b) F : Dp — X is a C'-smooth CR mapping,

(e) the closure of the graph of F in U x X equals 'y and is a local
scarred CR cycle of CR dimension m and dimension 2m + d in
N x X.

In (¢) we mean that 'y is of locally finite (dim M)-dimensional Haus-
dorff measure and contains a closed subset ¢ (the scar set) of (dim M)-
dimensional Hausdorff measure zero such that (i) I'r\o is a C-smooth CR
manifold of same dimension and CR dimension as M and (ii) in a neigh-
borhood of every (p, ) € I'p, integration over I'r\o yields a closed current
(see [HL], [DS], [MP1] for full details). If X equals P! the complex pro-
jective line, we also speak of CR meromorphic functions in the sense of
Harvey-Lawson.

Meromorphic extension of these CR meromorphic mappings is tech-
nically complicated because of the presence of the scar set. Actually it
requires a certain machinery to derive the counterpart of Theorem 1.1 for
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CR meromorphic functions in the sense of Harvey-Lawson. We can prove
this for all manifolds with property E.

THEOREM 6.1.  Let M be a smooth generic CR submanifold of a complex
manifold N with property E. Then every CR meromorphic function F in the
sense of Harvey-Lawson, defined on an open set U C M and with values in
P! has a meromorphic extension F to a neighborhood V of U in N. More
precisely, the graph 'y CV x P! of F satisfies I'p N (U x PY =TIy In
particular, F is a CR meromorphic function in the usual sense.

A CR manifold M is called minimal at a point p € M (in the sense of
Tumanov) if there is no germ of a CR manifold N C M of the same CR
dimension as M and of lower dimension than M containing p.

LEMMA 6.2. Let M be a smooth generic CR manifold in C" with
property E. Then M is minimal at every point p € M.

ProoF. Let us assume that M is not minimal at py. By [BR] there is a
smooth CR function % defined on an open neighborhood U’ C U of py which
does not extend holomorphically to any open wedge attached to M near py,
in contradiction to property E. O

PRrOOF OF THEOREM 6.1. — Let F be a P'-valued CR meromorphic
function in the sense of Harvey-Lawson defined on U C M. First we
construct a local extension of F' to an ambient neighborhood of a given
po € U. Because of Lemma 6.2, [MP2, Theorem 1.2] gives meromorphic
extension to an open wedge W attached to a neighborhood U’ of pg in M.
More precisely, there is an open truncated cone C C C" with vertex at the
origin and a meromorphic function F on W = U’ + C which attains F as
continuous boundary value on Dp.

From property E and a Baire category argument (see [HNZ2]), it follows
that smooth CR functions on U’ extend holomorphically to a uniform
ambient neighborhood V' of U’. Since the envelope of meromorphy coin-
cides with the envelope of holomorphy for domains in C", functions which
are meromorphic on an arbitrarily thin neighborhood of U’ extend mer-
omorphically to V. For fixed ¢ € C, the rigid translates U, = U’ + {ec}
approach U’ for ¢ | 0. To obtain the desired extension to a neighborhood of
Po, it suffices to choose ¢ € (0,1) so small that py € V' + {ec} and to extend
Fto V' + {ec}.
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Now a standard gluing argument yields a meromorphic function F
which is defined on a neighborhood V of U in C" and coincides with F on
Dp. It remains to prove that "z N (U x P = I'p. Near points in Dy this is
obvious. From (b) in the definition of CR meromorphic mappings and the
corresponding (well known) property of meromorphic functions, we deduce
I'r cI'pn(U x PY). Assume that there is (o, 8) € I'p N (U x ]PI)\I"F.
This is obviously impossible if po is a point near which F is a smooth
mapping. Hence it remains to consider the case in which py lies in the
indeterminacy set 2 = {p : {p} x P! ¢ Iy}

Following [DS], we also consider the indeterminacy set 2z of F' defined
by

Sp={peU:{p} xP Iy}

Our assumption on py means that py ¢ 2. Let « be a biholomorphism of pt
mapping {, to oo. It is observed in [DS] that the set-valued function o o F'
naturally induces a CR distribution g of order one on a neighborhood U, of
po in M. As M is minimal in py, Tumanov’s theorem [Tul] and the usual
extension techniques for CR distributions yield holomorphic extension to
an open wedge attached to M at p, (assuming ¢ as boundary value in the
weak sense). Then an argument with approach manifolds as above yields a
holomorphic extension ¢ to a full neighborhood of py. Observing that o o F'
and g are smooth and coincide at points of Dp, we obtain that the equality
F = o710 § holds near po. In particular, F is smooth near py, in contra-
diction to pg € 2. The proof of Theorem 6.1 is complete O

REMARK 6.3. Itrequires only little extra work to derive a corresponding
result for CR meromorphic mappings with values in a projective manifold X.
Note that in the general case we can only expect I'r C I'; N (U x X).

7. Homogeneous examples

At first glance, it may seem hard to find examples of CR manifolds of
kind 3 satisfying the conditions of Theorem 1.1. However, the theory of
homogeneous CR manifolds provides many of them in a very natural way
(see [MN1], [MN2], [MN3], [MN4], [AMN]). We give a concise description
of a class of such homogeneous CR manifolds, and refer to [AMN] for more
details.

Let G* be a complex connected semisimple Lie group, with Lie algebra
a", and G a connected real form of G", with Lie algebra g. Fix a Cartan
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subgroup H of G, which is maximally noncompact, that is a Cartan sub-
group such that a maximal compact torus in H has minimal dimension, and
denote by  and " the Lie algebras of H and of its complexification H*. In
the set of roots R = R(g",§") choose a subset R* of positive roots,
adapted to g (cf. [AMN], Proposition 6.1), and let 5 be the corresponding
set of positive simple roots. To any subset @ C B we associate the parabolic
subalgebra and subgroup

a=0"+> g+ Y. a,

aERT ae—RT
(suppo) NP =10

Qe = Normge(g4).

Here g is the eigenspacein g“ of aroot o, and supp « is the support of a root
o in B. The group Qg has Lie algebra q.

The group G* acts via the adjoint representation on g“ and on linear
subspaces of g*. Fix a subset @ C Band let d be the dimension of q . The orbit

Y = {Ady(9)ag) | g € G-} C Grag")

through @, in the Grassmannian of d-planes in g is the flag manifold of
parabolic subalgebras of g conjugate by an inner automorphism to q4. Itis a
smooth irreducible projective subvariety of Gry(g"), isomorphic to G* /Q.
The orbit

M = {Adg-(9)ag) | g € G} C Gra(g")

of G through g4 is a smooth generic CR submanifold of Y which, by our
choice of the Cartan subgroup and of the system of positive roots, is com-
pact, and is called the minimal orbit of G in Y.

If all local CR functions near a point p of M extend to a full neighbor-
hood of pin Y, then the pair (M, Y) has property E of [HN2], hence the field
KWM) of CR meromorphic functions is isomorphic to the field R(Y) of
rational functions on Y, because Y is the smallest projective variety
containing M (see [HNZ2]).

EXAMPLE 7.1. Identify C° with the standard basis {ej}1<j<¢» With the
quaternionic vector space IH? by setting, for 4 € C,

Jhesj_1 = Jesj,  Jlegj = —leg 1.
Consider the complex flag manifold

Y={tClyCt; CCOldimby ;=2-1,1<;<3}.
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Then Y is a compact 13-dimensional complex manifold, homogeneous
for the action of G* = SL(6, C). Near the point
0= ((e1)c, (e1, €2, e3)¢, (e1, €2, €3,e4,€5) )

it admits a holomorphic chart given by the nonconstant entries of the
matrix

1 0 0 0 O

221 0 0 O

lz 0 1 0 o0
A= 23 2¢ %9 1 0
24 R7 210 0 1

&, %8 %11 R12 13
Let M be the real submanifold of Y given by
M = {(t1,03,05) € Y | T4y C b3, llg C £5)}.

Then M is homogeneous for the action of the real form G = SL(3, Il) of G,
and it is a compact real-analytic homogeneous generic CR submanifold of
Y. Denoting by A; the j-th column of A, near the point o the manifold M is
defined by the system of equations

rk(A17A27A37jA1) = 3a
I'k(Al,A27A3,A4,A5,jA1,jA2,jA3) = 57

which, in the coordinates {2;};;.y3, are

29 — 26 + 2123 + 2329 — 2121%¢ — 212229 = 0,

24 — 28 + 2125 + 23211 — 212128 — 2122210 = 0,

210 — 212 + 29211 + 211213 — 2929%12 — Z9210213 = 0,
25 + 27 — 2124 — 23210 + 2171727 + 21222190 = 0,

thus M has CR dimension 5 and codimension 8. The holomorphic tangent
space T10M admits the basis {9/ 0%;}i_1391113- The space of Levi forms has
real dimension 6, and in the basis {9/0z;};_; 3911 13 it is the space of Her-
mitian symmetric matrices of the form

0« 0 00
a 0 o B 0
0« 0 » 0], o, f,y e C,
0 g7 0y
000 7 0

as the fourth equation does not contribute to the Levi form. In some
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characteristic codirections the Levi forms are zero, but in the remaining
characteristic codirections, the Levi forms all have signature (1, 1) or sig-
nature (2, 2), and M is trace pseudoconcave. Moreover M has kind 3, indeed
G has real dimension 16 and Gs is the whole tangent space of M. By
Theorem 1.1 germs of CR distributions on M are real-analytic and extend
to germs of holomorphic functions on Y.

With the notation of [AMN], M is the minimal orbit of the simple Lie
group of type A II; associated to the parabolic subalgebra q = qy,, 4, 4}

ExaMPLE 7.2. The example above can be generalized to the following
pairs of complex flag manifolds, homogeneous for the action of SL(2xn, C),
and compact generic CR submanifolds, homogeneous for the action of
SL(n, H):

Y = {ly, 1 C lyj,_1 C lyj,_1 C C*" | dimby;, 1 = 2j — 1,1 < k < 3},

]Ii[gzjlcfl C gzij,l, 1 S k S 2

dim (€2'rl N ]Ewg'c,l) =2, —2, 1<k<3
M= {(fzjlh loj, 1,09, 1) €Y ! ! ,

forl=71<ja< j3 < m.

In this case the complex dimension of Y, the CR dimension of M, and the CR
codimension of M are:

dimcY = @2n — 1) +2(j2 — D@n — 252 + 1) + 2(j3 — j2)@n — 2j3 + 1),
dim crM = 2n + 2]3 -1,
codim cgM = 4((n — j3)(js — 1) + (j3 — j2)(jo — 1) + 1).

The space of Levi forms of M has dimension

(22 —3)(2j3 — 2j2 + 1) + Zjg — 22 — D21 — 2j3 + 2o — 1) +
+ (2n — 2j3)(2j3 — 2j2),

and all of them, in a suitable basis (as described in [AMN]), have all diagonal
entries equal to zero. Hence M is trace pseudoconcave, and has not kind 2.
It can be checked that M has kind 3, thus M satisfies the hypotheses of
Theorem 1.1 and germs of CR distributions extend holomorphically to a full
neighborhood.

With the notation of [AMN] M is the minimal orbit of the simple
Lie group of type AIly, ; associated to the parabolic subalgebra
0= 0oy oy 1,05 1} By duality, a completely analogous statement holds
for the case 1 <jj<ja<js =n.
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ExampLE 7.3. Similar to the previous one is the case of pairs of
complex flag manifolds, homogeneous for the action of SL(2n,C), and
compact generic CR submanifolds, homogeneous for the action of
SL(n, H):

Y = {lyj, 1 C byj1 C C2" | dimby;, 1 = 2j;, — 1, k = 1,2},

dim (EZj,fl Ny, 1) =25, —2, k=1,2
M = < (loj, _1, 4, Y ¥ Jh ’ ’
{( Bt ) € ey ’

for 1<ji<jo<mn.

Also in this case, M has kind 3 and is trace pseudoconcave.

EXAMPLE 7.4. Let G" be the connected and simply connected simple
complex Lie group of type Fy, and let g" its Lie algebra. Fix a Cartan
subalgebra §)" of q and a system of simple roots B = {o;}, - ; 4 of the root
system R = R(g", §" ') (we use the root numbering scheme of Bourbaki,
see [AMN], Appendix). Let {(uj}lS j<4 be the set of fundamental weights
dual to B and let V = V,,, be the fundamental representation of G with
highest weight ws. Let Y be the G“-orbit, in P(V), of the highest weight
root space. With the notation of [AMN], Y is the complex flag manifold of
G" consisting of parabolic subalgebras of ¢" that are conjugate to ).

Inside Y consider the minimal orbit M of the real form of G* of type
F1II (also denoted by Fy_sp). It is a CR manifold of CR dimension 9 and
CR codimension 11. By [AMN], Theorem 9.1, it is of finite type, and by
[AMN], Theorem 13.5, it is trace pseudoconcave. Direct computation
shows that G2 has codimension 4 and Gj is the whole tangent space of M,
thus M has kind 3. Hence also in this case we have holomorphic extension
for germs of CR distributions.
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