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Morrey Estimates for Parabolic Nondivergence
Operators of Hormander Type
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ABSTRACT - Let X1, X5, -+, X, be a system of real smooth vector fields satisfying
Hérmander’s rank condition in a bounded domain Q of R". Let a;;(t,x) be real
valued, bounded measurable functions defined in a bounded domain U C R x ©,
satisfying the uniform ellipticity condition:

q
wNEPS Y ay(t )& < el

ij=1

for £ € R? and some constant x4 > 0. Moreover, we assume that the coefficients
a;; belong to the space VMO (“Vanishing Mean Oscillation”) with respect to the
subelliptic metric induced by the vector fields X;,X5 - - - X,,. For parabolic non-
divergence operator

q q
Hy =0, - E ay; (8, x)X; X; — E b;(t, x)X; — (¢, ),
=1

ij=1

we prove the following local estimate:

I lsgrons o < { LS st i+ Flonscon

in Sobolev-Morrey spaces ‘S?z‘p’)'(U ) defined by the vector fields X;, where
feSERPAU), Hy f € S54(U), U' cc U, and b;, ¢ belong to suitable Morrey
spaces.
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1. Introduction

Let X;,X5---X, be a system of C> real vector fields defined in
R"(n > q + 1), with the form

n a . n
Xi=> bij(%)%a with by € C=(RY),
j=1 -

(i=1,---q;j=1,2,---m) and {X;} satisfy the so-called “Hoérmander’s
condition” at every point of Q C R": the vector fields X;, their commutators
[X;,X;| = X;X; — X;X;, the commutators of the X;’s with their commu-
tators, and so on until a certain step s, generate R"(as a vector space). In
this setting, “sum of squares” operators

q
(1.1) > Xt
i=1
or their “parabolic” analog
q
(1.2) 0 - X7
i=1

are hypoelliptic in Q or U C R x Q([2, 20]). In recent years, more general
operators

q
1.3) 3 ay(@)XX;
ij=1
and
q
(1-4) 615 - Z aij(t, %)XZAX]
i,j=1

have been studied, where a;; satisfy the uniform ellipticity condition and
belong to VMO (“Vanishing Mean Oscillation”, see Definition 2.3 below).
These classes of operators come from geometry in several complex vari-
ables and human vision; moreover, they offer a suitable framework for
studying the theory of nonlinear equations modeled on vector fields(see [2]
and references therein).

For second-order nondivergence elliptic operators, Chiarenza, Frasca
and Longo [10-11] first utilized the LP boundedness of singular integral
operators with variable kernels and their commutators with functions in
BMO (“Bounded Mean Oscillation”) to prove the L” estimates of the so-
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lutions; applying the same technique, Bramanti and Cerutti [5] obtained
similar results concerning second-order nondivergence parabolic opera-
tors; the estimates in Morrey spaces on the Euclidean space for second-
order nondivergence elliptic operators were established by Di Fazio, Pa-
lagachev, Ragusa [13-14] through adapting the approach from [10]; for
second-order nondivergence elliptic and parabolic operators, Lieberman
[21] derived directly the estimates in Morrey spaces from the LP estimates
via an elementary argument.

Rothschild and Stein [24] put forward the technique of “lifting and
approximation”, and proved L” estimates of the operator (1.3) with
a;; € C™. Using the idea in [24], Bramanti and Brandolini established L?”
estimates of the operator (1.3) in [1], and Schauder estimates of the op-
erator (1.4) and more general parabolic operators in [2], respectively. From
the view of analysis, we think that it is interesting and important to study
regularities in various function spaces for these operators constructed by
Hoérmander’s vector fields.

Our aim is to check local Morrey estimates of the operator

q q
(1.5) Hy =0 — Y ay(t,0)X;X; =) bi(t,2)X; — c(t, ).

ij=1 =1
The research of this paper explores new efficacy and applications of the
technique by Rothschild and Stein and new properties of singular integrals
on homogeneous spaces.
We are now in position to list our main assumptions:

(H1) Let @ be a bounded domain of R", and let X;,Xs, -, X, be a
system of smooth real vector fields defined in a neighborhood @, of Q and
satisfy Hormander’s condition of step s in Q.

(H2) Let U be a bounded domain of R"*!, ' ¢ R x Q and let a;(t,x) be
real valued bounded measurable functions defined in U; there exists some
constant x> 0 such that the matrix {a;(t, ”)}ijl(mt necessarily sym-
metric) satisfies the uniformly ellipticity condition:

q
wNEFSY T ay(t,w) & < plEf, for every & € RY, (t,x) € U.
i,7=1

(H3) Let a;(t, ) belong to the class VMO(U) defined with respect to
the subelliptic metric induced by X1,X; - - - Xj.
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We will see that U becomes a homogeneous space with respect to a
Carnot-Caratheodory distance(see Section 5 below). Then there exists a
positive integer ¢’ such that the measure u(B,) of the ball B, with respect to
the C-C distance in R"™ is equivalent to 7.

Our main result is the following:

THEOREM 1.1. Assume that (H1)-(H3) hold, a;;(t,x) € S@“’O(U ) and
bi(t,x),c(t,x) in (1.5) satisfy the following:

{Lq’ NSYU), p+i<q; {Lq’ﬂ(m NSy, 2p+a<y;
IS ce

LPAOSEPH Y, p+i> ¢, LPAU) NS U), 2p+ 7> ¢,

for every p € (1,+00) and i€ (0,q), where LP* denotes some Morrey
spaces (see Section 2), Sl}c(’q/’o,S];(’q’/ 20 Sé?p * are Sobolev-Morrey spaces(see
Section 7). Then for every subdomain U CC U, there exists a constant
C > 0 depending on U, U’ {X;},p, 2, 1 and suitable norms of the coeffi-
cients a;;, bj, ¢ such that for every f € S?z‘p HU) with Hy f € S;“(”’ A(U) and
k e N, we have

1.6) [ fHS?Z-P-Z(U/)S C{HHlstf(-P-’-(UﬂrH f”Lp/i(U)}'

REMARK 1.2. Analogous Morrey estimates for the operator (1.3)
obviously follow from Theorem 1.1. Moreover, L” estimates of (1.3) (i.e.
Theorem 0.1 and Theorem 0.2 in [1]) are promptly derived, as a particular
case.

We will use “lifting and approximation” and the Morrey boundedness of
variable operators of type 0 and their commutators with BMO functions in
the proof of Theorem 1.1. Let us note that the Morrey boundedness of
singular integrals and their commutators with BMO functions on homo-
geneous spaces was established in [16]. Here we prove the Morrey
boundedness of fractional integrals and their commutators (Theorem 3.2
below) and interpolation theorem in the Morrey context (Theorem 3.9
below). They play a crucial role in the proof of properties of variable op-
erators of type 0, and are of independent interest.

Compared with the existing literature, we do not see any work on the
study of Morrey regularities for solutions of (1.5) involving (1.3) and (1.4).

The paper is organized as follows: In Section 2 we introduce definitions
of BMO, VMO and Morrey space on homogeneous spaces; Section 3 is
devoted to the Morrey boundedness of fractional integrals and their
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commutators with BMO functions, and the interpolation theorem with
respect to Morrey norm; In Section 4 we first recall the “lifting and ap-
proximation” technique ([24]). For our purpose, we define a homogeneous
group by a natural way and a quasidistance on the group; In Section 5 we
give some properties of “parabolic Carnot-Caratheodory distance” induced
by Hormander’s vector fields, and their relations with the quasidistance on
homogeneous groups; In Section 6, collecting some known results about
the fundamental solution to the frozen lifted operators (see [15]) and some
properties of the frozen and variable operators of type I > 0([1,24]), we
prove the Morrey boundedness of variable operators of type 0 and their
commutators with BMO functions using the theory of Section 3. It is im-
portant in the argument of the following sections; The main tasks in Sec-
tion 7, 8 are to prove local estimates of the operator (1.5) without lower-
order terms in Sobolev-Morrey spaces of Si’p “(U) and S?Z”’ ";V(U), re-
spectively; In Section 9, results of Section 7 and 8 are extended to (1.5) and
then the proof of Theorem 1.1 is completed.

2. Some function spaces.

Let S be a set. A function d : S xS — R is called a quasidistance, if
there exists a constant ¢ > 1 such that for any x,y,z € S,

d(x,y) >0, d(x,y)=0Iif and only if x = y;
2.1) cd(y,x) < d(x,y) < cd(y,x);

d(x,y) < c(d(x,2) +d(z,y)).
We say that two quasidistances d,d’ on S are equivalent, if there exist two
positive constants c;,ce such that ¢;d' (x,y) < d(x,y) < cad'(x,y) for any

x,y € S. In this case, we write d ~ d’.
For r >0, let B,.(x) = {y € S : d(x,y) <7} be a ball in S.

DEFINITION 2.1 (Homogeneous space, see Coifman-Weiss [12]). Let
(S, d) be a space endowed with a quasidistance d such that balls defined by d
mduce a topology in S. Moreover, we assume that u is a positive Borel
measure on S satisfying the doubling condition, i.e., there exists a positive
constant c, such that

0<u(Bzr(x)) < ¢, - u(Br(x))<oo, for every r>0,x € S.

Then (S, d, 1) is called a homogeneous space.
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To simplify notations, the measure du(x) will be written as da, and ()
as |Q|.

DEFINITION 2.2. A homogeneous space is said to be regular, if there
exist positive constants c1,ce and @ > 0 such that

2.2) 17 < u(B, (@) < cor?
Sforevery x € S and r, u({x}) <r < u(S).

From [22], we know that for every homogeneous space (S, d, 1), there
exists a regular homogeneous space (S,d’,x) such that d and d' are

equivalent.
Next we introduce BMO, VMO and Morrey space.

DEFINITION 2.3. For a measurable function f € L} (S), define

) = sup 1)~ fin|de,

r<R 3
where fg, = ¢ fla)dae = |Bi | f@)da Then f € BMOS) (Bounded Mean
B, rl B,

Oscillation) if || f||, = supn(R)< + oo, while f € VMO(S) (Vanishing
P
Mean Oscillation) if Il%irr}) nf(R) =0.

For a given domain Q C S, the spaces BMO(Q) and VMO(L) are si-
milarly defined, just taking B, N Q instead of B,.

DEFINITION 2.4. We say that a measurable functionf € L}, (S) belongs

to the Morrey space LP*(S) with p € (1, +00) and 4 € (0,Q), if the following
norm

1 )
23) /1], = (sup— / F@)Pde)”
' r>0 1"
B,
1s finite.

Similarly, the space LP*(Q) and the norm | f .0 are defined with
some explicit changes.
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3. Singular integrals and interpolation theorem.

For a linear operator T on LP(S), the commutator of 7" and a € BMO(S)
is defined by

[T,a)f = T(af) — aTf.

T is called a sublinear operator from LP*(Q) to L4*(Q) for p,q € (1,4 0o0)
and 2, u € (0, Q), if there exists a constant K > 0 such that

3.1 T(f + 9@)| < K(Tf@)| + |Tg@)), Vf,g € LP(Q),a.e..

LeEmMA 3.1 (Singular integral and commutator, [16]). Let (S,d, 1) be a
regular homogeneous space, p € (1,+00) and A € (0,Q). Assume that a
sublinear operator T satisfies the following: for every function f € LX(S)
with compact support and every x ¢ sprt f,

|f (y)l
d(x

32) ITf@)] < C /
@A) If T is bounded from LP(S) into itself, then T is also bounded

from LPA(S) into itself, that is,

(33) ||Tf||pA — CHf”p 2

(i) If [T,a] is bounded from LP(S) into itself, then [T,a] is also
bounded from LP*(S) into itself. that is,

34) 1T, al(Dllp 2 < Cllall N1 -

THEOREM 3.2 (Fractional integral and commutator). Let (S,d, 1) be a
regular homogeneous space, o, A € (0,Q) and A+ pa<Q. Let T satisfy

3.5) ITf@)] < C / f (y))Q| .
forevery functionf € LY(S)with compact support and every x ¢ sprtf, and
denote 1.1 @ nw= éq Then we have

g p Q" p"

@) of T is bounded from LP(S) into L(S), then T is bounded from
LP*(S) to LI(S), that is,

(36) ”Tf”q,,u < C”pr,/l;
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@) if [T,a] is bounded from LP(S) into LI(S), then [T,a] is also
bounded from LPA(S) to LI#(S), that is,

(37) ||[Ta a]f”q,'uS CH(LH*Hpr,A

Proor. (i) Asin [16], for any ay € S,7 > 0, f can be decomposed into

f@) :fXBzr(xo)(y) + Z fXBZkH,.(x())\82k7,<900)(y) =Jfo) + Z Je®)-

k=1 k=1

1/q
< /|Tfk(ac)|qu) )

B (w9)

Hence,

1/q /¢
(38)( / Tf(ac)lqu> s( / ITfo(x)qu> 5
=

B, (wo) B, (o)

—

Using the boundedness of 7' from LP(S) to LI(S) yields

1/p

1/q
3.9) (/ITfo(x)"dx> §C< / Ifo(%)pd%> < Cr P £,

B)-(wo) B, (wo)

and for k > 1,

1/q @)l q 1/q
(/|Tfk(ac)qdac> gc(/ ( / Wyy)@ady) dx)

B;(w) B, (o) Boi1,(@0)\B,yp,.(xo)

(3.10) <c rR/a

— d
sas | 1wl

Byjes1,(x0)
e TV
— 7 2k(Q-A)/p—2) p,A*

(3.6) is immediately obtained from (3.8)-(3.10).
(ii) As in the proof of (i), let

F@) = f@)+_ fiy).
k=1

Since [T, a] is bounded from LP(X) to L(X), one has

1/q
311 </I[T,a]fo(x)lqd«%'> < Clal.llfoll, < C*llall | £l

B,(wo)
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For every o > 0, set

1
aBa:m / a(y)dy.

B (o)

John-Nirenberg lemma and Lemma 1.8 in [6] imply

1/q
( / T, a]mx)wac)

Bi(xo)

© o a) — ag,| + |ag, — a®)| 1
<c [ / oL+ o, = 6N, 1 ) dype
dx, y)
By (w9) * Byki1,(@0)\Byk, (o)

1
C———
= (k)@ {( /

Bi(x0)

1/q
|a(x) — ag, qu%) / |l dy
B

okc+1,.(@0)

(3.12) el / aBr—OL(?/)|f(?/)|d?/}

Biyjet1,.(@0)

{TQ/anII* / @)l dy
B

k1, (%0)

c
T @k

1/p

[ ey dy) }

k1, (T0)

1-1/p
+ 190 / jag, — a7 >dy>
B

Byjer1,(@0)

- - p
< Czk((Q—i)/p—az)T ||a||*‘|f||p,)

It is easy to derive (3.7) form (3.11)-(3.12). O

THEOREM 3.3 (Embedding property). Let Q be a bounded open subset
of S. If ¢ <p and _Q—ng _Qp+A

. then LPA(Q) is embedded con-
tinuously into LY*(Q), and we will write LP*(Q) — LI*(Q).
It can be proved by Hélder’s inequality.

Next we extend the interpolation theorem on Sobolev spaces estab-
lished by Marcinkiewicz (see [9, Chapter 3] or [19, Chapter 9]) to the case
of Morrey spaces. To do this, we need more precise estimates in the
Morrey context.
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DEFINITION 8.4. Letf € LYQ), 2o € Q, v > 0,t > 0, and let

(3.13) A (f) = {x € QN B (xo)| | f(®)| > t}.
The function
(3.14) At ) = |Agr ()]

1s called a distribution function of f.

Lemma 3.5 ([9, Chapter 3, Lemma 1.1] or [19, Lemma 9.7]). For
feLP(Q)1 < p<oo), it holds

(38.15) / |f@)F dx=p / 1AL, (f)| dt.
0

B,(xo)NQ

DEFINTTION 3.6 (Weak Morrey space). For p € (1,+0), 2 € (0,Q), a
measurable function f is said to belong to weak LP*(denoted by LE(Q)), if

3.16) || fll i = supinf{A |4¢(t,7) < 't PAP, ¥t > 0,r > 0} <oc.
" >0

LEMMA 3.7. Forany l<qg<p<oo, 0<u<l<@, one has
@.17) LPH@Q) G LiH(Q) C LH(Q).

PrROOF. For any f € LPH(Q),
rHPA(f)]) < v / |f@)| dae = r~* / |f@)|? de,
At.r Br(xo)ﬂ.Q

and thereforfa, 1 7o) < 1 lvien-
If f € L*(Q), then by Lemma 3.5,

1 00
s T @ = ar [ Al de g [o Al
3.18) By ()N 0 1
=1+1I.

We have

1
3.19) [I] < qr *|By(xo) N 2| / 117 dt < CrQ*, for @ — >0,
0
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=g 00 q

1| < gr ( / tlgt”lAt,r(ﬂldt) ( / 1AL dt)

1 1

q

(3.20) s ® 7 Y
SqW”T%(HfHL{f;’(m)p"’ /t’l’]—;dt -1”7q(||f||L7pf(Q))q /t’l’pz_fl”dt

1 1

= a1 o

Applying (3.19) and (3.20) to (3.18) and taking sup yield

B, (xo)NQ

IF12 0 < C+C/||f”€ﬁ:z(g)<oo. O

DEFINITION 3.8 (Type of sublinear operator). A sublinear operator T
1s said to be a strong (p, 1; q, 1) type, if there exists a constant C > 0 such
that

”Tqu,,u;Q < C”f”pj;{)v Vf € Lp’i(Q)a

T
for 1<p,q<oo and 0<4,<Q. Denote ||T||, .4, = SUp | f”q’”.
o fel}?;g(!)) ”f”p,/l

We say that T is said to be a weak (p, 4; q, w) type, if
1Tf loroy < Clfllprer W € LPH(Q).
From (3.17) we know that if T is a strong (p, 4;q, 1) type, then 7T is a
weak (p, 4; ¢, 1) type.

THEOREM 3.9 (Interpolation theorem). Letl<p<g<oo, 0<i<u<@.
If the sublinear operator T is both weak (p, 4; p, A) type and weak (q, 1t; q, 1)
type, that s,

(3.21) ITf iy < Bpillfllpzos ¥ € LPHE),
and
(3.22) 1T om0y < Baul fllgue: 9 € LT*(Q),

then for any p,x : p<p<q,i<i<u, T is strong (p, ; p, k) type, and

0 -0
HTH(/),K;/J.K) < CBp,).Btl],u ’

whereﬁzg(q_p)
p(q—p)

and C depends on p,ic,p, 4,q, 1, 2 and K in (3.1).
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Proor. Forf € LP*(Q) and s > 0, we write f = f1 + f>, where
0, for | f(x)| < 7s,
hH) = @l
f@), for |f(x)| > ys,

for some positive number y to be fixed later. We claim that f; € LP*(Q) and
fo € LY*(Q). In fact, for xy € Q,

11 llLra) < W llmviy < Clf Nl sy <00,
and

rt / | fo(a)|? dac < Cr™™ / | f(@)]” dac < 0.

QNB;-(o) QNB;-(o)

Hence, by (3.1),

[{x € QN Bu(xo) | |Tf@)] > s}| <
(3.23)

{x € QN B,(w)| |Th@)| > %H

+

{gg € QQB’I‘(QCO) | |Tf2(90)| = 2?(}’

From (3.21)-(3.23) we obtain

" App(s, ) < C(?"_l

{m € QN B, (xo)| |Tfi(w)| > %H

+H

{96 € QN By(xo)| |Tfa(x)| > %}D

- C((ZK)p||Tf1|£,A;Q N (2K)q|sz|g./u9)
= Sp sq

< C<(2KBp,ﬂv)p||f1”§,/1;Q n (ZKBq,;t)q|f2”Z,ﬂ;Q>
- sp 84

where C is a constant only dependent of u, x and Q. Also by Lemma 3.5,

oo

P / |Tf ()| doc = p/ s”‘lr"‘ATf(s, r)ds
B;-(xo)ﬂ.Q 0

< C@KB,,) / ps’ P~ ds (M | fi)[” dm)
0

{If@)|>ys}NB;(xo)
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+C@KB, ) / ps’ 1 1ds (T"
0

| fa()|? dx)

{If@)|<ysINB(ao)
|f@)|/y

= C(ZKBP_,;,)”/W*" / |f ()| du / s’ P 1ds

QNB, () 0

oo

B 1
+C KBy, )ipr / |f(@)|? de / sq*/ﬂrlds
QNB,(xo) f@l/y

—cCEBo D oy CRE +c—(2KBq“ UL [iroras

p—D
QNB,(x0) QNB;(x0)

Taking sup on both sides concludes
B (x9)N€2

17|, <

P’

|: (ZKBp_], )pp yp—/) + (ZKBQII ) p l] »
p—p q—p

st

where C relies also on 4. Choosing y = (BZ’;VB,; Z)l/ @) follows

0 pl-0
HTH(prK)<CB Bqu’

where C depends on p,p,q, A, i, k, K and . O

COROLLARY 3.10. For 1<p<g<oo and O0<A<u<@Q, if a sublinear
operator T is both strong (p, 4; p, 1) type and strong (q, i; ¢, 1) type, then for
any p,k: p<p<q,A<k<u, T is strong (p, x; p, k) type.

4. Lifting and approximation technique.

Assume that X;,---,X, are C* real vector fields on a domain
Q Cc R" and satisfy Hormander’s condition of step s at some point
xo € Q. We also write N for the dimension of the free nilpotent Lie
algebra of step s with n generators. Then in the light of “lifting
theorem” by Rothschild and Stein in [24], there exist smooth functions
Ja(e,h) 1<i<qgn+1<I<N,h=(y1, --,hy)) defined in a nei-
ghborhood U of & = (x9,0) € @ x RY™" = Q such that the vector fields
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X; given by
0

N

l=n+1

i:lv...q’

also satisfy Hérmander’s condition of step s and are free up to step s
at every point in U.

By Rothschild-Stein’s “approximation theorem”(see [24, p. 273] or
[1, Theorem 1.6]), one can locally approximate vector fields X; with left
invariant vector fields Y; defined on a homogeneous group G(which is
actually RY endowed with a suitable Lie group structure and allow the
homogeneous dimension @). This approximation is expressed by

@D X(f(0:00)) = (Yif +Rif)(0cn), f € CF@),

where 0:() = (1, &) is a local diffeomorphism in RY, and Rg is a vector
field of local degree < 0 depending smoothly on . More generally, for every
multiple index o we have

Xa = Ya+R§7

with RS a vector field of local degree < || — 1 depending smoothly on ¢ and
Y, aleft invariant vector field of homogeneous degree || on the group G.

In the sequel we consider G’ = R x G as a homogeneous group, with
translations

(t,f)O(S,i/]) = (t+8,607’]),
dilations
IO, &) = (G2t 6()E),

and the homogeneous dimension Q' = @ + 2. Moreover, we will employ the
quasidistance

4.2 d&,m = |6¢, ),

introduced in [24], where || - || is the homogeneous norm in G. Note that the
unit sphere {« € G : ||u|| = 1} in G coincides with the unit sphere 2 in the
Euclidean space RY. In order to make the unit sphere in G’ coincide with
Xn1in RV we define a homogeneous norm of G as follows

1
I, )]|'= ﬁ\/lullzﬂ/ e[ *+422,
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which satisfies
I&wl'=p < [D(e) ) w| =1

Then the quasidistance on G’ induced by || - ||" is

- , 1 - =
43) d'(,0. M =6 "ot = 75\/ A&, 4\ d(E ) 4t s,

5. Parabolic C-C distance.

The constants in the final Morrey estimates in Theorem 1.1 will depend
on the coefficients a;;(x) via “ellipticity constant” 1 and the VMO modules
of “lifted coefficients” a;;(t,x, k) = a;;(t, ). These “lifted coefficients” are
connected with the structure of homogeneous groups in the lifted space
RN¥*1, Our ultimate target is to study functions and differential operators
defined on R"". This requires us to express the VMO modules of coeffi-
cients according to the structure induced by the original fields X; in R". It
is done from statements of [23] and [25]. We now collect some useful in-
formation.

For the system X = (X1, X, - X,) of Hérmander’s vector fields, one
can introduce a subelliptic metric dx(see[1], [17], [25]):

DEFINITION 5.1. Let Q be a bounded domain in R". An absolutely
continuous curve y : [0, T] — Qs called a subunit curve with respect to the
system X, if for any ¢ € R",

q

00,8°< S (X 6(0),6),

=1

fora.e. t € [0,T). For any 1,22 € Q, we define

dx(x1,%2) = inf{T : 3 a subunit curve y: [0,T] — Q,7(0) = a1, p(T) = x2}.
It is known (see [23]) that dy is a Carnot-Caratheodory distance, or

briefly C-C distance. Let us define a parabolic Carnot-Caratheodory dis-
tance dy corresponding to dx, namely,

G dy(@ ), (sy) = < \/dx(f, n’ + \/dx(é, ' +4ft — s

V2
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in the cylinder R x Q. Of course, the distance dY here is different from that
in [2], but they are equivalent. Note that the doubling condition in the ball
(Br(wo), dx, dx) holds (see [23]), and so does in the ball (B, (to, o), dy, dtdi)
(see [2]). Therefore we can apply the theories developed in Section 2, 3 to
the space (B, (to, %), dy, dtdx), and establish the relation between the balls
in R""! induced by {X;} and that in RV induced by {X;}.

The C-C distance dy induced by the system X = (Xl, e ,Xq) is
equivalent to the quasidistance d in (4.2), namely,

cd(&,n) < dg (&) < Cd(&, ),

for every &,y € Q, where Q is a bounded domain in RY. See Sanchez-Calle
[25, Lemma 7, p. 153]. A similar statement is

LemMA 5.2. The parabolic C-C distance d corresponding to dg is
equivalent to the quasidistance d' induced by the homogeneous norm || - ||
on G, that is,

ed'((t,0), (s,) < di((t,9),(s,) < Cd'((¢,0), (s,7),

for every (t,¢),(s,n) € f], where U is a bounded domain in RV,

Sanchez-Calle in [25] pointed out that the volume of a ball for dy is
essentially the volume of the ball of the same radius for dy, times the
volume of some ball in a N — n dimensional Euclidean space, that is, there
exist constants 7y, ¢, C > 0 such that for every z € Bx(x,7) and r < ¢y,

évol(BX((x, k), 7))

6.2) <vol(Bx(x,7)) ~vol{h' e RN, (2,1') € Bg((w, h),r)}
< C vol(Bg((x, ), 7).

Here vol stands for the Lebesgue measure, « is a point in R” and & a point in
RN=". Moreover,

(5.3) dy ((,h), (& 1)) > dx(2,«).

For the ball By ((t,«, ), ) and the parabolic C-C distance d7, we have

LEMMA 5.3. Let X = (Xy,--- ,Xq) be the lifted system in RN for the
system X in R". Then there exist constants ro, ¢, C > 0 such that for every
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(s,2) € Bx((t,x),r) and r < cry,
% vol(By((t,x, k), 7))
G4 vol(By(t,x),7)) ~v01{h’ e RN (s,2,1') € By((t, , h),r)}

<C vol(Bg((t,x,h),r)).
Here (¢, ) denotes a point in R™ and & a point in RN-", Moreover,
(5.5) dg ((t,a,h), (', 1)) > dy((t, @), (¢, ).

Proor. Using Lemma 3.6 in [2] shows that vol(Bx((,«),r)) is
equivalent to 7*vol(Bx(x,7)), and vol(Bg((t,«,h),r)) is equivalent to
r2vol(Bg((x, k), r)). Therefore, it is easy to get (5.4) from (5.2). Moreover,
(5.5) is simply obtained from (5.1) and (5.3). O

We are now ready to prove the following result:

THEOREM 5.4.  The function f (t,x) belongs to the space BMO (or VMO)
on the homogeneous space (S, dy,dtdx) if and only if the function

f(&,8) =f(tx,h) =f(t,x) is in the space BMO (or VMO) on the homo-
geneous space (S, d', dtdé).

Proor. We follow the method in [1]. By John-Nirenberg lemma on
homogeneous spaces (see [6]) and (5.4),

vol (B ((t,, h)ﬂ”))_l / ’J?(Sa%h/) — Fay (b | dsdydl

By((tad).r)

1/2
~ 2
< vol(By ((t, . h), 7)) "2 / Fsuh) —c dsdydh’)
By ((ta,h),r)

gvol(BX((t,x,h),r))l/z( / vol{h': (s,y, 1)
Bx((tx),r)

1/2
€ By ((t,,h),7) M f(s,9) — c|2dsdy>

(by (5.4 ), we assume r < cr(z))
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1/2
< C vol(Bx((t, oc)m))l/z( / f(s.9) = c|2dsdy>
By ((t@),r)
1
<O _
= C (BX((t, x)7 7")) / }f(87 y) fBX((t,DD),V) |d?/7
Bx ((t.x)r)
with ¢ = fay((t).)-

This implies that if f(¢,x) belongs to BMO (or VMO) on (S, dY, dtdzx),
then f(t,¢) belongs to BMO (or VMO) on (S, d’, dtd¢). The converse can
be proved analogously. Finally, by Lemma 5.2 and the doubling property,
we see that the spaces BMO (or VMO) defined on (S,d%,dtdé) and
(S,d', dtd¢) coincide. O

6. Differential operators and fundamental solutions.

We now define several differential operators that we will handle in the
subsequence. The main objective to study is the operator

q
(6.1) H=0 - a;t,0X;X;,

ij=1
where X;’s in Q satisfy (H1) andNthe matri~x {a;;(w)} satisfies (H2)-(H3) in
Section 1. For (¢,&) = (t,x,h) € U C R x Q, let a;;(t,2,h) = a;;(t,x) and

~ q ~ ~
(6.2) H=0-) a;t,9%X;
ij=1
be the lifted operator defined in Q= Q x RV Now, we freeze H at some
point (ty, &) € U and obtain a frozen lifted operator:

~ q ~ ~
6.3) Hy=0,— Y y(t, 50X X;.
ij=1
To study Hy, we first discuss its approximating operator
q
(6.4) Hy=0 - Z a;;(to, £0)Y5Y,
-

ij=1

defined in the group R x G. It is seen from [3] that for every (¢y, &) € U, the
operator H is hypoelliptic and homogeneous of degree 2 in R x G; More-
over, the transpose H! of H is also hypoelliptic.
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Applying the results proved by Folland (see Proposition 1.8, Theorem
2.1 and Corollary 2.8 in [15]) to Hy, we know that H, has a fundamental
solution of homogeneous of order 2 — @', denoted by I'(ty,&;-, ). It is
dependent of a;;(to, &). Moreover, for i,j = 1,---q, denote

Iij(to, Eost,u) = Y Y5 (b, Sos t, )] (u).

The following summarizes the properties of I'(ty,&p;-,-) and
I'ij(to, o5 t,u) that will be used later (see [1]).

RNJrl

LEmMA 6.1.  For every (ty, &) € , one has

@) I (b, ;) Tiglto, i) € C(RVT\{0});

() I'(ty,&y;-,-) is homogeneous of degree 2 — Q' and I’ ii(to, So3 -, ) s
homogeneous of degree —@Q';

(¢) For every test function f and every (s,v) € RN,

f(s,v) = (Hof * I'(to, ;) (s, v) :/F(to,éo;s —t,u™ ov)Ho f(t, w)dtdu;

RN+

Sfurthermore, for every 1,7 =1,2,---q, there exists uniformly bounded
constants a;j(to, &) such that

(6.5) YZY]f(S, 7}) =PV. / Fij (t07 Eo;8 — t, uwlo U)Hof(t, u)dtdu
N1
K +a(to, So)Ho f (5, 0);

(d) Forany R > r > (,

/ (o, &o:t, w)dtdu — / [ (b, s, u)do(t,u) = 0;

r<||(tw)| <R llt)]|'=1

(e) For any multiple index f, there exists a constant ¢y such that for
any ,L’] = 17"'(]7
P B
(au> FU(ta éa 87 u)

We will define the kernels of the operator f]o in (6.3), which induce
singular and fractional integrals on the homogeneous space. Here we fol-
low the way in Rothschild-Stein [24] and Bramanti-Brandolini [1-2].

sup <.

ll(s,0) ' =1,¢,HeRN !

DEFINITION 6.2. Let I"(ty, &y; -, -) be the fundamental solution of Hy. We
say that k(to, &;t, &, n) is a frozen kernel of type [, for some nonnegative
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integer [, if for every positive integer m,

H, n

k(to, S0t &) = Y ai(&)bi(n)[Dil (to, o3 -, )12, 01, €))

=1
+ ao(&)bo(m)[Do ! (to, Cos -, )](E, O, <)),

where a;,0;(i =0,1,---,Hy,) are test functions, D; are differential opera-
tors such that: for i =1,---, H,,, D; is homogeneous of degree < 2 — I(so
that D;I"(to, &; -) is a homogeneous function of degree > [ — @), and Dy is a
differential operator such that DyI" (¢, &; <) has m-th derivatives with re-
spect to the vector fields Y;(i =1, -, q).

We say that T'(ty, &) is a frozen operator of type [ > 1if k(ty, &o;t, &, ) is
a frozen kernel of type [ and

t
T(to, E0)f (£.) = / / Kto, Cort — 5, &) (s, m)dsdry

—o0o RN

we say that T'(t, &) is a frozen operator of type 0 (or “frozen singular in-
tegral”) if k(ty, &; t, &, ) is frozen kernel of type 0 and

t
T(to, &) (1, &) = PV / / Ko, &o:t — 5.& mf (s, m)dsdy + alto, &t EYF(1,6),

—00 RN

where the function « is bounded.
If k(to,&o;t,E,n) is a frozen kernel of type [, then we say that
k(t,&;t, &, n) is a variant kernel of type [, and

t
Tt Q) (1.8) = / / k(t, &t — 5, m)f (s, m)dsdy

—oo RN

is avariant operator of type [ (if [ = 0, the integral is taken in principal value
sense and the term «(t, &, ¢, £)f (¢, &) is added).

The following two Lemmas were proved in [1, Lemma 2.8] and [24,
Theorem 8], respectivly.

~Lemma 6.3. If k(to, Eo;t,E,m) 1s a frozen kernel of type | > 1, then
(Xik) (o, Eost, -, m)(€) s a frozen kernel of type | — 1.
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_ Lemma 6.4. If T(to, o) is a frozen operator of type of 1 >1, then
X;T(ty, &) 1s a frozen operator of type I — 1, and

LS

XiT(to, &) = > _ Tr(to, €)Xk + To(to, &),

k=1

Sfor suitable frozen operator Ty (ty, &)k =0,1,---q) of type L

We will use some properties of cutoff functions.

LEMMA 6.5. For any O<p<r and (t,&) € RN there ewists
p € Co° (RNYY) such that

@ 0<p<lip=1on E,)(t, &) under the lifted distance d' and
sprt ¢ C B (t,<);
(i) |9} D¥| < m, fork,h e N;
Its proof is similar to the proof of Lemma 6.2 in [2], just with slight and
clear changes.

Let D¥ :Xiln Xlk,l <1i; <¢q,1<j <k, and write
(6.6) By(t,&) < ¢ < By (t,¢)

for the function ¢ satisfying Lemma 6.5.

Next we establish the Morrey estimates of the variable operator of type
0 by using results on homogeneous spaces in Section 3. The main result in
this section is the following.

THEOREM 6.6. Let T be a variable operator of type 0 and U c RV,
Then for every p € (1,00) and every i € (0,Q'), there exists ¢ = c¢(p,2,T)
such that

O T 1].5< €l 100 for every f € LPHDY
) |7(af) — a- Tl < elal| £l 0 for every feLrHD,
a € BMOWU);
(iii) Moreover, for every a € VMO and every & >0, there exists
r=7r(p, 4 T, n, &) > 0 such that for every &, € RY and every f € LP* with
sprt f C B, (o, &),

1T(af) —a-Tfl, ,.5.< el f1,,.5,-
(Recall that n, denotes the VMO moduli of a, see Definition 2.2.)
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The way of proving Theorem 6.6 is inspired by the method in [1]. It is
worthy to note that (iii) follows from (ii) by using a localization technique
which was first employed in [8]. So we only need to prove (i)-(ii).

In order to complete the proof of Theorem 6.6, we apply Calderén-
Zygmund’s technique of expansion in spherical harmonies (see [8]) and the
estimate of constant kernels (Proposition 6.8 below). Let {Ykm}]:io:‘l_.z;.n. be a

complete orthonormal system of spherical harmonics in L?(Zy, 1), where m
is the degree of the polynomial and g,, is the dimension of the space of
spherical harmonics of degree m in R¥. Then

‘ (%) ﬁYkm(’?)

It is known that
6.7) Im < CNYMNL, form=1,2,---.

< CINYMN-DIZHP for e Zyiy.

For any fixed z = (£, &) € RY “, n € Xn41, we can write the expansion:

o8 Im

FEm=> > @Y.

m=0 k=1

For n € RN let o/ = 6(|5]| ")n; recall that 7/ € Sy from Section 4.
By the homogeneity of I", we have

o] Im Y
©5) Fam=3" 3 e Lol

m=0 k=1 H“Qz

Coefficients ¢ in above formula have the bound (see [3]): for every positive
integer [, there exists a constant C' = C(I, 1, N) such that

(6.9) sup |c"(2)| < Cm 2,
2eRNH!
foreverym =1,2,-- k=1,---,gn.
Now, forz € R and 2 € & Ni1, let

Ykm(zl)

(6.10) H;,,(2) = .
2|92

DEFINITION 6.7. We say that Ky, (t,&s,7n)=a(E)[DHip()](t — s,
O(n,&))b(n) is a constant kernel of type [, if the differential operator D is
homogeneous of degree 2 — [, so that DH},,, is homogeneous of degree [ — Q'.
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The following proposition gives properties of the constant kernel of
type L.

PROPOSITION 6.8. Let W be a function defined on G, smooth outside
the origin and homogeneous of degree | — @, and let

K(t7 57 S, ’7) = a/(é)W(t -8, @(ﬂa é))b(’/])7
where a(&) and b(n) are fixed test functions. Then

() K satisfies the growth condition: there exists a constant ¢ > 0
such that
K (t,&,5,m)| < c-sup[W|-d'(t,&5,m) Y
ANt
(i) K satisfies the mean value inequality: there exist constants
¢ >0, M > 1 such that for every &y, &, n,

|K(t0,éo,8,ﬂ) - K(ta gasan” + |K(377//,t0,60) _K(S,”a ta é)|

(6.11) d'(ty, &, t,€)

< c-supW] - Rt

v d'(to, &0, 8,1

with d'(ty, &, s, 1) > Md' (ty, &, t, €);
(iii) If 1 = 0 and W satisfies the vanishing property:

W(t,u)dtdu = 0, for every R > r > 0,
r<l||(tm)] <R

then K satisfies the cancellation property:

<c-sup|W|- (R —7), for every R >r > 0.

2N

6.12) ’ / K(t, &5, n)dsdy

All constants in (1)-(ii)-(iii) are independent of W.

REMARK 6.9. The estimate in (ii) is sharper than those in Proposition
2.17 of [1] and Proposition 6.4 of [2].

Proor orF ProPOSITION 6.8. (i) The claim is trivial, by the homogeneity
of W.
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(ii) With the similar proof to Proposition 2.17 in [2], fix (¢, &), (s, #), and
let Mr = &’(tl,fl,s,;y). Then the condition &’(to,éo,s,n) > Mgi’(to,éo,t,f)
means that (¢, &) is a point in B,»(tg, &o). From Lemma 6.5, we take a cutoff
funection ¢(t, &) such that

B,(to, &) < ¢ < By, (to, &), 1<M' <M,
and let
f(ta é) - K(ta éa S, W)(ﬂ(t» é)

Then using Proposition 4.2 in [2] obtains

|K(t0; 50787’7) - K(ta 578577)| = |f(t0760) _f(t7é)|

6.13) . ; /
Sd’(tmfo,t,f){ sup | Xf(r,Ol+Mr  sup ft(LC)}-

@DEB 1, (t0,Co) @By, (t0,&)
Note
Xif(,0) = KiK(x, L5, mp(t, O + K@, L5, pXjp(e, §) = T+ 11
By Lemma 6.3, X;K(r, -,8,7)(0) is homogeneous of type I — Q' —1 < 0, so

1] < c-sup|W|-d'c,Cos,m ™o,
2N+1

<c-sup[W|-r " < sup|W|-d'tto, Eorsm)

N4 N1

~ -0 C
1] < ¢ sup|W| - d'e.Ls,n) “pl@0)

N+1

<c-sup[W|- " <c-sup|W|-d'tto, &5,

N1 2N

Wherg we have used Ei’(r, {,s,m)>cr for (1,0 € BM/V(to, &) and
2r = d,(tO; 50, S, 77)
Since 0:K(-,{, s, n)(t) is homogeneous of type | — Q — 2 < 0, we have

0,01 = [0 C,C 5. )@p O] + [K (@, 65, (@, O] < ¢ - sup W] -

N+1

Therefore,

roosup |0l < e suplWl T <cosupl W/, o)

(OB, (to,E0) 2N+ N4
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From (6.13) one gets

~l(t07 é(ht é)
)Q —I+1°

|K(t075078777) (t é S '7)| < c- Sup|W‘
Ivi d'(to, €0, 8,1

for a/(t()a 507 S, ’7) > Ma/(t()a 507 ta é)' Slmllaﬂy’

d'(to, &, 1,
|K(s,n,to, &) — K(s,n,t,¢)| < ¢ sup|W|- d'(to, & Qé)lﬂ
2Nt d/(thé’O)S }7)

(iii) The claim can be proved as in the proof of Proposition 2.17 in [1],
just adding a time variable. O

Proor oF THEOREM 6.6. — The multiplicative part of the variable op-
erator T, that is, f(¢,&)—a(t, & t, E)f (¢, &), clearly satisfies the demanded
estimates. By Definition 6.2, if k(¢, &;t — s, &, ) is a variable kernel of type
0, then we separate it into singular and regular parts:

k(tvévti'&évn) ES(t,f,t*S,f,ﬂ) +R(tv£7t78a£a’7)
Hy,
= {Zai(@bi(’?) [D; I (to, So; )] (E — s, O(n, é))}’(io,ég)—(tﬁé)

1
+{ao(&)bo(m)[DoI (to, Eo; )I(t — 5, O(1,E)) | to.c0)~

where a;,0;(1 =0,1,---g,,) are test functions, D;(¢ = 1,-- - gp,) are differ-
ential operators homogeneous of degree <2 (so that D;I"(ty,&y; ) is a
homogeneous function of degree > —@"), and Dy is a differential operator
such that Dol (o, &y; ) is locally bounded. Here “singular” and “regular”
just mean “unbounded” and “bounded”, respectively.

For the regular part, using the same argument as Theorem 2.11 in [1],
we easily illustrate that the operators corresponding to R(¢, &t —s,&,n)
satisfy the conditions of Lemma 3.1, and then the conclusion of Theorem
6.6 holds for these operators.

Now, let us deal with the singular part. From (6.8)-(6.10) and a similar
deduction in [1], we write
g Hu

S(t, &t —s,8,m) = Z > > M Da(ODiHn ()](t — 5,0(1,))bi(n)
=0 k=1 i=1
(6.14) o o
ZZ m(t K (t,E,5,7),
n=0 k=1

where D; is a differential operator of homogeneous of type <2,
K (t, &, s,n) are constant kernels of type > 0.
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Our next step is to gain LP* estimates for the constant operators of type
{>0:

Tonf () = / Ko (t, &5, m)f (s, m)dids,

RN+

and their commutators with BMO functions. Since K}, is a constant kernel
of type > 0, by Proposition 6.8 (i),
(6.15) | Ki(t,&,5,)] < cd'(£,¢,5,7) Sup|DHu ()

N+1

<ed'(t,&,5,n) 9 mN D2

with D a differential operator of homogeneous of degree 2 — [, and

J;
(6.16) ‘ <3> Hip(w)| < e(B, NYmWN=D/24B for 4 € Sy.q,

ou

(see Lemma 2.16 in [1]).

We investigate the cases [ > 0 and I = 0, respectively.

If I > 0, by (6.15) and Theorem 3.2, the operator T, satisfies estimates
like (3.6)-(3.7) with constant ¢ - m®™ D2+ for p € (1,Q'/1), 4 € (0,Q" — pl),

)\1
1/q=1/p—-1/Q,and u = 5(]. Hence, by the boundedness of the domain Q

and Lemma 3.3, T}, satisfies estimates (3.3)-(3.4) for p € (1,Q'/l) and
4 €(0,Q" — pl). It is evident to see that the transpose of T}, also satisfies
(3.3)-(3.4) for p € (1,Q'/1) and 4 € (0,Q" — pl); therefore, by duality, T},
satisfies (3.3)-(3.4) for p € (Q'/(Q' —1),0) and A € (0,Q). Finally, Theo-
rem 3.9 and Corollary 3.10 show the boundedness in the full range
p€(1,00) and 4 € (0,Q).

If I = 0, by (6.16), the kernel K, (&, n) satisfies mean value inequality
(2.18) with constant ¢ - m®™ /242 Since DH},, fits the condition of Pro-
position 6.8 (iii) (see [15, 18]), the function DH},, satisfies the cancellation
property. Hence, the kernel Ky, (&, #) satisfies the vanishing property of
(6.12) with constant ¢ - m™+1/2+1, Using Theorem 2.12 in [1] or Theorem
3.1in[4] implies that T}, has the L? estimates like (3.3)-(3.4) for p € (1, 00)
with constant ¢ - m®™ /242 Then we conclude that 7', satisfies estimates
(8.3)-(3.4) for p € (1,00) and 4 € (0,Q").

Recall the estimate (6.9) on the coefficients ckm(lz &) in (6.14) and the
inequality (6.7). Putting these facts together with the above arguments, we
get estimates (3.3)-(3.4) for the operator with kernel S(t,¢&;t,&,s,7) for
every p € (1,00) and 4 € (0,Q’). This ends the proof of Theorem 6.6. O
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7. Local Morrey estimates in Si’p ’A(U ).
In this Section we will use several kinds of Sobolev-Morrey spaces:

DEFINITION 7.1, Let Z = (Z1, Zs, - - - Zy) be any system of smooth vector
fields in R". We define Sobolev- Mowey spaces SEP* (R™Y) of LP* func-
tions with k-th derivatives with respect to wector fields Z;’s, in
LP*(1<p<oo, 0<i<q'). The Sobolev-Morrey norm is defined by

HfHSf;p-f«(]Rw) = ||f||Lwi(tR”“)
Z (Z || "Z.fh,f”LW(R”“)+||8?1f||LI’-’~(II{’”+1))'

h+2m<k

Moreover, we denote by Sg” (R"*!) the closed hull of Cg° (R™*!) with re-
spect to the norm in S&”* (R”H) Analogous definitions can be given for
function spaces deflned on a bounded domain U ¢ R™",

In particular, we will denote by S’;(‘p * and sz"” * the Sobolev-Morrey
spaces generated by the original vector fields Xi,---X, and the lifted
Xy, - -Xq, respectively.

In this section, we consider the operator H in (6.1). Under the as-
sumptions (H1)-(H3) in Section 1, we have the following local estimate in
the Sobolev-Morrey space S?;p “(U) for the operator H.

THEOREM 7.2.  Forevery subdomain U’ cc U c R"™, p € (1,00) and
%€ (0,q"), there exists a constant ¢ > 0 depending on U, U, {X;}, p, 2, u
and the VMO moduli ||a;|, of a; such that for every f € Si’p “(U) with
Hf € LP~(U), one has

1 Fllszes o < SN oo+ Flwon }-

The proof of Theorem 7.2 needs some preliminary results. First, we
recall the basic “representation formula”( see [2, Theorem 6.8]).

LEMMA 7.3 (Parametrix for I:IO in (6.3)). For test functions a,b and
every (ty, &), there exist a frozen operator of type 2, P*(ty, &), and g? frozen
operators of type 1, S;;(to, &)@, 7 = 1---q), such that for every compactly
supported function f,

. q
(1.1) Pty E)Ho f(t,8) = a(O)f (£, &) + Z a; j(to, £0)Sij(to, Co)f (¢, ).

i,j=1
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In particular,
t
Py, &)/ (1, ) = / / OB T, it — 5, O, M) (s, pdnds.
-0 RN

Next, we prove Si’%z estimates for the operator H in (6.2) when the

function f has a small support in RN,

THEOREM 7.4. There exist v,c > 0 such that for any f € S2p A(U ) with
sprtf C By(ty, &) € U ¢ RN and Hf € LPAD),

Hf||Szp ‘(B )< C{HHfHLP’(B y 1l b
where v, ¢ depend on {Xi},p, 2ot and ||ag], .

PrOOF. Applying X, X, to both sides of (7.1), and noting Lemma 6.4 and
Lemma 6.5, we get

X X (af)t, &)
= T(to, E)Ho f(t, &) — Z a;j(to, <o) (Z T}ito, )X (8, )+ Tii(to, &) (2, é)) :

1,j=1

where T'(%, &o), T} ](to,fo)(ls 0,1,...,q) are frozen operators of type 0.
Denote Hy = H + (Hy — H) and let (o, &) = (t,&). Then

~ ~ ~ q ~ ~ ~ ~
X, X(af)t, &) =THf ¢, + Y [T(ay( X X;if )¢, O — ay(t, OTX; X)f (¢, O]

1,j=1

S (ZT Xif6,0 + ThfG, é)),

1,7=1

(7.2)

where T, &), T" i 7(t &) are variable operators of type 0.

Now, for every p € (1,00), 1 € (0,Q"), fixed ¢ > 0 and test function f
with support small enough (depending ), taking L”*(B,) norm on both
sides of (7.2) and using Theorem 6.6, we have

”Xthf||p)B,< CHHprAB uh ZHXXpr;B, +CZHle||p/LB,+C||pr)Br

1,j=1

that is,
~ ~ ~ q ~
@D sy, < {8+ 3o+
=1
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Note that the constant ¢ depends on the VMO moduli of a;;, which are de-
termined by the VMO moduli of a;; by means of Theorem 5.4.

We want to remove the term HXL f Hp‘ ... in the right-hand side of (7.3) .

To do this, we come back to (7.1) with a(£) = 1 and take only one derivative
X, to obtain

X.f(&) = THFf(¢,¢)

—i [T (ay ()X X f) (t.€) — a5 (4O T (X X f) (t.)] — j’j g (1, &) TUF (£,¢),

where T is a variable operator of type 1, and 7% are variable operators of
type 0. Therefore,

~ ~ q ~ ~
X1 5, < el 5, 2 X NKXi N, 15, + N A

1,j=1
Substituting this in (7.3),
%% f ], 5, < A, s, + 11,
From (6.2) we also read
10:f 11z, < NS, 5, + el X, .5,

Combining two estimates above yields

1 lgene (3 < AN Ny + 1 sy } 0

Furthermore, we prove the estimate of H in S%* A

b when the function f
has no the restriction of compact support.

THEOREM 7.5. Let U cC Uc R be a bounded domain. If
fe S;’p””(U) with Hf € LPA(U), then

10 ) < ANty + 1

where ¢ depends on {X;},p, A, 1,8, t and llagl,

In order to prove Theorem 7.5, we establish some interpolation in-
equalities.

ProposiTION 7.6 (Interpolation for test function). Let =0, — > X’f
For every R> 0, p€ (1,00) and 1€ (0,Q’), for every ¢ > 0 there exist
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positive constants c(e) such that for any f € C(Bg),
HXl f”p,/l;BR < EHHpr,/l;BR + C(S)Hpr,)v;BR’ for every i = 1’ g

Proor. By Lemma 7.3, we write

where P is a constant operator of type 2, S is a constant operator of type 1
and a(¢) is a test function. We take a(¢) = 1 on Bg, then for f € Ci° (Bg),

Applying X; to both sides of (7.4) shows

Xif (&) = PilIf(E) + Sof(6),

where P; is a constant operator of type 1, and Sy is a constant operator of
type 0. Hence we need to show that

1P, 5, < ellH]

pv;HER p,/l:BR + C(E) Hf”p,l;é;g'

Set
Pyf — / (t, &, 5, ) (5, m)dinds,
Bg

with k& being the kernel of Py, and let ¢, be a cutoff function such that
B,jo(t, &) < ¢, < B,(t,¢). We split P into:

Plllf(t é) = / k(taéasan)[l - (Pf(sa’?)]Hf(S;ﬂ)dVIdS
d ((s.1),(£.0))>2/2
+ k(t. & s, me.(s,m)Hf (s, m)dnds
n),(t,€))<
=1, + Hg.

Then, writting
i,| = / T [l(t, €, - ) (1 — 9, )] (5, )f (5. n)elndis
d'((s,1),(t.8))>e/2

< / [ETk(E, &, -, )| + |DkDg,| + K 0,[1£ (s, n)dnds,

&' ((s.1),(t.0))>¢/2
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where H denotes the transpose of I, we see that both I, and I7, satisfy L?
estimates (see [1]). By Lemma 6.5, Lemma 3.1 and Theorem 3.2, we have

Melly sz, < @IS s 1Tl 3, < cel EF ], i, N

ProrosiTION 7.7 (Interpolation inequality for not necessary test fune-
tion). There exist positive constants ¢, R such that for any f € S?I”’V(B ”),
0<p<R,0<0<1/3,

|15, < S[ID*F1, 15, + 100 £, 15,] + <O £, 5,
here D is the differential operator such that fors > 1, D’f = XilXi2 o -Xis £,
forany1<i;<q,1<j<s.

PrOOF. Let ¢ be a cutoff function such that B; < ¢ < B. Applying
Proposition 7.6 to fp leads to

HDpr.).:Bt S HD(f(D)HpABS S SHIH[(f(ﬂ)Hp),Bg + C(S)Hpr,i;Bs'

By Lemma 6.5,

1D, s, < A, + o)

1218, + 75—

( ) N2 Hpr,/l;Bs'

Choosing ¢ = (s — t)/c and using Lemma 7.3 in [2],
IDA N, 5, SC10llELf 1, s, + (D), 1z,
<1010, 1, + 00113, ] + 1SN,

where c¢; depends on ¢, s, t. O

PROOF OF THEOREM 7.5. — If f € S;’p *(B,), with » small enough to use
Theorem T4, t<r, s = (t+7r)/2, and ¢ is a cutoff function such that
B; < ¢ < B, then we apply Theorem 7.4 to fo,

XX £, < (1L, 5 + DD, 5, + .ol 5,)-

By Lemma 6.5 and Proposition 7.7,

pAiBy = (”HprAB + HXXpr/LBR + Hatpr)BR + HprABR)

Therefore,

X X;f |

HfHSZP” < C{HHfHLﬁ/(B)+ ||f||Lp/(B)}
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Making the similar argument as in Theorem 5.1 of [2], we reach the proof of
Theorem 7.5. O

ProOF OF THEOREM 7.2. — Applying the same lifting technique as in
[1, Theorem 0.1] and Theorem 7.5 here, we can complete the proof.

8. Morrey estimates in S?Z’p ).

In this section we plan to extend Theorem 7.2 to higher order deriva-
tives and prove Theorem 1.1 for the operator without lower order terms.
We will use the way of Section 7.

THEOREM 8.1. Let k be a nonnegative integer and the coefficients
ay € Sk’m'O(U ) satisfy the assumptions (H2)-(H3). For every subdomain
UccUcR"™ pe(l,00) and i€ (0,q), there exists a constant ¢ > 0
depending on U,U’, {X;}, p,2pn and |a;l, such that for every
f e SEPPHU) with Hf € SYPA(U), one has

CRY 1tz < e{IE ooy + 1 -

Let us recall the definition of Sobolev-Morrey norm:

|‘f”S§”"‘(U) = Z ||5thD1fHLp,/1(U)

T 42h<k

where D!f =X, X;,---X;, f for any multiindex [ = (i1,1%2,...%;) with
1<t <q,and |I|=s.

To prove Theorem 8.1, we first get the analog of Theorem 7.4 for
| ’f ||S§+2.]).Z(Br).

THEOREM 8.2. Under assumptions of Theorem 8.1, there exists

72>0 such that for any feS’”Z’“(BT) with Hf € S¢PAB,), and
B, =B,(t,&) c U, ’

e sy < e Wy + 1
where r,c > 0 depend on {Xi},p, A pand ||agl,.

The proof of this theorem will be achieved through the following two
lemmas.
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Lemma 8.3. Let a;; € S’;(’”’O(BT). For every integer k > 0, there exists
r > 0 such that for every f € S’;}Z’p *(B,) with H f Slg’g‘*(ér),

8 [0, < c(unkazjum S 0], + Hﬁstg’-’-(B,g)

h<k+1
and

83) HDMZpr,A;B,. = C(Hpr,;.;Br + HHfHS;P-"-(BT)»

where ¢ depends on |D¥ay||, ., and the derivative here is in the sense of
distributions.

Proor. From Lemma 9.4 in [2], we know for any multiindex J, |/| = k
andm,l=1,---,q,

X, XX’ (af)

Mw

Z XJ, diiXJ”Xinf =+ Xlﬁf
|7 |+ =1

{ Ty, XX
:0

T X X + TroX'f 5,

MQ

for suitable operators T, T;, T'r of type 0. By Theorem 6.6,
”XleXJ(af)Hp,i;Br

k
<cZZ{||X’XJ@f||,,‘;V;g,A+ ST IX gl |1 XX X £,

h=0 |I|=h |7+ =1

~ ~ q ~ ~ ~
XS+ S IXX S, + |X’f||p7w,}.
h=1

Proposition 7.6 and the similar argument as in Theorem 7.4 give

k- k k ~ h T
ID¥2F 1.5, < cCIDM2F N, oo, + 1D Gl > IDF, s+ > 1D HF L, 5.)-
h<k+1 h<k

This completes the proof of (8.2). Then we conclude (8.3) by iteration. O

LEmMA 8.4. For any triple of integers k,h,m such that k> 1,h > 1,
m > 0,2h +m < k + 2, we have

(8.4) ||8tthpr,i;E,4 < CM(HHst;”-’-(B,) + Hpr,;.;B,,.)'
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Proor. We will prove (8.4) by induction on 4. For & = 1 we have to
show that

Z H@Dmfﬂpw < Ca/c(HHfHS”’(B,) + HprAB )

m=0

In fact, by (6.2) and (8.3),

[0:D"f ||, .5, < c(HHfHSmB + Z Z l2ke ldy||m||0”2f||p,3>

8.5) ij=11=0

< os (|18l g0y + 111,15,

Assume (8.4) holds up to & — 1. From inductive hypothesis we get

- g - -
D"of = D"} ' Hf + D™} ( > ayXiX; f) :

i,j=1

then

||Dmatthp,/1:B HHf| S’””” ZPABLY + Cam+2h— ZZ HDH?E)/2 lpr;B

=0
< cor||Bf llserscay + 171, 1)

ProOF OF THEOREM 8.2. — Uniting Lemma 8.3 and Lemma 8.4 implies
the desired result. O

We can prove Theorem 8.1 by iterating results in Lemma 8.3 and
Lemma 8.4. This process can be performed as in the proof of Theorem 9.6
in [2]. Since the proof is tedious, we only state the sketch.

ProoOF OF THEOREM 8.1 (Sketch) Letf € S’“+2 P, ’(B ) and ¢ be a cutoff
function such that B; < ¢ < B,. Applying (8.2) to f ¢, by Lemma 6.5, we get

86 10l 0 < os( 3 1Dl 5+ W iy )

h<kt1

To consider the terms involving time derivatives, we apply (8.4) to fo.
Using Lemma 6.5 yields

8D D"l < a1 oz + s,

for any triple of integers k,h,m, k>1,h>1,m > 0,20 +m <k + 2.
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Combining (8.6) with (8.7), and using Proposition 7.7 and iteration, we
write

oy < oV oy + 1y -

Reasoning like the proof of Theorem 5.1 in [2], we finally complete the proof
of Theorem 8.1. O

9. Local estimate for the operator (1.5).

In this section, for fulfilling the proof of Theorem 1.1, we start with
S2P* estimate.

THEOREM 9.1. Under assumptions of Theorem 1.1, for every sub-
domain U' cc U, there exists a constant ¢ >0 such that for every
f e SEPHU) with Hy f € LPA(U), one has

©.1) 1[5z 0y < C{HHlfHLP-’-(U) + Hf”Lﬂ%(w}’

where ¢ depends on U, U'{X;},p, A, i1 and suitable modulus of the coeffi-
cients a;j, bj, c.

The proof of Theorem 9.1 is based on the following proposition.

ProposITION 9.2.  If coefficients bj(j =1,...,q) and c satisfy condi-
tions of Theorem 1.1, then their lifted analogs b; and ¢ satisfy:

C[rensi@) pricqs | [L00S0). 21 i<
j . S . .
" insPAO), p >, LP S D), 2p+ 4> Q,

where k is a positive integer. Moreover, for every f € Sk+2p “(U) with
sprtf C B,, one has

CHb ||SkQ0(

Cll; gt (5,) 1/ lgezov

)||f|\sk+m/( B) PHAs Q'

/

) p+i>Q.

» r

©92) (10X 1 e (&) = {

Cllellgeano (g,) 1/ gt (3,) 2p+2<Q;
9.3) ||Cf||5kp/( B) S Clelgys ) W g ot i Q.
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Proor. 1t is easily seen from Lemma 5.3 that l;j and ¢ belong to the
corresponding Sobolev-Morrey spaces. If p + 4 < @', then Hélder’s in-
equality and Sobolev type inequality on homogeneous groups (see [15]) imply

1/p 1/p
> (w / IDM(Bijf)Ip) <CZZMP< / |DZBJ-D7“<X]-f>|”>

m<k -V m<k l<m N
B,NB, B,ﬂBﬂ

<CY > I1Dllpag 0PI .

m<k l<m v)

< CZ Z ID'b; Do 0P ID" z+1f|lsw( )

m<k I<m

< C”b ”SkQO( )Hf||Sk+2p/( )

It p+ /. > Q' then we have from S;”°(B,) — C°(B,),

1p
> (ﬂ / |Dm(5jf)lp>

m<k Y

B.NB,
R 1/p
<C) ). (p‘i / |le;|f’> sup D" (X )
m<k I<m Y B,
N B.NB,
<CY > ID Bl 10" oo s,
m<k I<m

< C||b; ”Skp/( )Ilfllsmp,( 5)"
Hence, (9.2) is proved. The examination of (9.3) is similar. O

ProOOF OF THEOREM 9.1. — The proof will follow the same process in the
proof of Theorem 7.2. Let

q

~ q ~ ~ ~ ~ ~ q ~ ~

Hy=0,— Y a5, 0X: X; =Y bi(t,0X;—et, ) =H =Y _ bj(t, OX;—&(t, &).
i, j—1 =1 j=1

By (7.3) and Proposition 9.2, for every f € Si’%i(f?r), with 7 small enough,

~ ~ ~ q ~
umhfnp,,zﬁ,<c{\1H1f||p,,z;gr+e||02f||m+z|\Xzfr|p,u;,.+ufnp,u;y}?
=1
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where ¢ > 0 depends on suitable moduli of l;j, ¢. To remove the term con-
taining X; f, we use the interpolation inequality in Proposition 7.7 and get

9.4) 105,y < CLNES s, + 11 25,

As in the proof of Theorem 7.5, if f € S?ép’i(ly), B, c U, t<R,
s = (t+ R)/2, ¢ is a cutoff function with B; < o < B,, then by (9.4),

| lleos ) < CLIEED 5, + 59,8, -
Repeating the steps in the proof of Theorem 7.5 without changes, we have

95) Lo 17y < CUIE A+ 110}

Finally, the same lifting method as in [1, Theorem 0.1] implies the estimate
in (9.1). O

Next, we extend Theorem 9.1 to the estimates for higher order deri-
vatives and prove Theorem 1.1.

Proor or THEOREM 1.1. From Theorem 8.2 and Proposition 9.2, we
write for every f € Sg}z’p *(B,) with » small enough,

HfHS?Zw‘-(Er) < C{||H1f’|s§"-*(é,.) +8Hf|’s§+2-’“-*(é,) + ||f||p,2;l~?r}'

where ¢ > 0 depends on suitable moduli of 57-, c. The discussion as in the
proof of Theorem 9.1 shows that the statement in Theorem 1.1 holds. O
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