REND. SEM. MAT. UN1v. PADOVA, Vol. 123 (2010)

Contracting the Socle in Rings of Continuous Functions

THEMBA DUBE (*)

ABSTRACT - Not every ring homomorphism contracts the socle of its codomain to an
ideal contained in the socle of its domain. Rarer still does a homomorphism
contract the socle to the socle. We find conditions on a frame homomorphism
that ensure that the induced ring homomorphism contracts the socle of the co-
domain to an ideal contained in the socle of the domain. The surjective among
these frame homomorphisms induce ring homomorphisms that contract the
socle to the socle. These homomorphisms characterize P-frames as those L for
which every frame homomorphism with L as domain is of this kind.

1. Introduction.

The socle of a ring, it will be recalled, is the ideal generated by the
minimal ideals of the ring. In [14] the authors show that, for a completely
regular Hausdorff space X, the socle of the ring C(X) is the ideal consisting
of all functions which are zero everywhere except on a finite number of
points. Their method consists of first describing minimal ideals of C(X).

Because our main aim is to find conditions on a frame homomorphism
h: L — M which ensure that the induced ring homomorphism Rki: RL —
— RM contracts the socle to an ideal contained in the socle, we take a
different approach in characterizing the socle of the ring RL of real-valued
continuous functions on a completely regular frame L. What we do is first
give a description of annihilators of elements of RL (Lemma 3.1), and then
use the following characterization of the socle

x € SocA < Annx is an intersection of finitely many maximal ideals,

to show that the socle of RL is the ideal consisting of functions whose cozero
elements are finite joins of atoms of L (Proposition 3.5). The spatial result is

(*) Indirizzo dell’A.: Department of Mathematical Sciences, University of South
Africa, P. O. Box 392, 0003 Unisa, South Africa.
E-mail: dubeta@unisa.ac.za



38 Themba Dube

then obtained as a corollary. We point out how else Proposition 3.5 could
have been proved if the sole aim had only been to do that.

Recall [9] that a ring homomorphism ¢: A — B is said to be exoteric if
whenever a pair of finitely generated ideals of A have the same annihilator,
then their images under ¢ have the same annihilator. An ideal is then said
to be exoteric if it is the kernel of some exoteric homomorphism. We show,
using a convenient characterization in [9], that Soc RL is exoteric (Pro-
position 3.8). In the case that L has a finite number of atoms, we actually
produce a ring homomorphism with domain RL whose kernel is Soc RL.

Every frame homomorphism /: L — M induces a ring homomorphism
Rh: RL — RM which sends an element o of RL to the composite % o «. In
the last section we identify a certain class of frame homomorphisms (we call
them W-maps) k: L — M for which (Rh) " [Soc RM] C SocRL (Proposition
4.6). If h is a dense onto W-map, then, in fact, (Rh) " [Soc RM] = Soc RL.
These homomorphisms are defined in terms of the frame version of the Stone
extension of a continuous map. An internal characterization free of the
Stone-Cech compactification is presented (Lemma 4.3). A ring-theoretic
characterization is that & is a W-map if and only if Rh contracts every
maximal ideal to a maximal ideal (Proposition 4.9). Rather unexpectedly, W-
maps characterize P-frames (i.e. frame counterparts of P-spaces) as those L
for which every frame homomorphism with L as domain is of this kind
(Proposition 4.4).

An example of a dense onto frame homomorphism % for which R/ is not
an isomorphism but (Rh) " [Soc RM] = Soc RL is given (Example 4.5).
Also, an example of a dense onto frame homomorphism /4: L. — M which is
not a W-map but for which (RR) " [Soc RM] = Soe RL is given (Example
4.8).

2. Notation and a few reminders.

For a general theory of frames we refer to [13]. Here we collect a few
facts that will be relevant for our discussion. A frame is a complete lattice L
in which the distributive law

a/\\/S:\/{a/\x|x€S}

holds for all @ € L and S C L. We denote the top element and the bottom
element of I by 1 and 0 respectively. The frame of open subsets of a
topological space X is denoted by $OX. All spaces are assumed to be
Tychonoff, that is, completely regular and Hausdorff.
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An element a of L is rather below (or well below) an element b, written
a < b, if there is an element s such that a As =0 and s vb = 1. On the
other hand, a is completely below b, written a << b, if there are elements
(ac,) indexed by the rational numbers in Q@ N[0, 1] such that a = x, x; = b
and x, < x; for r<s. L is then said to be regularif a = \/{x € L | x < a}
for each a € L, and completely regular if a = \/{x € L | x << a} for each
a € L. Although we shall assume all frames considered here to be com-
pletely regular, there are instances where we state minor results for
regular frames, which then hold for completely regular frames since every
completely regular frame is regular.

The pseudocomplement of an element a is the element a* =
=V{x e L |xAa=0}. An element a is said to be:

(1) complemented if a vV a* = 1,

2) denseif a* =0,

(3) an atom if, for any x € L, 0 < & < a implies x = 0 or x = a,

(4) a point (or a prime element) if a<1 and x Ay < a implies x < @ or
y <a.

A frame is atomic if below every nonzero element there is an atom. The
meet of finitely many dense elements is dense. If ¢y,...,c,, are finitely
many complemented elements, then c; A --- A ¢y, is complemented with
(et N+~ New) =c; V.-V, The points of any regular frame are pre-
cisely those elements which are maximal below the top (see, for instance,
[3, page 12]). Modulo the Axiom of Choice (in the form of Zorn’s Lemma),
any compact frame has enough points in the sense that every element is
the meet of points above it; with the convention that the empty meet is the
top element. It is for this reason, among others, that we embrace AC
throughout.

A frame homomorphism is a map between frames which preserves
finite meets and arbitrary joins. By a quotient map we mean an onto frame
homomorphism. For any a € L, |a denotes the set {x € L | x < a}, which
is a frame in its own right. We then have the open quotient map L —|a
sending any « € L to a A x. A frame homomorphism is called dense if it
maps only the bottom element to the bottom element. If 4 is a dense onto
frame homomorphism, then 2(a*) = h(a)”" for all a. Associated with a frame
homomorphism h: L — M is its right adjoint h,: M — L given by

hi(@) = \/{x € L | hx) < a}.

Recall that £, preserves meets, and hence &.(a) < h.(b) whenever a < b.
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Anideal J of L is completely regular if for each x € J there exists y € J
such that x << y. For a completely regular frame L, the frame of its
completely regular ideals is denoted by L. For any a € L, |a € SL if and
only if a is complemented. The join map L — L is a dense onto frame
homomorphism, and L (together with the join map) is referred to as the
Stone-Cech compactification of L. We denote the right adjoint of the join
map BL — L by r;, (dropping the subscript when it is unnecessary), and
recall that for any @ € L and I € fL:

(1) ma)={reL|x=<<a},
@) @) = r@),
@) I = (VD).

Regarding the frame of reals £L(R) and the ring RL of continuous
real-valued functions on L; we use the notation of [2]. It will be recalled
that RL is the collection of frame homomorphisms from L(R) into L.
See also [1] for some properties of the ring RL. The cozero map
coz: RL — L is given by

cozg = \/{o®,0 V p(0,9) | p,q € O} = p((— 00,0) V (0, 0)).
Some of its properties that we shall frequently use include the following:

(1 cozyd = cozy A cozd,

(2) coz(y +0) < cozyV cozd,

(8) coz(y+0)=cozyVcozdifyd >0,
(4) cozp =0iff p = 0.

A frame homomorphism h:L — M induces a ring homomorphism
Rh: RL — RM which sends an element « of RL to & o o. Furthermore,

coz(hoa)=(hoa)((—o0,0)V(0,00)) =h(ax((—o00,0)V(0,00))) =h(coza).

A cozero element of L is an element of the form coz ¢ for some ¢ € RL.
The cozero part of L, denoted Coz L, is the regular sub-o-frame consisting
of all the cozero elements of L. A frame is completely regular if and only if
it is generated by its cozero part, in the sense that every element is the join
of cozero elements below it. General properties of cozero elements and
cozero parts of frames can be found in [5].

Lastly, by “ring” we mean a commutative ring with identity. The an-
nihilator of subset S is denoted by Ann S and that of an element a by Ann a.
By Ann? we mean the annihilator of the annihilator. An ideal generated by
elements ay, . ..,a, is written as (a;, ..., ay).
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3. Characterizing the socle of RL.

We start by recalling some relevant facts about M-ideals of RL that
were introduced in [6]. For any I € L, the ideal M’ of RL is defined by

M = {yp € RL | v(cozp) C I}.

Clearly, for any I,J € fL, M =M’ implies I =, and Min M =M.
It is proved in [6], Proposition 5.1, that an ideal of R is maximal if and only
if it is of the form M! for some point I of BL.

We require a series of lemmas to be able to prove the main result in this
section. The first of these gives a description of annihilators of elements of
RL. We prove a more general result than is needed.

Lemma 3.1. Let SCRL and put a=\{coza|oeS} Then
AnnS = M". In particular, for any ¢ € RL, Anng = M™% Actu-
ally, annihilator ideals of RL are precisely the ideals M™®", for b € L.

Proor. For any ¢ € RL we have

¢ € AnnS < gpo =0 for eacha €S
scozp Acozo =0 foreacha €S
SceozpANa=0
Scozp <a*
< r(cozp) C r(a*)
- e]‘lr(oﬁ)7

which proves the first part. Now, to prove the second part, let b € L. Put
B={aeRL|cozo <b}. Then b =\/{coza|a € B} by complete reg-
ularity. So, by the first part, M"®” = Ann B. O

REMARK 3.2. (1) Recall that an ideal of a ring is said to be essential if it
has nonzero intersection with every nonzero ideal. For reduced rings this
is equivalent to saying the annihilator of the ideal is the zero ideal. The
singular ideal of a ring A is the ideal

Z(A) = {a € A | Anna is essential}.

Since an ideal of a reduced commutative ring is essential if and only
if its annihilator is zero, we see from the lemma that Z(RL) = {0},
since ¢ € Z(RL) iff Anng is essential, iff AnnM"©*?") = {0}, iff
M€ — L0} iff cozp =0, iff ¢ = 0.



42 Themba Dube

(2) In [11] a ring A is said to have the countable annihilator condition
(abbreviated cac) if given any countable set {a,, | n € N} C A, there exists
@ € A such that () Anna, = Anna. RL has the cac, for if (y,) is a sequence

in RL and y is an element of RL such that cozy = \/cozy,, then, using
Lemma 3.1, one shows that (JAnny, = Anny.

n
Next, a quick lemma concerning pseudocomplements. The proof is
straightforward and therefore not included.

LEmma 3.3.  Suppose a = ¢ A d with d dense. Then a* = c*.

For the following lemma, note that if a is an atom in a regular frame,
then a is complemented. Indeed, by regularity, there exists 0 # x < a. But
then, in light of a being an atom, & = a, which implies a < a, whence
a*Va=1.

LEmMA 3.4.  The following relations between atoms of L and points of
BL hold:

(a) If I is a point of BL, then (\/I)" is the bottom element or an atom, of L.
(b) If a is an atom of L, then r(a*) s a point of fL.

Proor. (a) Note first that every point of any frame is either dense or
complemented. If I is dense, then \// is dense, and hence (\/I)" = 0. Now
suppose [ is complemented, and consider any x € L with0<x < (\/I)*. Then
x* # 1, and hence r(x*) # 1p. Since I < I** = r((\/D™) < r(x*) # 1p, it
follows from / being a point that I = #(x*). Consequently, \/I = x*,and hence
x** = (VI)". Now let 0<c < (\/I)". By complete regularity, there exists
0 # & << c. Then &* V ¢ = 1. But ™ = ¢** since, by what we have shown so
far, each of these elements equals (\/I)*. So * = ¢*, and hence ¢ V ¢* =1,
which implies ¢ = ¢** = (\/I)". Therefore (\/I)" is an atom.

(b) Because the right adjoint of a frame homomorphism preserves
points, it suffices to show that a* is a point of L. Let s € L such that
a*<s<1. Then s* <a* =a. But s #a, so s* =0, implying that
s=1 O

In the following proof we shall need to take cognizance of the fact that if
€1, .,Cn are finitely many atoms and a < ¢; V - - - V ¢y, then a is a join of
finitely many atoms. For, a = (@ Acy)V---V(aAcy), and each a Ac; is
either zero or c;.
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PROPOSITION 3.5. SocRL = {p € RL | coz ¢ is a join of finitely many
atoms}.

Proor. Let g € Soc RL. Take finitely many points I3, . . ., I} of fL such
that

Anng=M"n...n M,

For brevity, write coz ¢ = a. Therefore, by Lemma 3.1, M"@) = M/
which implies r(a*) =11 A -+ A L. We claim that a < (\/I))" Vv --- vV (\/I})".
Let I denote the meet of all the complemented elements of {I1,...,I;} and
J the meet of the dense ones. Then [ is complemented and J dense. Since
r(@*) =1 ANJ, Lemma 3.3 yields r(a™) =I* = I;‘l VeV I;fm for some in-
dices i1, ..., 1p. Taking joins yields

a<a™= \/I;fl \/...\/\/[;Fm = (\/Ii1>* VeV (\/L;m)*,

since the join map, being dense and onto, commutes with pseudocomple-
mentation; that is, (\/J)" = \/J* for each J € L . It follows from Lemma
3.4(a) that a is a join of finitely many atoms; proving the inclusion C.

Conversely, suppose ¢ is an element of RL such that cozg
=aqa1V---Va where the a; are finitely many atoms. Then (coz ¢)*
=aj A--- Aaj, and hence

r((cozp)’) = r(@j) A --- Ar(ay)
since r preserves meets. Thus, by Lemma 3.1
Ann g = M™©200) — YD o M,

Now, by Lemma 3.4(b), 7(e;) is a point of SL for each i, so ¢ € Soc RL. O
COROLLARY 3.6. If h: L — M 1s onto, then (Rh)[SocRL] C Soc RM.

Proor. If SocRL is zero, there is nothing to prove. So suppose
otherwise and let ¢ € Soc RL. By Proposition 3.5, there are finitely many
atoms ay,...,a,, in L such that cozp = a; V - - - V a,,. Therefore

coz(h o p) = h(cozp) = h(ay) V -+ V h(ay,).

We claim that for any atom a of L, i(a) is an atom of M. Let y € M be such
that y <h(a). We must show that y = 0. Since % is onto, there exists x € L
such that i(x) = y. By regularity, x = \/{s € L | s < x}. Take any ¢t < « in
L. Then t* v & = 1. Therefore a = (a A t*) V (@ A x). Since ¢ is an atom,



44 Themba Dube

a Ax = 0oraAx = a.Thelatter is not possible, lest we have a < x, whence
ha) < h(x) =y, contrary to the fact that y <h(a). Thus, a A ¢ = 0, which
implies 0 = h(a) A h(x) = h(a) Ay =y, as required. Therefore coz ( o ¢) is
a join of finitely many atoms, and hence (R)(¢) = h o ¢ € Soc RM. O

The spatial result mentioned in the introduction is a corollary of Pro-
position 3.5. To see this, note first that, for any T;-space X, the atoms of
X are precisely the open singletons. If : A — B is a ring isomorphism,
then ¢[Soc A] = Soc B. For any topological space X, the ring isomorphism
C(X) — R(OX) taking f € C(X) to ¢ € RL such that, for all p,q € Q,

o, @) =f e e R | p<z<q}],
has the property that
cozp = {x € X | f@@) # 0},

the cozero-set of f (see [2]). Therefore, for any f € C(X), f € Soc C(X) if
and only if the cozero set of f is a join (in OX) of finitely many atoms. Thus,
f € Soc C(X) if and only if it is a union of finitely many open singletons;
which is precisely the spatial result in question.

REMARK 3.7. By Lemma 3.1 and Proposition 3.5, Ann(SocRL) =
= M"®) where a denotes the join of all atoms of L. Thus, Soc RL is es-
sential iff a* = 0, iff @ is dense, which, in turn, holds iff every nonzero
element of L has a nonzero meet with some atom, equivalently, L is atomic.

A ring homomorphism ¢: A — B is called exoteric [9] if for all pairs (Z, /)
of finitely generated ideals of A, Ann/ = AnnJ implies Ann¢[/] =
= Ann ¢[J]. An exoteric ideal is an ideal which is a kernel of an exoteric
homomorphism. It is shown in [9], Theorem 2.6, that an ideal I of a
ring A is exoteric if and only if for any finite set {ai,...,amn} C 1,
Ann? (ZAnn2 ai> C I. We show that Soc RL is exoteric. We need two

preliminéry results from [7], namely Lemma 2.1 and Proposition 2.2
which, respectively, state:

If o, € RL and coz o << cozfi, then o is a multiple of f,
and

The map n — cozn is an isomorphism between the Boolean al-
gebra of idempotents of RL and the Boolean algebra of com-
plemented elements of L.
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PRrOPOSITION 3.8. SocRL is an exoteric ideal.

Proor. Letay,...,ao, be finitely many elements of Soc RL. For each
te{l,...,m} find atoms a;,...,a;, such that cozo; =a; V-V ay,.
Write the sequence

11y - -5 Qg y - -+ 5 Ay - - - A,
as ai, ..., a. Find idempotents 7, ..., 7, in RL such that a; = cozy; for
each j € {1,...,k}. Now, since the join of finitely many complemented

elements is complemented, and since idempotents are nonnegative in the
fring RL, for each i € {1,...,m} we have

coza; < €0z V-V €0z, << cozny V-V eozyy, = coZ(n; + -+ +1;,).

Consequently, o; is a multiple of #; + - - - + #,,, and hence «; € (4, ... ,1,,) C
C Soc RL. Therefore

Ann®o; C Ann® (..., )

= AnnM" VY% 1y Lemma 3.1
_ 1‘[/'((7L1\/»»~V(1k)*x

— A{r(a]v-»»wzk)7

the last equality since a; V ---V a; is complemented. But M"™@V~Ve) C
(1, - - - s ny), for if o € M"YV then r(cozp) < r(ay V - -- V a), so that

cozp <coz(n + -+ +m) =<coz(p + - +1p).

It therefore follows that S~ (Ann® o) C (3y, .. .,7,,), Whence
Ann® " (Ann® %) € (,...,7,,) € SocRL,
i

as required. O

In the case that a frame has only finitely many atoms, we can actually
identify a ring homomorphism whose kernel is the socle in question. We
need a bit of background.

Recall [1] that an onto frame homomorphism /: L — M is called a C-
quotient map precisely when the ring homomorphism R is onto. Also, £ is
said to be coz-onto if for any ¢ € Coz M there exists d € Coz L such that
(d) = c. Lastly, h is almost coz-codense if for any ¢ € Coz L with h(c) = 1,
there exists d € Coz L such that ¢ vV d = 1 and 2(d) = 0. It is shown in [1],
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Theorem 7.2.7, that an onto homomorphism is a C-quotient map if and only
if it is coz-onto and almost coz-codense. Next, recall that & is nearly open if
it commutes with pseudocomplements. In particular, if a € L and
9: L — | a is the open quotient map x+—ax A a, then g is nearly open. Dense
onto homomorphisms are also nearly open.

Now if ¢ is a complemented element of L, then the open quotient map
9:L — | a is a C-quotient map. That it is coz-onto follows from [1], Cor-
ollary 3.2.11, since c is a cozero element. To see that it is almost coz-co-
dense, let u € Coz L such that g(u) = 1. Then u Ac =¢, so that ¢ < u.
Now c* is a cozero element of L such that u ve* =1 (as c¢Vve* =1) and
g(c*) = 0.

LEmmA 3.9. Let h:L — M be a nearly open frame homomorphism.
Then Rh is exoteric.

Proor. Let I = (oq,...,0) and J = {fy,...,f;) be a pair of finitely
generated ideals of RL such that Annl = AnnJ. For brevity, write
coza; =a;, cozf; =b;y, a1V---Va,=a and by V---Vb,=0>. Then,
VA{cozp | p €I} = a,and \/{cozg | p € J} = b. Thus, by Lemma 3.1,

M™) = Annl = AnnJ = M),
so that a* = b*. Now, a simple calculation shows that
\/{cozt | 7 € (RWIII} = h(w),

and

\/{cozt | © € (RIITT} = h(b).
Thus,
Ann (RR)[I] = M™MHO)  and  Ann (RI)[J] = MO

By the condition on £, k(a)* = h(b)" since a* = b*; so Rk is exoteric. O

ProposITION 3.10. Suppose L has a finite number of atoms, and
denote by a the join of atoms of L. Let h: L — | a* be the open quotient
map. Then Soc RL = ker Rh. Furthermore, RL/Soc RL = R( | a*).

ProoF. For any o € RL, o € ker Rh iff hoo =0 iff h(coza) = 0 iff
coza A a* = 0iff coza < aiff coza is a join of atoms iff o € Soc RL. For the
latter part, simply note that R % is onto as & is a C-quotient map as observed
earlier, and then invoke the first isomorphism theorem. O
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REMARK 3.11. We stated in the introduction that a different proof of
Proposition 3.5 is available. Here it is: By Brauer’s proposition (see [12],
Proposition 1 on page 62), a minimal ideal of RL is generated by an
idempotent since RL is reduced. Now let 7 be an idempotent such that (#)
is a (nonzero) minimal ideal. We claim that cozz is an atom. Let ¢ be a
cozero element of L (say, ¢ = cozy) such that 0 <c¢ < coz#. The minimality
of (1) implies (y) = (), so that ¢ = coz#. Hence, by complete regularity, if
x is any element of L such that 0<x < cozy, then & = coz. So, for each
@ € Soc RL, coz ¢ is below a join of finitely many atoms, and is therefore a
join of finitely many atoms. This establishes the inclusion C in the pro-
position.

For the reverse inclusion, let @ be an atom of L, and (by the second of
the results cited from [7] and stated in the paragraph preceding Proposi-
tion 3.8) pick an idempotent ¢ such that a = cozé. For any o € RL such
that of # 0, we have 0<cozoaé < cozé, whence cozl << coz¢ = cozal.
Thus, for some 6 € RL, £ = J-aé = 0&-0&, showing that (&) is a division
ring, and hence, by Proposition 2 in [12] on page 63, (¢) is a minimal ideal.
So if, for any ¢ € RL, cozp is a join of finitely many atoms, then
cozp << coz({; +---+{,) for some idempotents {; each generating a
minimal ideal. Hence ¢ is a multiple of {; + - - - + {,;;, and is therefore in the
socle.

4. Contracting the socle.

We observed in the previous section that a ring homomorphism induced
by an onto frame homomorphism extends the socle to an ideal contained in
the socle. What we aim to do here is identify certain types of frame
homomorphisms for which the induced ring homomorphism contracts the
socle to an ideal contained in the socle; that is, homomorphisms &: L — M
for which (Rh) ' [Soc RM] C Soc RL. We shall say a frame homomorphism
is strong if it satisfies this property. In light of Corollary 3.6, surjective
strong homomorphisms have the property that (Rh) [Soc RM] = Soc RL.

We start by giving an example of a frame homomorphism which is not
strong. Our example is spatial, so it should be read from the bottom up to
keep in line with our frame-theoretic stance.

ExampPLE 4.1. Endow NN U {0} with the discrete topology, and let
X =Y =NU{0}. Let h:X — Y be the continuous function defined by
h(1) =1 and h(x) = 0 for all 1 # x € X. Next, let g be the element of C(Y)
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given by g(y) = y for ally € Y. Note that g ¢ Soc C(Y). Let ¢: C(Y) — C(X)
be the ring homomorphism fi—f o h. We show that g € ¢ [Soc C(X)].
Indeed, if « # 1, then

P(9)(@) = (g o B)(w) = g(h(x)) = 0,

so that ¢(g) € Soc C(X), and hence g € ¢71[Soc C(X)]. Thus ¢71[Soc CX)] ¢
Z SocC(Y).

It is well-known that the socle is invariant under an endomorphism.
Since the homomorphism ¢ in Example 4.1 is, in fact, an endomorphism of
C(X), the example shows also that the socle is not necessarily “inverse-
invariant” under endomorphisms.

Now we identify certain types of strong frame homomorphisms. Recall
that every homomorphism %: L — M between completely regular frames
lifts to the respective Stone-Cech compactifications as indicated in the
following diagram:

hB
OL —— BM
BLJ/ lﬁ]\/]
L ' M

The map A/ is given by W) = {x € M | x < h(y) for some y € I}. A
straightforward diagram-chasing argument shows that »/ is dense if and
only if % is dense.

DEFINITION 4.2. A frame homomorphism i: L — M is a W-map if, for all
¢ € Coz L, WPri(c) = ryh(c).

These homomorphisms are frame analogues of what Woods calls “WN-
maps” in [15] defined for onto continuous functions f: X — Y by requiring
that, for each cozero set F of Y, clgx f~'[F] = (f#) '[elpy F'], where f7 is the
Stone extension f#: fX — BY of f.

We will show that dense W-maps are strong. If Rh were an iso-
morphism for every dense W-map £, then of course the result would be
trivial. So we start by giving an example of a dense W-map for which R/ is
not an isomorphism. Our example will be facilitated by the following
characterization of W-maps.

LEMMAa 4.3. A frame homomorphism h: L — M is a W-map iff for every
ce CozL andy € M, y << h(c) implies y < h(s) for some s << c.
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Proor. Lethbe a W-map, y be an element of M and ¢ a cozero element
of L such that yy << h(c). Then y € ryh(c) = WPry(c). Therefore y < h(s) for
some s € r(c).

Conversely, observe first that, for any ¢ € Coz L, in fact, for any ¢ € L,
the inclusion ##r,(c) C ryh(c) always holds since, for any s € L, s << ¢
implies h(s) << h(c). For the other inclusion, let y € ryh(c). Then
y << h(c), and so, by hypothesis, y < h(s) for some s € r;(c), that is,
y € hPry(c). This establishes the desired inclusion. O

Some more background. The Booleanization of a frame L is the Boo-
lean frame ®BL whose underlying set is 8L = {x**| x € L} with meet as in
L and join (\/S)™ for each S C BL. The map L — BL which sends each
x € L to x** is a dense onto frame homomorphism. We denote it by b.

Our example will be based on special types of frames. The reader will
recall that a P-frame is a frame each of whose cozero elements is com-
plemented, and that a frame L is extremally disconnected (or strongly
projectable) if x* v x** =1 for each x € L. See [8] for several character-
izations of P-frames. However, we shall need the following characterization
(which does not appear in [8]) in terms of W-maps.

ProprosiTION 4.4. The following are equivalent for a completely
reqular frame L:

(1) L is a P-frame.
(2) Every frame homomorphism h: L — M is a W-map.
3) b: L — BL is a W-map.

Proor. (1) = (2): Let ¢ € Coz L and y € M such that y << h(c). Since
y < h(c) and ¢ << ¢, as L is a P-frame, it follows from Lemma 4.3 that / is a
W-map.

2) = (3): Trivial

(3) = (1): Let c € Coz L. To avoid ambiguity, write << for the com-
pletely below relation in ®BL. Now, b(c) <= b(c) implies there exists d << ¢
in L such that b(c) < b(d), by Lemma 4.3. Notice that b(c) < b(d) means
¢ < d*, and d << ¢ implies d** < c. Therefore ¢ < ¢** < d** < ¢, which
implies ¢ is complemented. O

ExampLE 4.5. Let X be a P-space which is not extremally discon-
nected. Such a space does exist (see [10], 4N). Let L = OX. Then L is a P-
frame which is not extremally disconnected. We claim that b: L — BL is
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not coz-onto. Suppose, by way of contradiction, that b is coz-onto. Let x € L.
Then x** € Coz BL, since BL is Boolean. Therefore there exists ¢ € Coz L
such that b(c) = «**, that is, ¢ = x**. Since ¢** = ¢ and c is complemented,
it follows that ™ Vv x* = 1. But this makes L extremally disconnected since
x is arbitrary. It follows therefore that b is not a C-quotient map, and
consequently Rb is not an isomorphism. Thus, b is a dense (onto) W-map for
which the induced ring homomorphism is not an isomorphism.

Now we show that if / is a dense W-map, then R% contracts the socle to
an ideal contained in the socle.

PROPOSITION 4.6. A dense W-map is strong.

PrOOF. Let h:L — M be a dense W-map. Let o € (Rh)[Soc RM].
Then 7 o o € Soc RM. We shall use subscripts to indicate where an M-ideal
resides. Take finitely many points /1, .. ., I of fM such that

Ann(hoo) =My n--- N M.
For each i € {1,...,k}, h’(I;) is a point of L. We claim that
Annz = M (.
Let ¢ € Anno. Then
(h o p)-(hoa)=(RR)p)-(RR)a) = (RR)(px) = 0,

and hence hog € Ann (ko o). Therefore ry(coz(ho ¢)) CI;, for each
1€{1,...,k}. But coz(hogp)=h(cozp); so, for each 7 we have
VM(h(COZ (o)) C I;. Thus, Wri(coze) CI; for each i smce Wy, < ryh
always. Consequently, r7(cozp) C h*(I;), that is, ¢ € Mh U for each i.
Therefore

R VA
Anno C MV NN M

To show the other inclusion, let 7 € M’gf(lf), for each ¢ € {1,...,k}. Then
rr(coz ) C hP(I;), and hence hPry(cozt) C W’hP(I;) C I;. Since his a W-map,
this implies

ry(h(coz 1)) C I,

that is, ry(coz(h o)) C I;,sothat hot € Mfw As this holds for each 7, we
deduce that 2 o 7 € Ann (% o o). Consequently,

0=coz ((h o1)-(how))=coz(hot) Acoz(hoa)=h(cozt A cozu) = h(coz 10),
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which implies cozto = 0 by density. Thus, to = 0, and hence the reverse
inclusion holds. O

In light of Corollary 3.6, we have the following:

COROLLARY 4.7. If h:L — M is a dense onto W-map, then
(Rh)'[Soc RM] = Soc RL.

Lest one conjecture falsely, we give an example of a dense onto frame
homomorphism %:L — M for which (Rh) " [Soc RM] = Soc RL, but & is
not a W-map.

ExAMPLE 4.8. Let L = OR and consider the map b: L — BL. Neither
L nor BL has atoms, so each of the rings RL and R(BL) has zero socle.
Since b is dense, Rb is one-to-one (see [4], Lemma 2). It follows therefore
that (Rb) [Soc R(BL)] = {0} = Soc RL. However, by Proposition 4.4, b is
not a W-map.

A closer look at the proof of Proposition 4.6 shows that what makes it go
through, apart from the density of &, is the fact that R contracts any
maximal ideal to a maximal ideal. As it turns out, this property actually
characterizes W-maps as we now show.

PropoSITION 4ﬁ.9. A homomorphism h:L — M is a W-map iff
RE)'IM =M }LL*(D for each point I of BM.

Proor. (<« ): Let ¢ € Coz L. Since we always have R (c) C ryh(e),
we need to show that ry7(c) C RPri(c). If WPrr(c) = 1gy, there is nothing to
prove. So suppose hfr(c) # 1py and let I be a point of M such that
v (c) C I. Talj&e y € RL such that ¢ = cozy. Then r7(cozy) C h’(I), which
implies y € M’LL{‘(D. So, by hypothesis, y € (Rh)’l[M]Iw], that is, (Rh)(y) =
=hoye M}, Thus,

I 2 ry(coz(h o p)) = ry(h(cozy)) = ryh(c).
Now, since every element of fM is the meet of points above it, it follows that
ryuh(c) < /\{J € pM | J is a point above hﬁTL(C)} = hPr(c).
(=): Let « € (Rh)"'[M,]. Then h o « € M%,, and hence

ry(coz (h o ) = ry(h(coz ) = WPry(coza) C I.
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Thus, r(coza) C h{f(] ). That is, o € M]z/j(l), and therefore (Rh)’l[MfV[] -
b ]

C Mﬁ*m. For the reverse inclusion, let ¢ € Mﬁ*m. Therefore 7;,(coz¢p) C

C RP(I), which implies

Wrp(cozp) C WA C 1,
and consequently, by hypothesis,
ry(eoz(h o p)) = ryh(cozp) C I.

Therefore ho g € Mfw; that is, (Rh)(p) € M{W, implying ¢ € (Rh)fl[MIIM].
This proves the reverse inclusion. O

REMARK 4.10. We proved Proposition 4.6 directly. We could, after
observing the last proposition, have deduced it as a corollary of the fol-
lowing ring-theoretic observation: If ¢: A — B is a one-to-one ring homo-
morphism such that ¢_1[M 1is a maximal ideal of A for each maximal ideal
M of B, then qb*l[Soc B] C SocA. To see this, let a € ¢71[Soc B], and select
maximal ideals My,...,M;, of B such that Ann¢(a) =M;N---N M.
One checks easily, using the fact that ¢ is one-to-one, that Anna =
= ¢ [M1N---N¢ ' [M], so that a € SocA.

W conclude with the following comment. If we strengthen the defi-
nition of W-map and define an N-map to be a homomorphism %: L — M
such that #fr;(a) = ryh(a) for every a € L (instead of just the cozero
elements), then it turns out that R is an isomorphism whenever % is a
dense onto N-map. To show this, we first demonstrate that 2/ is onto.
Given a € M take b € L such that i(b) = a. Then Khi(r; (b)) = ryh(b) =
= ry(a). Since the elements ry(x), for x € M, generate M, it follows
that 1/ is onto. As remarked earlier, the density of & implies that of h”.
So, in fact, ## is an isomorphism since it is also one-to-one as any dense
frame homomorphism with regular domain and compact codomain is
one-to-one. Now we argue from this that & is coz-onto. Let ¢ € Coz M.
Since M — M is coz-onto ([5], Corollary 5), there exists J € CozfM
such that \/J = c. Since hP is coz-onto (as it is an isomorphism), there
exists I € CozfL such that ##(I) = J. Then \/I is a cozero element of L
mapped to ¢ by k. Finally, we show that & is almost coz-codense. So,
suppose (c) = 1 for some ¢ € Coz L. Then, in view of & being an N-map,
WPri(c) = ryh(c) = 1pu, which implies r7,(c) = 14, since h” is one-to-one,
and hence ¢ = 1. Thus, & is a C-quotient map, and hence R\ is an iso-
morphism.
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A similar argument, taking into account the fact that the elements
ry(c), for ¢ € Coz L, generate fM, shows that if / is a coz-onto dense W-
map, then RA is an isomorphism.
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