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Structure and Detection Theorems for k[Cs x C4]-Modules

SEMRA OZTURK KAPTANOGLU (*)

ABSTRACT - Let k[G] be the group algebra, where G is a finite abelian p-group and k
is a field of characteristic p. A complete classification of finitely generated k[G]-
modules is available only when G is cyclic, Cyx, or Cy x Cs. Tackling the first
interesting case, namely modules over k[Cs x Cy4], some structure theorems
revealing the differences between elementary and non-elementary abelian
group cases are obtained. The shifted cyclic subgroups of k[Cy x C4] are char-
acterized. Using the direct sum decompositions of the restrictions of a
k[C2 x Cs]-module M to shifted cyclic subgroups we define the set of multi-
plicities of M. It is an invariant richer than the rank variety. Certain types of
k[C2 x C4]-modules having the same rank variety as k[Cs x Cy]-modules can be
detected by the set of multiplicities, where Cs x Cs is the unique maximal ele-
mentary abelian subgroup of Cy x Cy.

1. Introduction.

Let M be a finitely generated k[G]-module, where G is a finite group of
order divisible by p and k is a field of characteristic p > 0. The cyclic group
of order n is denoted by C,. When M is considered as a module over a
subalgebra k[A] of k[G] for a subgroup A of the group of units of k[G], we
write M| 4, and refer to it as the restriction of M to k[A] (or A) or simply as
the restricted module. Some properties of a k[G]-module M, such as
complexity, are detected by M|y as E runs through elementary abelian
subgroups of G; see [AE], [Kr]. Theorems of this nature are referred to as
detection theorems.

The rather rich theory for modules over an elementary abelian p-
group ¥ is not of much use when the group is non-elementary abelian.
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An essential motivation for this work was to clearify the reasons for that
by presenting a detailed study of modules over the smallest non-ele-
mentary abelian 2-group Cs x Cy via their restrictions to various sub-
algebras of k[Cs x C4] and k[Cy x Cy2] where Cs x Cy is the unique
maximal elementary abelian subgroup of Cy x Cy. Given the fact that
k[Cs x C4]is of wild representation type [Bel, p. 114] what we provide in
this article as structure theorems is essential for studying modules over
it. It should be noted here that the only abelian non-cyclic p-group whose
indecomposable modules are classified is the group Cs x Cs; [Bal],
[HeRe], [Co]. There are infinitely many non-isomorphic indecomposable
k[C5 x Cs]-modules.

The work of Carlson defining the rank variety for a module over an
elementary abelian p-group is the main source of inspiration for this study
[Ca]. However, what we achieve is the result of our new approach; namely,
rather than just focusing on whether the restrictions of a k[E]-module are
free or not as Carlson does, we further take into account the direct sum
decomposition of the restrictions of a k[Cs x C4]-module to preserve more
information so that the module may be characterized by that information.
The direct sum decompositions of the restrictrictions of a kG-module at p-
points, roughly speaking order p-subgroups, where G is a finite group
scheme are studied througly by Friedlander, Suslin and Pevtsova in [FP],
[FP1], [SFP]. Examples in an earlier version of this work [Kal] were
mentioned in [SFP]. They consider only cyclic subgroups of order p
whereas we consider cyclic subgroups of order p”, n > 1. As a result, we
can distinguish some modules which are not possible to distinguish by
considering only order p subgroups.

The restrictions we consider are M|, for x in the Jacobson radical
Jg, or simply J, of the group algebra k[G]. The structure theorems,
Theorems 4.1, 4.3, 4.5, reveal the structure of the restrictions M|, for
various x. They provide a good insight why modules over elementary
abelian groups behave better than modules over non-elementary abelian
groups, and indicate what type of changes in the hypotheses lead to
similar results when the group is non-elementary abelian. One con-
sequence is the characterization of the shifted cyclic subgroups of
k[Co x Cy4], see (7).

By the formula provided in Corollary 2.2, it is not difficult to compute
the multiplicities of i-dimensional indecomposable summands of M| .
Hence the direct sum decomposition of M|, can be determined for any
x in J without much difficulty. This leads us to define a new computable
invariant, N (M), for a k[G]-module M called the set of multiplicities of M
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where G is an abelian p-group see (3). This definition becomes very useful
when the group is Cs x Cs since the domain of definition, J/J?, coincides
with that of the rank variety, see Definition 1.5. Recovering the rank
variety from the set of multiplicities is very easy.

Even though it is not discussed in this paper, we can state that when G
is Cy x C2 x Cs or C3 x C3 the domain of definition of N g(M) becomes
J/J? rather than J/J?. That also justifies our choice of groups for this
study.

Our detection theorems, Theorems 5.1 and 5.3, are applications of this
invariant. They show that certain types of modules can be identified by
their set of multiplicities. There is a geometric interpretation of the mul-
tiplicities of the indecomposable summands of M|, when M is a “realiz-
able” k[G]-module and C is a cyclic 2-subgroup of a group G [Ka].

In order to state our main results we need to introduce our notation and
definitions some of which are similar to the ones in [Ca]. In doing this we
also recall some results from the literature to put our results into the
proper context. Recall that the notions of projectivity, injectivity and
freeness coincide for modules over k[G] when G is a p-group and k is a field
of characteristic p.

The key result concerning the restricted modules M|y, is Dade’s
Lemma [Da, Lemma 11.8] when the group £ is an elementary abelian p-

group.

DaApE’'s LEMMA 1.1.  Suppose E is an elementary abelian p-group of
order p" generated by ey, ..., ey k is an algebraicaly closed field of ca-
haracteristic p, and M is a finitely generated k[E1-module. Then, M 1s free
if and only if M| 1, is free for all x of the form ai(ey — 1) + ... an(e, — 1)
where (a1, . ..,a0,) € k"

Another result in these lines is the following (Lemma 6.4 in [Ca]).

THEOREM 1.2. Let M be a k[E]-module, and x, y in J \J2 such that
x = y(mod J?). Then M| 1wy is free if and only if M|, 1s free.

DEFINITION 1.3. A (cyclic) subgroup S of the units of k[G] is called a
shifted (cyclic) subgroup of k[G] whenever k[G]| 5 is free as a k[S]-module.

Dade’s Lemma allowed Carlson to define the shifted cyclic subgroups
for an elementary abelian p-group E. In our notation they are the sub-
groups (1 +x) of k[E], where x is in J\J?. Dade’s Lemma together with
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Theorem 1.2 made the definition of Vi(M), the rank variety of M well
defined. It consists of points & in J/J? for which M| 1.y is not free to-
gether with the point zero.

In order to describe the shifted cyclic subgroups of k[Cy x C4] ex-
plicitly, we need to introduce notation for the generators of the group
Cz X C4.

NorAaTIiON 1.4.  Except in Section 2, in the rest of this article, G denotes
the group Cy x C4 generated by e, f of orders 2 and 4, respectively; £ de-
notes its unique elementary abelian subgroup Cs x Cs. Consider the ideals
J® 5 J® of kG contained in JZ so that

J)J® 2 kle— 1)@ k(f — D) @ k(f —1)F = k%,
J)I® 2 kle =)@ k(f — D@ k(f —1* @ k(f — 1) = k.

We omit the bars to simplify the notation. When M|,y and M|, have
the same indecomposable summands (up to isomorphism) together with the
same multiplicities, that is, when « and y have the same Jordan canonical
form, we write

Mgy = Ml 14y
forx,y inJ provided that k(1 + x) and k(1 + y) are isomorphic subalgebras.

Our main structure theorems are as follows.

THEOREM 4.1. — () If w € J, then k[G]| 1, is free if and only if x & Je,

(i) If M is a k[Gl-module, then M s free if and only if the re-
striction M| 1,y s free for all x in J \J®@,

The first part of Theorem 4.1 is the analogue of [Ca, Lemma 6.1]. By
that the shifted cyclic subgroups of k[G] can be written in the form (1 + )
for any x in J /J(z), see Remark 4.2. The second part of Theorem 4.1 is the
counterpart of Dade’s Lemma.

THEOREM 4.3. — Let M be a k[G]-module, x, y in J \J(Z), and
x = y(mod J®).
() If x® is mot zero, then M| 0y= M|y
(D) M1y ts free if and only if M|, is free.
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The second part of the above theorem implies that the freeness of
M| 1.y 1s well defined modulo J®, In other words, J/J® for G is the
analogue of the J /J? for the elementary abelian groups. In the terminology
of [FP] this amounts to showing that (1 + ) and (1 + ) are in the same
equivalence class as |(1 4 «)|-points of k[G]. Moreover, by Theorem 4.5 the
Jordan form of x is well defined modulo J©®.

THEOREM 4.5. — Let M be a k[Gl-module, x, y be in J\J? and
x = y(mod J®). Then

M4y = My -

The analogue of Theorem 4.5 for the group £ is given below.

THEOREM 4.7. — Let M be a k[E]-module and let x, y be in J\J? such that
x = y(mod J?). Then

]‘4l<1+ac)E Ml<1+y> :

Due to the fact that all indecomposable k[Cy]-modules, up to iso-
morphism, are k and k[C2], M| 1,2 (k)" & (6[(1 + x)])/2“ when (1 + )
is isomorphie to Cs.

Thus the pair n(x) = (;(x), 72(x)) consisting of the multiplicities of the
indecomposable summands desecribes the restricted module M|, up to
isomorphism completely and #;(x)’s are easy to compute by the formula
given in Corollary 2.2(i).

DEFINITION 1.5. For a k[E]-module M, the set of multiplicities is de-
fined as

Ng(M) = {[x; ) | T e J/JZ\O},

it is well defined by Theorem 4.7.

The rank variety V(1) can be recovered from the set of multiplicities
N g(M) easily, see Remark 4.4.

DEFINITION 1.6. A k[H]-module M is called an isotypical k[H]-module
(of type N) whenever M is isomorphic to m copies of an indecomposable
k[H]-module N for some m > 1.

THEOREM 5.1. — If M is a finitely generated isotypical k[ET-module,
then N (M) determines M completely (up to isomorphism) except that
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isotypical modules of type Q"(k) and of type Q7 "(k) can not be dis-
tinguished, where Q" (k) denotes the n-th Heller shift (or n-th syzygy) of the
trivial module k.

Following the definition and notation given in [Be2, p. 190], for { in
HY(H:k), L denotes the kernel of the k[H]-homomorphism that represents
the image of ¢ under the isomorphism H'(H;k) =~ Homk[H](Ql(k),k) ; see
(4). We write I instead of L, when the group is G.

We set the cohomology algebras as follows:

H*(G;k) = klt1, 7] ® Aw), and {, = azt? + asr,
H*(E; k) = k[tl, tz], and fa = agl] + altz,

where a = (a1, az) is in K%\ {(0,0)}, and ¢;, t5, v are of degree 1, and 7 is of
degree 2. It can be shown that the rank varieties of the modules L, and of
the induced modules L, T g are the same; namely, the line through a and
the origin. However, restrictions of these modules to the shifted cyclic
subgroup (u,) of k[£] corresponding to the point a are have different de-
compositions. Thus these modules can be distinguished by their sets of
multiplicities when considered as modules over £, see (9) for the compu-
tation of A (L)

THEOREM 5.3. — If M is a finitely generated isotypical k[G]-module of
type Ly or induced from an isotypical k[ E1-module of type L, then M is
completely determined (up to isomorphism) by its set of multiplicities
Ng(M| g ) when considered as a k[E]-module.

As the last theorem of the introduction we state a well known theorem
due to Chouinard [Ch] used several times in the article.

THEOREM 1.7 (Chouinard). Let H be a finite group, M be a k[H]-
module. Then M is a free k[H]-module if and only if M| 4 is a free k[A]-
module for all elementary abelian p-subgroups of H.

The proofs of our theorems are self-contained and use linear algebra
methods and basic homological algebra techniques. Section 2 is devoted to
results that are valid for any abelian p-group. Thereafter G is the group
Cy x Cy4. Section 3 consists of preliminary lemmas for k[Cs x C4]-modules.
Section 4 contains the structure theorems. Section 5 is devoted to examples
and applications of our multiplicities set which are referred as detection
theorems.
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2. General Results on Restrictions of Modules.

In this section, G denotes an abelian p-group. When G is the cyclic p-
group of order p”, the list of indecomposable k[G]-modules (up to iso-
morphism) is given by the i-dimensional vector spaces which are ideals of
k[G], namely, the J?*~%, for ¢ in {1, ..., p"}. Hence for any abelian p-group
G, a finitely generated k[G]-module M, and « in Jg\J, ?; with
k(1 + x) = k[Cp»] we have the direct sum decomposition

MU= 0" @ P20 @ @ ()7 @ (L + )y

where #;(x), or simply #;, denotes the multiplicity of the i-dimensional in-
decomposable summands of M|y, and J = J(1,y. Thus the module
Mla ) Can be represented by n(x) = (;(x), . . ., 77,),,,(90)). These #;(x)’s are
easy to compute by our formula given in Corollary 2.2, however it is not
clear how to find the suitable ideal, say I, such that, congruence modulo /;
implies the equality #n(x) = #(y) for x and y in J. If such an ideal is de-
termined, then the set of multiplicities A (M) will be well-defined over
J/1g, where

(3) No®) = {[a:n@)] |7 € J/16\0 }.
For N¢,«c,(M) see Remark 4.6(2).
LEmMA 2.1. Let X be a d x d nilpotent matrix over a field F and n,

denote the number of t x t Jordan blocks in the Jordan form of X. Then

(i) #, = rank (X'!) — 2rank (X') + rank (X™*!) for ¢t > 1;
(ii) the number of Jordan blocks in X of dimension less than or
equal to t is

rank (X°) — rank (X) — rank (X*) + rank (X"*1),

the number of those of dimension greater than t 1is
rank (X*) — rank (X**1).

The proof of Lemma 2.1 depends on the fact that

t—r, ifr<t,

rank ([7el") = { 0, ifr>t

where [ j:] denotes the ¢ x ¢ Jordan matrix belonging to the eigenvalue zero.
The following are immediate corollaries of Lemma 2.1.
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COROLLARY 2.2. Let G be an abelian group whose order is divisible by
p, and M be a k[Gl-module. If x is in J and (1 + ) is a cyclic subgroup of
k[G] such that k(1 + x) is tsomorphic to k[C)s], then

B Ml = 0" &7 DR P e o (e ()re
@ (k[Cp: )", where

n; = dim (2" *M) — 2dim (' M) + dim (21 M);

(ii) the number of indecomposable summands of M| . of dimen-
sion less than or equal to t is dim (M) — dim (xM) — dim (x'M) +
+ dim (&1 M), the number of those of dimension greater than t is
dim (x'M) — dim (&1 M). In particular, the number of non-free
indecomposable summands of M|, is equal to dim (M) —
—dim (M) — dim ("1 M) = dim (M+*)) — dim P~ M).

(il) M4y ts free if and only if dim (xM) _P p:ldim M) of

dim (M) . nd only if dim @M) +

and only if dim (P 1M) = .
+dim (P 1 M) = dim (M).

COROLLARY 2.3. If G is an abelian group whose order is divisible by p,

M 1is a k[G]-module, and x,y are in J, then the following are equivalent.

() The restrictions M|y and M|y, have the same decom-
position.
(i) For all i, n;(x) and n;(y) are the same.
(i) For all i, dim (x'M) and dim (y'M) are the same.

REMARK 2.4. Note that the number of non-free indecomposable
summands of M|, is equal to the dimension of the Tate cohomology
group

H(1+m); Mgy

Let (u) be a shifted cyclic subgroup of G and let { be in H*(G; k). Denote
the image of { under the restriction map I'esg> by ¢l - When (is zero, L is

defined as Q k) @ Q! (k); otherwise L; is the kernel of a k[G]-homo-
morphism ( representing (, i.e. it fits in the following short exact sequence

4) 0— Ly — Q"(k) — k—0.

For more information on Q", Q7", and L, we refer to [Be2, p. 190]. We
write Q((k) if the group needs to be indicated.
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LEmMmA 2.5. Let G be an abelian p-group, (u) be a shifted cyclic
subgroup of klG] and { be in H(G;k)\0. Then .Q% o Qim(k) where 1 18
0, or 1 if m is even, or odd respectively. The following isomorphisms
hold:

@) Qg(k)img Q’éo(k) @ (k{u))® for some s in N. The same is true if
n 18 replaced by —n.
(i) For some s and | in IN,

{ Lél(m 2] (k<u>)sv 2f C l(u)?é 07

(Ll
T @ e 2y ® @ k), if £ 1y=0.

IR

Proor. () follows from the definitions of Q"(k), 2 "(k), and shifted
cyclic subgroups, and the property that a short exact sequence remains
short exact when restricted to k(u). (i) follows from the definition of L
and part (i). O

3. Restrictions of k[Cs x C4]-Modules.

Here we return to the group G = Cs x Cy. This section is devoted to
answers to various questions that naturally arise in studying a k[G]-module
through its restricitions to shifted cyclic subgroups. In the rest of this
section, B is the following basis

(5) B={1,e—1,f—1,f2—1,(f =1 (e—1)(f 1), (e— D(f —1)%, (e—)(f —1)*}.

Some properties of the nilpotent elements of the group algebra k[G] are
given in Lemma 3.1, Theorem 3.2, and Lemma 3.3.

The norm element vy of a group algebra k[H] is the sum of all elements
of H. When H is a cyclic group generated by & of order p” the norm ele-

ment vy = 3 ¢ can also be expressed as (b — 1)’ 1.
geH

Lemma 3.1.  Let x, y be in J\0 and x = y(mod J?). Then the following
hold.
() «* =0, and 2* = a(f% — 1) for some a in k.
(i) Ifxis in J? then x® = 0.
(i) If x is in J°, then xJ? = 0.
Gv) 2 =0 if and only if x> = 0.
W) 2% =0 1if and only if (1 + x) = Cao( < k[G)).
i) % # 0 if and only if (1 +x) = Cy( < K[G)).



178 Semra Oztiirk Kaptanoglu

(vii) a? # 0 if and only if k[(1 + x)] = k[C4).
(vill) k(1 + x) is a direct summand of k[G]L<1 +a)-
(x) > =9% *=0if =0, (1+2)=(1+y), and k(1 +x) =
= k(1 +y).

ProOF. Write x and y using the basis B given in (5) as

@ =ale—D+b(f —D+c(f 17+ rivp +re(e — D(f = 1) +13vE + 71400
y=ale — 1)+ b(f — D+e(f — 1P +s1vyp +82(e — D(f — 1) + s3vp + savg

for some a, b, ¢, 7;,s; in k. Then we have
B =04(f" -1 and o = abPvg + bPv_ps + 120G,

It is clear that the coefficient b plays a significant role. Proofs of (i)-(ix) are
now easy verifications. O

The restricted module k[G]] - is free as ( f?) is a subgroup of G.

However, (f — 1)?is zero in J /J2. Thus it is clear that we need a substitute
for J /J? to extend Dade’s Lemma. By Lemma 3.1 the non-zero elements of
J are of two types depending on whether their square is zero or not. The
set of elements of J whose square is zero is denoted by Jg, that is,
Jg=JpdI® =kie—1) @ k(f2 - 1) ®J?, where J® is as given in (1).

THEOREM 3.2. Let x, y be in Jp\J® such that x = y(mod J®). There is
a wunit w=1+n with n in Jg\J® such that if E, = (u,1+x) and
E, = (u,1+vy), then

(i) the groups E,, E, are shifted subgroups of k[G] which are iso-
morphic to E,

(i) the group algebras K[E], k[E.], k[E,] are isomorphic sub-
algebras of k[G].

Proor. (i) By hypothesis,x =« + J @ is non-zero. Then there is an % in
Jg such that {%, 7} is a basis for Jz/J®. We can write x and ¥ as in (6) with
b=0.Let

n=mnee — 1) +np(f — 17 +ni(f — 1 +nz(e — D(f — 1) + ngvg + nave,

where 7,, 72, n; are in k. By hypothesis, (a,¢) and (., ns) are not equal to
(0, 0). Moreover, & and n are k-linearly independent modulo J®. This is true
if and only if ang — cn, is non-zero. Since the field is of characteristic 2,
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ang + Ch, = ang — CN, is non-zero. Hence

any + cne + 1, + 1on
nx—(anfz+cne)<1+ ! 2Tl 2fz(f—l))w
anp + cn,
is not zero. Set
any + cng + 1N + relie
vy =1+ L )

anygz 4 CNe

It is clear that v, is a unit in k[G]. Since 7 is in J®, we have nZ = 0 by Lemma
3.1 (ii). Therefore u =1+ n is a unit of order 2 in k[G]. Note also that
u(l+x) =14+ x+n+2xnis aunit in k[G] different from 1 + x and 1 + n.
Then we obtain that £, = (u,1+x) is isomorphic to E, and that
klE,] =k @ kn @ kx @ knx is contained in k[G], where nx = vg, is non-
zero. We also have

VExk[G] = kVEx + k(f — Dvg, = kvyvg + kvyvg,
which has dimension 2 as a vector space; hence the restriction k[G]| 5, is
free. Similarly for y, the element

any + Cng + S1Me + SgMy2
ang + cn,

f-1

vy, =1+

is in k[G]. Then Vg, = (angz + cne)vyvg is non-zero and k[G]| E, is free.
(ii) Define ¢, : k[E,] — k[E] by
¢, () = 1+ nele — 1) + np(f* — 1) +ngvg,
¢,(1+x) =1+ale—1)+c(f>—1)+r3vg.
Then ¢,(vg,) = ((mfz + cne)vg is non-zero. Hence ¢, is an isomorphism of
group algebras. For similarly defined ¢,, we have the equivalence

¢, (x) = %(y)(mod,]%). Thus we have the following equalities and iso-
morphisms

Tg /T3 = kg,(n) & kd, (@) = kg, n) & kg, () = T, /T3, = g, | T3 .

O
LEMMA 3.3. Let x be in J.
() If 2® is non-zero, then J @ is contained in xJ.

(i) If x is mot in J? then J® is contained in xJ.

Proor. Write x asin (6). Under the hypothesies of (i) or (ii) x/ contains
(e — 1)J and (f — 1)J.
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(i) The hypothesis that &2 is non-zero implies that b is non-zero; then J@
is a subset of (f — 1)J.

(ii) By hypothesis, we have (a, b) different than (0,0). If b is not zero,
then the first part implies the result, because J® is contained in J®. If ¢ is
not zero, then J @ is a subset of (e — 1)J. O

The following corollary is a special case of Lemma 2.5 and is essential
for proving Theorems 5.1 and 5.3. The cohomology algebras are as given in
(2) and

H*(Cosk) = kltl,  H'(Cy;k) = klr]l ® A).

We also write k(g) instead of k[{g)] for simplicity.

COROLLARY 34. (i) The Heller shift Q& (k) and Loy are isomorphic to k
for all n while Ly is zero.

(i) The dimensions of Qy(k) and Lz are 2n + 1 and 2m, respec-
tively, where & is in HY(E;k). Moreover, the following iso-
morphisms hold:

(k) ) (o) 2 1, () & elaug))” 2 e @ Gelug))"
and
L)l (FeCup))™, if k{B} # k{a} U &Ly, # 0,
&y I (ug) = (k)Z o (k<u/;’>)m_l, 2:](' k{,[))} _ k{a} Z:ff é;nlmﬂ )= 0.

(iii)) When the group is Cy, L. is the zero module, and the Heller
shifts are

o k, if m s even,
T @b, () = Je,, if s odd.
(iv) When the group is G, the dimensions of the Heller shifts and
L¢’s for L HY(G; k) ave as follows:

dn+1, if n is even,

dim (QG(k)) = {47’& + 37 ’Lf n 18 ()dd,

and
dim (L¢) = dim (Qg(k)) - 1.

When Ly is vestricted to E, it takes the form
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o) Loy, ® |IED"Z, if mis even,
If{lE: L (’VL+1)/2 . .
¢l ® (KLED) , if mis odd.

For {, in degree 2, the restrictions of L, to the shifted cyclic
subgroups (C,) of k[G] take the forms

{w@mm, if &Ly # 0,
&7 & ®(CD™ Y, if 'y =0,

[

GG =

where (C,) = Cy,

and

(Re(C 2", if ey 20,

n ] oy 22 ) where (C,)=Cy.
(' H(Cy) {k ® Q%(,‘y)(k) ® (k<cy>)2m—17 71f g?l((',y): 07 b 4

Proor. (i) and (iii) follow from the fact that the minimal k[C,.]-free
resolution of k is of the form

i k[Cp"'] — k[cpn] — k — 0

for any p and n.

(ii) follows from the classification of k[£]-modules (see [Ca]) and the
definitions of Q"(k) and L.

(iv) follows from the fact that the minimal k[G]-free resolution of k is of
the form

- — (K[G)? — (KIG])? — (K[G])! — k& — 0,
and the definitions of Q"(k) and L. O

4. Structure Theorems.

In this section we prove our theorems for modules over k[G] and k[E]
for our fixed group G = Cz x Cy and its unique elementary subgroup
E = Cz X Cz.

Theorems 4.1 and 4.3 contain generalizations of Dade’s Lemma and
Carlson’s analoguous theorems for modules over elementary abelian p-
groups. Theorems 4.5 and 4.7 guarantee the well-definedness of the set of
multiplicities of a module over k[G] and k[E], respectively. In the proofs we
use Corollary 2.2 or 2.3 to determine whether a module is free or not, and
Lemmas 3.1, 3.3 for the properties of the elements of J. We use the no-
tation of (6) for x in J.
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THEOREM 4.1. (i) Ifw € J, then k[G]| 1. is free if and only if x & 7,

(i) If M is a klG]-module, then M 1is free if and only if the re-
striction M|, is free for all x in J\J®.

ProoF. Note that xis notinJ® if and only if (a, b, ¢) in (6) is not equal to
0,0,0).

(i) By Corollary 2.2 (iii) k[G]la +a) is free if and only if dim (xk[G]) is 4 or
6 depending on b is zero or not, respectively. Computing the rank of the
matrix representing x shows that this dimension requirement is satisfied
as (a,b,c) # (0,0,0).

(ii) Suppose M is a free k[G]-module and x € J. By (i) k[G]l (142) 1s free if
and only if x ¢ J®, hence M L4y 18 free for all x ¢ J®_ Conversely assume
that M|, is free for all x € J\. 1@ As usual, let E denote the maximal
elementary abelian subgroup of G. Since J; C J and J3 2 cJ? M Lagey 18
free for all z € Jg\J%. Then by Dade’s Lemma M| is a free module. Hence
M is a free k[G]-module by Chouinard’s Theorem, Theorem 1.7, as ¥ is the
only maximal elementary abelian subgroup of G. O

REMARK 4.2. The first part of the above theorem implies that the
shifted cyclic subgroups of k[G] are of the form (1 + ) for any Z in J /J®. If
the natural one-to-one correspondance between k* and J/J® is used (see
(1)), then shifted cyclic subgroups of G can also be defined as (C,) for each
y = (71, 72, 73) in k3, where

(7) Cy=T+ple—D+p(f—D+p(f*-1.

Obviously, (C,) is isomorphic to C4 if and only if p, is not zero;
otherwise, it is isomorphic to Cy. When p, is non-zero, then <C§> is
(1+9(f* - 1). It is clear that the lines through the origin in A3,
parametrize the shifted cyclic subgroups of k[G]. However note that
the points (0,1,1,) and (0,1,0) give the same group algebra,
KA+f—-1+f2-1)]1=k{1+f—1)]=k(f)]. Thus we can use points
of k3 and J/J® interchangebly to write the shifted cyclic subgroups of
k[G]. The latter definition is consistent with Carlson’s definition of
shifted cyclic subgroups of k[E], namely, (u,) for a = (a1,az) in k2,
where u, =14 a;(e — 1) + az(f? — 1). The muliplicities set in this no-
tation can be written as Ng(M) = {[a;n(u, — )] | a € k*\0 }.

THEOREM 4.3. Let M be a klG]-module, x, y be in J\J(Z), and
x = y(mod J@).
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() If «* is not zero, then M|y, = M| ;.
(i) M| 1y is free if and only if M|, is free.

PrOOF. Since x is not in J® (a, b, ¢) of (6) is not equal to (0,0, 0), hence
x = y(mod J?).

(i) Since 2? is not zero, Lemma 3.3 implies that J® is contained in wxJ.
Then y = (1 — ») for some r in J as & — y is in J@. This proves the claim
because 1 — 7 is a unit.

(ii) The assumption & = y(mod J®) implies that #% = ¢/ (see Lemma 3.1
(ix)). In the case «®> is non-zero, Theorem 4.3 (i) implies that
M| 0y= M| 14, This, of course, implies that M| ;. is free if and only if
M| 1y is free.

In the case a® is zero, without loss of generality we can write

x=ale—1)+c(f? —1) and y = x +w where w € J®. Note that 42> =0
and we can write w = ¢ - r for some ¢, r in J with ¢ = 0, * = 0.

Let zj; denote the map form M to M given by zy;(m) = z - m for all m in
M, zin J.

Suppose M Lata is free. Since #? = 0, we have ker () = xM.

Claim: M|y, is free. Let N = ker (ym)/yM, y = qr with ¢ =0,
r* = 0 as written above. It remains to show that N = 0. Consider the map
ry : N — N, multiplication by . Let m be in ker (ry). Then we have m in
ker (yy) and rm in yM. Thus, ym = (x + grym = 0 and rm = yn for some n
in M. Since ¢*> =0, we obtain am = —qrm = grm = q(x + qr)n = xqn.
Hence m + gn is in ker (xy7). Thus m + gn = xs for some s in M. Multi-
plying the last equation by » we obtain that rm = rgn + rxs. We had
rm = yn = xn + qrn above, hence rrs = xrs =xn. Thus n —rs is in
ker (xp7) = xM. Hence we can write n = rs + xt for some ¢ in M. We have
m=qn +xs = q(rs + xt) + xs = qrs + qut + xs + ¢*rt = (x + qr)(s — qt) =
= y(s — qt). Thus m = 0, showing that ry is injective. On the other hand r
is nilpotent, this forces N to be zero which proves the claim.

Similarly, M|, is free implies that M|, is free. O

REMARK 4.4. Suppose M is a k[G]-module. Then
VeM|g)={0}U {% IS JE/JfE | o) # dim (M) /2 }

The restriction M| . is free if and only if the restriction M % 3 is free by
Chouinard’s Theorem, Theorem 1.7, which holds if and only if the restric-
tion M| ) is free. Note that (1 + f?) is the shifted cyclic subgroup of k[£]
corresponding to the point (0, 1).
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THEOREM 4.5. Let M be a k[Gl-module, x, y be in J\J? and
& = y(mod J®). Then

M= Mgy -

ProOF. By Lemma 3.3, we know that J® is contained in aJ. Then
y = x(1 — r) for some rin J as & — y belongs to J®. This proves the claim as
1 — ris a unit. O

REMARK 4.6. (1) The hypothesis 2> # 0 in Theorem 4.3 (i) can be
replaced by any one of the (a) — (e) : (a) ay =0 and 2> =0, (b)
x = y(mod kvg @ kvg), (¢) M|,y or M| ) or M| sy is the trivial module, (d)
M| 4y has no free summands, (e) (¢ — 1)(f — DM = 0.

(2) Note that Theorem 4.5 makes it clear that the set of multiplicities is
well-defined for a k[G]-module when we take I; = J® in equation (3). That
is, for a k[G]-module M, its set of multiplicities is defined as

N = { [ m (@), @), my@), @] | & € 7/3%\0 },

note that n5(x) = 7,(x) = 0 for x in J with x? = 0. Further, we define a fil-
tration of it by the subsets

L(M) :{ [ @), 1), @), y@)] | 0 # & € T/I®, i) = 0 for j > i }
It is obvious that N f;(M ) form a nested sequence
(8) NEM) € NEM) € N3(M) © NG,

and N\ é;(M NN f;“(M ) gives those «’s for which M| (1+2) has only i-dimen-
sional indecomposable summands. Recall that the Loewy length of a non-
free indecomposable k[G]-module is at most 4, and the Loewy length of M is
©if and only if #,(x) is non-zero for some x in J\J 2 which in turn holds if and
only if N, ¢WM) = N oM). For a non-free k[G]-module M, we can write
N(;(M) = UQ./\/E;(M)

The analogue of Theorem 4.5 for the group £ is given below which
shows that Iz = J2, see (3) for the definition of I.

THEOREM 4.7.  Let M be a k[E]-module and let x, y be in J\J 2 such that
x = y(mod J?). Then

M 10= My -
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PrROOF. Recall that E = (e, f2). Without loss of generality, assume that
M is non-free and indecomposable. Then the number of k[ E']-free summands
in M is zero; equivalently (e — 1)(f? — 1)M = J2M = 0. Therefore xm = ym
for all m in M as (x — y)m is in J2M; thus M|y = M4y O

5. Detection Theorems and Examples.

This section is devoted to the applications of our definitions and theo-
rems. These theorems are based on the observation that, when restricted
to (1 + x), the indecomposable k[E]-module L; have either two copies of
the trivial module & or none, see (9) below. The proofs uses only Corollary
3.4, and Theorem 4.7.

THEOREM 5.1. If M is a finitely generated isotypical k[E]-module,
then N (M) determines M completely (up to isomorphism,) except that
isotypical modules of type Q" (k) and of type Q7 "(k) can not be dis-
tinguished, where Q"(k) denotes the m-th Heller shift of the trivial
module k.

Proor. By the classification of k[E]-modules given in [Ca], a finitely
generated indecomposable k[E]-module is isomorphic to one of the fol-
lowing: k, k[E], Q" (k), Q7" (k), or L for each [a] in Pllc, where a = (a1, az)
is in ¥%\0, and 7 is a positive integer. The modules given have dimensions
1,4, 2n + 1, 2n + 1, and 2n, respectively, as vector spaces over k. Thus an
isotypical k[E]-module M is isomorphic to 7 copies of one of the modules
listed for some positive integer m. First we compute the set of multi-
plicities of each of the modules listed, then multiplying each multiplicity
by m gives the set of multiplicities of M. We have the obvious iso-
morphisms

klug=k — and  K[E1l 2 ((ug))?,

where uy is a shifted cyclic subgroup of k[E] and #is in £%\ {0}. Therefore we
have

Ngk)={[p;1,0]|f ck*\0} and  Ngk[E]) = {[5;0,2]|f € k*\0}.

By Corollary 3.4 (ii), we know that the restrictions Q" (k)] (p) and Q7" (k)| (up)
are both isomorphic to k& & (k[ (u4)])". Hence the set of multiplicities for any
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two of them is {(B;1,n)|B € k*\0}. Therefore they cannot be dis-
tinguished by the set of multiplicities. By Corollary 3.4, we have the iso-
morphisms

Léffl(u@% (k)2 > (k[C2])(nil) and LéZlWﬁ)% (k[Cg])"
for § not in k{a} which is the rank variety V(L y) of L . Hence
9  Neey)={[a:2,7n -1} U{s,D;0,n]|(s,1) € *\{0,a} }.

Therefore the possibilities for N'g(M) are

i) {[a;m,0]ja € k*\0},
(i) {[a;0,2mlla € k*\0},
(i) {[a;m,mnlla € k*\0},
i) {la;2m,mn —m]} U{l(s,1);0,mn]|(s,) € k2\{0, a}}.

It is clear what the module should be in the first two cases. The third
one implies M is either m copies of Q% (k) or Q" (k). In the fourth case, 7,
can be zero or non-zero. In this case, m = 5,/2 and n = @y, + n;)/n, for
the non-zero #, and the corresponding #,. In each case m can be de-
termined easily. Thus N g(M) determines M (up to isomorphism) in each
case. O

ExampPLE 5.2. Let M be a k[E]-module. Item 2) below shows that if the
hypothesis isotypical is removed from Theorem 5.1, then its conclusion is
no longer true.

1) Let M = (Lt?)2 and M’ = (Lﬁ )® be k[E]-modules. Then by Corollary
3.4, M and M’ are both of dimension 12 and they have the same rank
variety, namely, the line £{(0,1)}. However, [(0,1);4,4] is in N g(M) and
[(0,¢);6,3] is in N'g(M"). Thus their set of multiplicities are not the same.

2) Let M =Lg,p &Ly and M' = Ly, & Ly be two periodic k[E]-
modules that are not isotypical. Then by Corollary 3.4, M and M’ are both
of dimension 14, they have the same rank variety, and they have the same
set of multiplicities, namely,

{[(1,1);2,6], (0, 1);2,6] } U { [(s,1);0,7]|(s,]) € K2\k{(1, 1)} Uk{(0, 1)} }.

THEOREM 5.3. If M is a finitely generated isotypical k[Gl-module of
type Ly or induced from an isotypical k[E1-module of type Le», then M is
completely determined (up to isomorphism) by its set of multiplicities
NgM|g ) when considered as a k[E]-module.
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Proor. Let a = (a;,a2) be in k% and d = dim (M). Then the shifted
cyclic subgroup (u,) is isomorphic to Cy. Suppose that M is m copies of
Liast2 .y for some m and a in k?\0. By Corollary 3.4 (iv), we know
dim (M) = m(4(2n)) = 8mn, and for { = (at? + a1t3)", we have the iso-
morphisms

MlEg (Lg)m @ (k[E])mn, Ml(zb(,)%/ (k)Zm ® (k[cz])hmz,—m, Ml( ) (k[02])4wm.

g)
Hence
NEM|g) = {[a;2m,4mn —m]} U {[$;0,4mn]|B € k*\{a,0} }.

Using the information on the non-free part, we obtain m =#;/2,
n = 21y + 1, /4n;, and dim (M) = 8mn. Note that |G/E| = 2; then for

- "G ~ 2
M = Lyt party) T we have My Ly y)™

where m and a are in k*\0. By Corollary 3.4 (iv), we know
dim (M| g ) = 4mn = dim (M), and for { = (agzﬁ + altg)”, we have the iso-
morphisms

Mg = L™, My, (kY ® GCD"", My, KICD*™.
Thus
NeM|g) = {|a;4m,2mn —2m] } U { [B;0,2mn]| § € k*\{a,0}}.

Using the information on the non-free part, we obtain m = n, /4,
n =21y + /1, and d = 4mn. In each case, » and m, and hence M are
determined (up to isomorphism) by N g(M|z). O

ExampLE 5.4. If we drop the hypothesis isotypical, then Theorem 5.3
fails, see the items 1) and 2) below.

1) Let M =1Ly, ® Ly and M = Lz, @ Lys. By Corollary 3.4, we
know that they are both of dimension 32, and we have the isomorphisms

M= Ly, © KE) & Ly © KIE), M'|p=Lg,; ®kE® Ly © GED’.

Their rank variety as a module over k[£] is a union k{(1,1)} U .{(0,1)} of
two lines. In addition, their sets of multiplicities are both equal to
{1(0,€);2,15], [(c,¢); 2, 15]jc € k\0}

U{l(s,0):0,16]|(s,0) € k*\k{(1, 1)} U{(0,1)}}.
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2) Let M = Ly, 15 ©Lp 1§ and M’ = Lp 2 1§ ©Lyg 1§ Since |G/E| =2,
we have the isomorphisms

Mig= Ly, e Lg?  and M= (Lgef & Ly

By Corollary 3.4 (ii), we know that M and M' are of dimension 28, and their
rank variety as a module over k[E] is the union of two lines, namely,
kE{1,1)} UKk{(0,1)}. In addition, their sets of multiplicities are both equal to
the set

{100,¢);4,12], ((c, ¢);4,12)|c € k\0}
U{1(s,0):0,14](s, 1) € F\k{(1, 1)} UE{(0, 1)} }.

3) There are non-isomorphic indecomposable k[G]-modules M and M’
such that their restriction to k[ E] are isomorphic, hence N g(M) = N g(M').
Let M = Ql(Ltf) and M’ = Lyz. We know that M "is of period 2, hence M is
not isomorphic to M’. They both are isomorphic to Lt% @ k[E] when re-
stricted to k[E].
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