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Some Remarks on Uniqueness and Regularity
of Cheeger Sets

V. CASELLES (*) - A. CHAMBOLLE (**) - M. NOVAGA (**%)

ABSTRACT - We show that generically the subsets of RY with finite volume have a
unique Cheeger set, in the sense that there always exists a nearby set which has
a unique Cheeger set. We also prove that Cheeger sets are C'!, when the am-
bient set is C1!.

1. Introduction.

Given a nonempty set Q C RY with finite volume, we call Cheeger
constant of Q the quantity

P(F)
(1) hg = 11}1212 Wa
where |F'| denotes de N-dimensional volume of ¥, P(¥") denotes the peri-
meter of F' [5], and the minimum is taken over all nonempty sets of finite
perimeter contained in Q. A Cheeger set of Q is any set G C Q which
minimizes (1).
For any set F' of finite perimeter in R, let us define

_ P(F)
i]«" = W .
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Notice that for any Cheeger set G of Q it holds g = &g, as a consequence
G is a Cheeger set of Q if and only if G solves the minimum problem (whose
value is zero):

2) min P(F) — holF|.
FCQ

Finding the Cheeger sets of a given set Q is, in general, a difficult
task. This task is simplified if Q is a convex set and N = 2. In that case,
there is a unique Cheeger set and is given by QFf @ Bp where
QF .= {x € Q: dist(x, Q) > R} and R > 0 is such that |QF| = zR? [2, 23]
(we denote by X @Y the set {x+y:2 € X, y € Y}). In particular, we
observe that the Cheeger set of Q is convex. Both features, uniqueness
and convexity of the Cheeger set are due to the convexity of Q2 (a simple
counterexample is given in [23] when 2 is not convex).

The uniqueness of the Cheeger set inside bounded convex subsets of
RY was proved in [13] when the convex body is uniformly convex and of
class C?, and in [1] in the general case. In the convex case, the C!! reg-
ularity of Cheeger sets is a consequence of the results in [18, 19, 28].
Moreover, a Cheeger set can be characterized in terms of the mean cur-
vature of its boundary: the sum of the principal curvatures being bounded
by the Cheeger constant (see [17, 6, 23, 2] for N =2 and [3, 1] for the
general case).

Let us comment on the role played by the Cheeger constant in other
contexts. Given an open bounded set Q C R with Lipschitz boundary and
p € (1, 00), the Cheeger constant of 2 permits to give a lower bound on the
first eigenvalue of the p-Laplacian on Q with Dirichlet boundary condi-
tions. Indeed, if we define

J|VolP da
3) Ip(Q) = O#ren;?)(g) W
then
@) (@) > (%)p

This result was proved in [15] when p = 2 and extended to any p € (1, c0) in
[21]. When p = 1 the first eigenvalue of the 1-Laplacian is defined by

[|Dv|+ [ |v|dH !
0Q

(5) () =

)

min
04veBV(Q) J |v| de
Q
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where BV (Q2) denotes the space of functions of bounded variation in Q. Then
41(Q) = hg and both problems are equivalent in the following sense: a
function u € BV (L) is aminimum of (5) if and only if almost every level set is
a Cheeger set (see [22]). These results have been extended in several di-
rections, in particular, using weighted volume and perimeter [11, 7] and for
anisotropic versions of the perimeter [24]. Let us also recall that Cheeger
sets are related to the global behavior of solutions of the time-dependent
constant-mean-curvature equation under vanishing initial condition and
Dirichlet boundary data [26]. Finally, we mention an interesting inter-
pretation of the Cheeger constant in terms of the max flow min cut theorem
[27, 20].

The plan of the paper is the following: in Section 2 we show the ex-
istence of the maximal and the minimal Cheeger sets, inside any set
Q c RY of finite volume. In Section 3 we prove that there exists a unique
Cheeger set, up to arbitrarily small perturbations of Q. Finally, in Section
4 we show that Cheeger sets are always of class C''!, out of a singular set of
dimension at most N — 8, when  is also of class C11. In Remark 4.2, we
point out that the uniqueness and regularity results can be extended to
minimizers of (2), with kg replaced by a generic 1 > hg.

2. Maximal and minimal Cheeger sets.

DEFINITION 2.1. Let Q be a measurable set in RN of finite volume. We
say that a Cheeger set X C Q is a maximal Cheeger set if Y C X for all
Cheeger sets Y C Q. We say that X is a minimal Cheeger set if either Y O X
or Y NX =0 for all Cheeger sets Y C Q.

LEmMA 2.2.  Let X, Y be two Cheeger setsin Q. Then X UY and X NY (if
non-empty) are also Cheeger sets in Q.

ProoF. Since X,Y are Cheeger sets, we have
PXUY)+ PXNY)S PX)+PY)=ho(|X|+|Y]) = ho(XUY|+|XNY).
Now, using that

PXNY)
= >
XNY]| 2 ha

we have that
PXUY)<holXUY]|.
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As aconsequence X U Y is Cheeger, hence P(X UY) = ho|X U Y|. Then, we
deduce that PX NY) = ho|X N Y|, that is X N Y is also a Cheeger set. [

As a consequence of Lemma 2.2, we obtain:

LemMaA 2.3.  There exists a maximal Cheeger set Cyax C Q. Moreover
Chnax 18 a bounded set.

The second assertion easily follows from standard density estimates for
solutions of (2): there exists p, > 0 and J > 0 such that if p<p,, either
|B,(x) N Crax| > 0, or there exists p' < p with |By () N Crax| = 0, see [4]. In
particular, it shows that the set of points where C,,x (or any other Cheeger
set of Q) has Lebesgue density zero is an open set. This is not true for the
points of density one, at least if 2 is not open, as shown by the example of a
set 2 with empty interior.

LEmMA 2.4. Let X,Y be two Cheeger sets in Q. Assume that X 1is
minimal, that is, it contains no other Cheeger set inside. Then either X C'Y
or X NY = 0. In particular, two different minimal Cheeger sets are dis-
joint.

Proor. If X NY isnonempty, thenitis also a Cheeger set contained in
X. Since X is minimal, we have X NY = X, thatis X C Y. O

Recall that, by the isoperimetric inequality, there exists a constant
o = a(Q) > 0 such that any Cheeger set in 2 has volume greater or equal
to a.

LEmMA 2.5.  There are minimal Cheeger sets in Q and they are finite in
number. In particular, Cheeger sets of minimal volume are minimal
Cheeger sets, and any Cheeger set contains a minimal Cheeger set.

Proor. Consider the problem min{|X|: X is a Cheeger set of {Q}.
Then any minimizing sequence has a subsequence converging to a set, say
X, such that X is a Cheeger set of minimal volume. By Lemma 2.2, the set
X does not intersect any other Cheeger set, therefore is minimal. Since
any of such sets has a volume > ¢, there are only finitely many of them. To
prove the last assertion, we just take a minimal volume Cheeger set
between the ones contained in the given Cheeger set. O
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REMARK 2.6. If Qis an open set and C'is a minimizer of (2), by classical
regularity results [25] we know that (9C \ X) N Q is analytic, where X' is a
closed singular set of dimension at most N — 8. Moreover, if Q is of class
C™1, then C is a minimizer of a prescribed curvature problem with cur-
vature in L* [8], hence 9C \ X'is of class W2? for all p < oo (see also [29] for
the case N = 3).

REMARK 2.7. By aresult of Giusti [17], an open set X C Qis a minimal
Cheeger set iff X has finite perimeter and there is a solution of the ca-
pillary problem in X (with vertical contact angle), i.e. there exists a vector
field z : X — RY such that |z|<1 and — divz = he.

REMARK 2.8. The computation of the maximal Cheeger set has been
the object of recent interest [12]. By adapting the proof of Proposition 4 in
[3] one can prove the following result. Let 22 be a bounded subset of RN
with Lipschitz continuous boundary, and let u € BV(Q) N L*(Q) be the
solution of the variational problem

6) @;: min {/|D“ +%/(u —17%de + / || dHNl}.
weBV(Q)NL2(Q) 2
e 2 o0

Then 0 <u < 1. Let E; := {u > s}, s € (0,1]. Then for any s € (0,1] we
have

(7) PE,) — i1 — $)|E;| < P(F) — /(1 — 3)|F|

for any F' C Q. If 2 > 0 is big enough, indeed greater than 1/||y,||, where

xoll = maX{ / uyode : ueBV(RY), /|Du\ gl},
Q

RY

then the level set {u = |||} is the maximal Cheeger set of Q. In parti-
cular, the maximal Cheeger set can be computed by solving (6), and for that
we can use the algorithm in [14].

3. Uniqueness of Cheeger sets up to small perturbations.

We prove that the Cheeger set is unique, up to arbitrarily small per-
turbations of the ambient set Q.
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THEOREM 1. Let Q@ C RY be an open set with finite volume. Then, for
any compact set K C Q there exists a bounded open set Qg C Q such that
K C Qg and Qk has a unique Cheeger set.

Proor. By Lemma 2.5, we know that Q has a finite number of dis-
joint minimal Cheeger sets. Let C be a minimal Cheeger set of Q, let Q
be any open set such that K C Qcc Q, and let Q¢ := CU Q. Notice that
C is also a (minimal) Cheeger set in Qg, and we want to show that it is
the only one. Indeed, let D be a Cheeger set in Qk, then by Lemma 2.4
either D D C or DN C = (. The latter cannot happen, since in this case
we would have D C Qg \ C C Qcc Q, but the distance of D from the
boundary of 2 cannot be positive, otherwise we could decrease the
quotient P(D)/|D| by rescaling D with a factor larger than one. It then
follows D D C. By Remark 2.6 there exist singular sets X¢ C 9C and
2p C 9D, of dimension at most N — 8, such that A¢ := (0C \ Z¢) N Q2 and
Ap = (0D \ Zp) N Q2 are both analytic solutions of the geometric equa-
tion (N — 1)H = ho, where H denotes the mean curvature. As a con-
sequence, since HN YA NAp) > HYL(OC \ f)) NQ) >0, by analytic
continuation we get Ap = A¢. More precisely, assume by contradiction
that we can find & € Ac NAp such that Ac N B,(&) # Ap N B,(x) for all
p > 0. Letting T be the tangent hyperplane to 9D at %, we can write 0D
and 9C as the graph of two smooth functions v* and v,, respectively, over
T N B,(&) for p > 0 small enough. Identifying 7' N B,(x) with B, C RN_I,
we have that v,,v* : B, — R both solve the equation

®) a2 g,

\/1+ [Dvf?

Moreover, it holds v, > v*, v.(0) = v*(0) and v.(y) > v*(y) for some y € B,.
Let B be an open ball such that B C B,, v, > v* on B and v.(y) = v*(y) for
some y € OB. Notice that, since both v* and v, belong to C*(B) N C'(B), the
fact that v.(y) = v*(y) also implies that Dv,(y) = Dv*(y). In B, both func-
tions solve (8). Letting now w = v, —v*, we have that w(y) =0 and
Dw(y) = 0, while w > 0 inside B. For any « € B we have

0 = div (D¥(Dv.(x)) — D¥(Dv*(x)))

1
= div ((/DZ&”(DU* () + t(Dv.(x) — Dv* (x)))dt) Dw(m)),
0

where ¥(p) = 1/1+ |p|2, so that w solves a linear, uniformly elliptic equa-
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tion with smooth coefficients. Then Hopf's lemma [16] implies that
Dw(y) - vg(y) <0, a contradiction. Hence A = Ap, which is equivalent to
C=D. O

REMARK 3.1.  Notice that, given any open set Q with finite volume, for
alle > 0, we can find a set Q, C Q such that |Q\ Q.| <eand Q, has a unique
Cheeger set. Indeed, considering as above a minimal Cheeger set C C Q,
we can define

Q, = Q\ U Br(q)v

qeQNNQ\C

where 7(q) > 0 is such that B, C 2\ C and

Z Q) <e.

geQNNQ\C

Let D be a Cheeger set in Q, different from C, then |D \ C| > 0. By the
regularity result in Remark 2.6, it follows that D \ C has nonempty interior,
which is impossible by the construction of Q,.

We can require that also Q, is open but the construction is a bit more
complicated. First, we need to remove from Q a small closed ball inside
each minimal Cheeger set different from C. This ensures that any Cheeger
set C’ in the new set must contain C. Then, we remove from Q a (possibly
countable) union of closed balls contained in 2\ C, each one touching a
connected component of 9C N Q.

REMARK 3.2. For a general open set 2, one may also consider a dif-
ferent notion of Cheeger set, based on the following definition of peri-
meter:

Po(E) = sup{/ divedr : ¢ € CcHQ, RN), |¢| <1,dive € LOC(Q)},
E

which coincides with the lower semicontinuous relaxation of the usual
perimeter restricted to the compact subsets of Q. Notice that such no-
tion of Cheeger set gives a higher Cheeger constant of 2, which still
verifies (4), and it coincides with the classical notion if, for instance, Q is
the subgraph of a continuous function near each point of its boundary.
We observe that Theorem 1 remains true also with this definition of
Cheeger set.
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4. Regularity of Cheeger sets in regular domains.

We now show that each Cheeger set of Q is of class C11, if Q is also of
class C11.

THEOREM 2. Let Q be a bounded open set with boundary of class C'1.
Then any Cheeger set C of Q has boundary of class CY, out of a closed
singular set X C 0C of dimension at most N — 8.

Proor. We know that any Cheeger set is a solution of the variational
problem (2). Let C be a Cheeger set of Q, and let xy € (OC \ 2) N 02, where
the singular set X is as in Remark 2.6. We may assume that near x,, 022 is
the graph of a C'! functionf : Bs, — R where By, is an (N — 1)-dimensional
ball centered at x of radius 2r. We may as well assume that 0C is the graph
of u : By, — R. We know that u € W2P(Bs,) for any p < oo, in particular
u € C'*(By,) for any o< 1. We observe that « is a solution of

9) min{ /<\/ 1+|Vol* + hg?}) dx: ve BV(B)),v>f, vy, :ua&}.

B,

The result follows by adapting the proof of regularity for the obstacle

problem in [9]. Indeed, since O is of class C'!, Vf has modulus of con-

tinuity o(r) < rr, k > 0. Letting L(x) := f(x¢) + V[ (xo) - (x — xg), we have
L(x) — xr® < fa) < u(x) x € B,.

We shall prove that

(10) u(@) < L@) +C*  x€ B,

for some constant C > 0. We shall denote by C a positive constant that may
vary from line to line. Consider w = u — (L — x12) > 0, and observe that u
satisfies the equation

(11) div| % | 4hg >0 zeB,

1+ [Vul

with equality in D = {x € B, : u(x) > f(x)}. Due to the regularity of u, (11)
can be written

(12) - aij(ac)amju +hg >0 x € B,,
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where a;; € C*(B,) are uniformly positive. It follows that also w satisfies (12)
(and, still, with an equality in D) . Let now w; be the solution of

— ;j(@)Dyn +hg = 0 weB,,

with w; | oB, = w| ap, > 0. Observe that w; < w. Without loss of generality,

we assume that xyp = 0. Let y = hg/ (m}gn Tr(A(ac)), where A(x) = (a;(x)),
TEDL) X

and Q(x) = (;)/2)(|ac\2 —72). Then, @ is a subsolution of (12) in B,, with

Qlyp, = 0, so that @ < wj in B,. In particular, we have that

_ Tr(A(x))
_ai.i(x)aﬁcixj(wl -Q) = ho (W - 1) x € B,,

and the right-hand side of this equation is bounded by Cr* (since A(x) is
Hoélderian of exponent «). We have

wi(0) < wag) = uxo) — Lao) — 1r%) = flag) — (L) — k%) = Kr?,

while, sinece w; — @ > 0, it satisfies a Harnack inequality [16, Thms 9.20
and 9.22] in B, 3:
wi(x) - Q@) =Cinf(w - Q)+ Cr?

< Cuoy (o) + c% 24O <O,

hence also w;(x) < Cr?, for any x € B, > (for some constant C > 0 which
does not blow-up as » — 0).

Let now wy :=w — w;. The function we satisfies 0 < w, <w — @,
welyp, = 0, and

(13) — () Dy > 0 x € B,,

again, with an equality if « € D. Consider & € B, a point where w; reaches
its maximum: then, either wq(x) = 0, in which case wy = 0 inside B,, or
we () > 0, in which case we must have & ¢ D, since (13) is satisfied with an
equality in D (it could be that ws is constant and maximal in D, in which
case we may always assume & € 9D N B,.).

Thus, either we = 0 in B,, or u(x) = f(x). In particular, in the latter
case, we find that for any « € B,,

wa () < wa(X) < w(@) — Q&) = u(®) — (L(®) — xr”) + % (0 — |z
< f(®) = £(0) = Vf(0) - &+ Cr* < O,

so that w(x) = w; (@) + we(x) < Cr?ifx € B, /2, Which shows (10). O
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REMARK 4.1.  Since the Cheeger sets of 2 are solutions of (2), if Q is of
class C'! and C is a Cheeger set of Q, we have (N — 1)H(x) < hy for a.e.
x e oC.

REMARK 4.2. We point out that Theorems 1 and 2 extend also to
minimizers of (2), with &g replaced by any 1 > hg (see [3]).
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