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GAGA for DQ-Algebroids

Hou-Y1 CHEN (¥)

ABSTRACT - Let X be a smooth complex projective variety with associated compact
complex manifold X,,. If . Zx is a DQ-algebroid on X, then there is an induced
DQ-algebroid . Zx,, on X,,. We show that the natural functor from the derived
category of bounded complexes of . Zx-modules with coherent cohomologies to
the derived category of bounded complexes of . Zx, -modules with coherent
cohomologies is an equivalence.

Introduction.

Let X be a projective scheme over the complex number field C with
associated complex analytic space X,,. Serre’s GAGA paper [11] asserts
that the category of coherent sheaves on X is equivalent to the category of
coherent analytic sheaves on X,,.

We consider the case where X is a smooth algebraic variety over C or a
complex manifold. In [8], the authors defined a DQ-algebra . Zx on X as a
sheaf of C .= C[[%]]-algebras locally isomorphic to (7 x[[%]], x) where x is
a star product. The authors also defined a DQ-algebroid as a C"-algebroid
stack locally equivalent to the algebroid associated with a DQ-algebra. If
7y is a DQ-algebroid on X, then we have the notion of . Zx-modules. We
denote by Mod(.Zx) the category of .Zx-modules and by DP( 7y) its
bounded derived category. We will recall these notions and their proper-
ties from [8].

If (X, 7x) is a smooth variety over C endowed with a DQ-algebroid,
then there is an induced DQ-algebroid . Zx, on the complex manifold
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Xan. Then we construct a functor f*: Dlgoh(,,/%x) — Dl?oh(,/éxan), where
D]é’oh(./éx) denotes the full triangulated subcategory of the bounded de-
rived category DP(_7x) with coherent cohomologies and similarly
D]é’oh(./éxah) denotes the full triangulated subcategory of the bounded
derived category Db(.,/%xan) with coherent cohomologies. By using
Lemma 1.2, Corollary 1.4 and some results in [8], we prove the following

theorem:

MAIN THEOREM (See Theorem 4.12). Assume that X is projective.
Then the functor f*: D° (#x) — D", (Zx,.) is an equivalence.

This paper is organized as follows: In section 1, we review Serre’s
GAGA theorem and translate this theorem to the derived version. In
section 2, we review some notions and results of DQ-modules from [8]. In
particular, Remark 2.5 and Finiteness theorem (Theorem 2.13) are crucial
for the paper. In section 3, we show how to induce an analytic DQ-algebroid
from an algebraic DQ-algebroid on a smooth variety. In section 4, we prove
the main theorem.

Throughout this paper, all varieties (or schemes) are over C if not
otherwise specified.

1. Review on the GAGA Theorem.

Let X be a scheme of finite type and let X,, be the associated complex
analytic space. We denote by Mod(?x) (resp. Mod(x,,)) the category of
sheaves on X (resp. Xun). We also denote by Mod.n(7x) and Modeon(x,,)
the full subcategories of Mod(?x) and Mod(“x,,) consisting of coherent
sheaves, respectively. There is a continuous map ¢ : X,, — X of the un-
derlying topological spaces and there is also a natural map of the structure
sheaves ¢~ 100y — @, . To .7 € Mod(7x), one associates its complex
analytic sheaf 7™ := Ox, ®,1,, ¢ L7 € Mod(“x, ). Hence we obtain a
functor:

(%) Yx : Mod(©x) — Mod(“x,,).

If .7 is a coherent sheaf, then .7 ?" is also coherent.

The following theorem for a projective scheme is proved in Serre’s
famous paper GAGA (see [11]) which is generalized by Grothendieck for a
proper scheme (see [6 XII]).
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THEOREM 1.1. Let X be a projective scheme. Then the functor ()
mduces an equivalence of categories

MOdcoh((/J/\‘X) - MOdcoh(éann)-
Furthemore, for every coherent sheaf .7 on X, the natural maps
HX;.7) = H'Xu; 7™

are isomorphisms, for all 1 > 0. O
The following lemma is Theorem 2.2.8 in [1].

LEMMA 1.2. Let A" and B be thick subcategories of abelian cate-
gories A and B, respectively, and let @ : A — B be an exact functor that
takes A’ to B. Assume furthemore that the following properties are
satisfied:

1. A and B have enough injectives,
2. @ is an equivalence of categories when restricted to A" — B
3. @ induces a natural isomorphism

Ext),(F,G) = Extiy(d(F), &(G))
forany F,G € A" and any 1.

Then the natural functor @ - Db,(A) — Db,(B) nduced by @ is an
equivalence of categories.

Proor. (i) We prove that the functor Pis fully faithful, i.e., for any F'°,
G* e Dz,(A), @ induces an isomorphism
(1.1) Homyy, ((F",G*) = Homyy, (5 (S(F"), (G*).

We’ll use a technique known as dévissage to prove it. The dévissage tech-

nique is the induction on the number n(E*) defined as
n(E*) = max {j — i|H/(E*) # 0, H(E*) # 0}.

Hence we shall prove (1.1) by induction on N = n(¥*) + n(G*). If N = — oo,
then one of F'* or G* is the zero complex, so there is nothing to prove. If
N =0, then there exist ¥ € A',G € A’ such that F'* = F[a] and G* = G[b]
for some a,b € 7. Then

. o\ _ b—a
Homy, ((F", G*) = Homp, (Flal, GIb) = Ext’;“(F, )
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and

Homyp, (@), $(G*)) = Homyy, 5 ((Flal), SGIb])
= Extly “(&(F), d(G)).

Hence (1.1) follows from property 3 above.
Assume that @ induces an isomorphism

Homyy, ((F",G*) = Homy, (5 (H(F"), H(G*))

for all F*,G* ¢ Dbr(.A) with n(F*) + n(G*) <N, and let F'*, G* be objects of
DZ/(A) with n(F*) + n(G*) = N > 0. We may assume that n(G*) =N >0
and that G = 0 for i <0, and H(G*) # 0.

Let G'* be the complex with single non zero object H°(G*) in degree
zero. From the morphism G'* — G°, there exists a distinguished triangle
G" — G'* — G* — G"°[1]. By the long exact cohomology sequence, one
deduces n(G"*)<n(G"); also, from the assumption, n(G'*) = 0 <n(G").
From the long exact sequence of Hom’s; the five-lemma and the induction
hypothesis, we conclude that

Homy, (,(F*, G*) 2 Homyy (5 ((F*), HG"))

which is what we needed to prove that d is fully faithful. (The case when
n(G*) = 0 but n(F'*) > 0 follows in a similar way.)

(ii) Next, we shall prove that the functor & is essentially surjective, i.e.,
any object G* of Dgz(B) is isomorphic to an object of the form &(F*) for
some F'* ¢ Db«(.A). We prove this by induction on n = n(G*). The case
n = —oo is trivial, and » = 0 follows from property 2.

So assume 7 > 0, and as before construct a distinguished triangle
G" — G'* — G* — G"*[1]where G’* = H*(G*) # 0 and we assume that G*
is zero in degrees <0. Since @ is an equivalence of categories between A’
and B, we can find an F'* € DE}(A) such that ®(F'*) =~ G'*. Also, by in-
duction hypothesis, we can find an F""* ¢ DP,(A) such that &(F"*) ~ G"*.
Since we proved that @ is fully faithful, we can find a map F”* — F’*® whose
image by @ is the side of the distinguished triangle constructed before.
Again, we have the distinguished triangle F"* — F'* — F* — F"°[1].
Since @ is a derived functor, it is a triangulated functor. Hence, we see that
aﬁ(F') is isomorphic to G*, as required. O

The following proposition is well known (see, e.g., [9]).
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ProrosITION 1.3. Let .7 be a sheaf of rings on a topological space X.
Then the category Mod(72) of .72-modules is a Grothendieck category. In
particular, Mod(.22) has enough injectives.

Let X be a scheme of finite type. Set A := Mod(“x), B := Mod(7x, ),
A’ = Modn(7x) and B := Modo(x,,). We also set D (X) := D (A)
and Dlgoh(Xan) = Db/(B). Clearly, A" and B’ are full thick subcategories of A
and B, respectively.

As an application of Lemma 1.2, we have the following.

COROLLARY 1.4. Let X be a projective scheme. Then the functor Y'x of
(x) induces an equivalence (we keep the same notation)

Yy : D2 (X) = DY (Xan).

Proor. Weshall apply Lemma 1.2. First, note that @y ,isaflat @x .-
module for each x € X. Hence the functor Yy : A — B is an exact functor.
Both A and B have enough injectives by Proposition 1.3. Hence condition 1
is satisfied and condition 2 is Theorem 1.1. To check condition 3, it is suf-
ficient to prove that

1.2) RHom(7, %) ~ RHom(7 ™, ™) for 7,% € A.

L

Since RHom(¥#, %) ~ RI'X,.7* ;X) ¥ and RHom(7 ", ) ~ RI' X,
L X

(7" ® "), where 7 * =R Zom (7 ,Ox) and (7 *")" =R A om,

o
(7, Ox,.), we reduce (1.2) to the following isomorphism

(1.3) RIX,.7) ~ RI'(Xun,.7™), where .7 € D" (X).

coh

Now, there is a morphism RI'(X,.7) — RI'(Xa,.7 *) for .7 € D]cooh(X) and
it is an isomorphism by Theorem 1.1. Hence the result follows. O

2. Review on DQ-modules (after K-S).

In this section, we recall some notions and results from [8].

Algebroid.

In this subsection, we denote by X a topological space and by K a com-
mutative unital ring. If A is aring, an A-module means a left A-module. Recall
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that the notion algebroid was first introduced by Kontsevich [10], see also [2]
and [7]. A K-algebroid . Z on X is a K-linear stack locally non empty and such
that for any open subset U of X, two objects of . Z(U) are locally isomorphic.
Let 72 = {U;},; be an open covering of X. In the sequel, we set
Uij =U;N U]', Uijk =U;N Uj N Uy, ete.
Consider the data of

{ a K-algebroid .Z on X

@1 o; € .2(U) and isomorphisms g¢;; : 0']'|U1-]~ — iy, -

To these data, we associate:

o 7; =& ndg(a;),
o fij - Ajly, — Aily, the K-algebra isomorphism a+— ¢;; 0o a o % ,
® a;j, the mvertlble element of .Z;(Uy) given by 9ij © Oji. © %k

Then:
2.2) {fij ofir = Ad(aip) o fik

@ik = fi(ae)ag.

(Recall that Ad(a)(b) = aba1).

Conversely, let .Z; be sheaves of K-algebras on U; (¢t €I), let
WK /Z]|U — A |U (t,j € I) be K-algebra isomorphisms, and let a;
1,5,k € I ) be 1nvert1b1e sections of .%;(Uj;) satisfying (2.2). One calls:

2.3) {Aitier {fiitijer {@ijr }i j e
a gluing datum for K-algebroids on 77.

THEOREM 2.1 ([6]). Assume that the topological space X is para-
compact. Considering a gluing datum (2.3) on 7. Then there exist an
algebroid .7 on X and {a;, p;;}i jer as in (2.1) to which this gluing datum is
associated. Moreover, the data (7, a;, 9;;) are unique up to an equivalence
of stacks, this equivalence being unique up to a unique isomorphism.

In general, if a topological space X is not paracompact, for example for
algebraic varieties, then Theorem 2.1 may be false. Hence we need another
local description of such algebraic algebroids.

DEFINITION 2.2. Let .4 and .# be two sheaves of K-algebras. An
A~ ® . #-module ¥ is called bi-invertible if there exists locally a section w
of 4 such that Z3a—(@®Dwe ¥ and .#Z 3> d — (& @ Dw € ¥ give
isomorphism of . Z-modules and .#'-modules, respectively.
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Let 722 = {U,};.; be an open covering of X. Consider the data of

{ aK-algebroid . Z on X

@4 o; € AU).

To these data, we associate:
o 7 =& ndg(ay),
o Liji=THom 4, (Uj|U,~,-> ai|U_7,), hence Z;; is a bi-invertible . 7; ® ﬁ;/;_’P_
Jij i i .
module on Uj;.
e the natural isomorphisms a, 1 2 ® 4 Lj — L.

Hence we obtain:
2.5) {Aitier { %5 }ivjel’ {“zﬁfk}i, j,kel)

an algebraic gluing datum for K-algebroids on 7.

THEOREM 2.3 ([8] Proposition 2.1.13). Consider an algebraic gluing
datum (2.5) on 7. Then there exist an algebroid .2 on X and {a;, p;;}; jes
as i (2.1) to which this gluing datum is associated. Moreover, the data
(2,0, ;) are unique up to an equivalence of stacks, this equivalence
being unique up to a unique isomorphism.

For an algebroid .7, one defines the Grothendieck K-linear abelian
category Mod(.7), whose objects are called . Z-modules, by setting:

Mod(.%) := Fetg (2, Mod(Ky)).

Here Mod(Ky) is the K-linear stack of sheaves of K-modules on X, and
Fetx is the category of K-linear functors of stacks.

We have the well defined notion of tensor product for two K-algebroids
% and %, say ¢ @k ¢’. For a K-algebroid .4, Mod(# ®x .#°) has a
canonical object given by

A @ A% 3 (0,0 ) — Hom_,(d',0) € Mod(Ky).

We denote this object by the same letter . 2.

For K-algebroids . 7; (i = 1,2,3), we have functors:

@z, - Mod(#1 @k . Ay") x Mod( s @k A#3") — Mod(#; ®x . 2g")
and
Tom, ///1(-, ) : Mod(.7; ®k ./ng)()p x Mod(.7%1 ®x ,/ng) — Mod(. % ®x /ng)

In particular, we have
- ®_4 - Mod(.2°®) x Mod(.#) — Mod(Kyx)
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and
Tom_s(-,-) : Mod(_2)® x Mod(.2) — Mod(Ky).

Let Y be another topological space. Let f : X — Y be a continuous map
and let . Z be a K-algebroid on Y. We denote by f~1. 7 the K-linear stack
associated with the prestack & given by

&) = {(g,V); V is an open subset of Y such that f(U) C V and
o € 4(V)} for any open subset U of X,

Homg (0, V), (d, V")) = [(U,f L% om_,(a,d)).

Then f~1. 7 is a K-algebroid on X.

Notations: For the rest of this section, we denote by X a complex
manifold or a smooth variety and by C" .= C[[A]] the power series algebra.

Invertible (7x-algebroids.

DEerFINITION 2.4. A C-algebroid & on X is called an invertible 'x-
algebroid if for any open subset U of X and any o € 2°(U), there is a
C-algebra isomorphism £nd (o) ~ @.

We shall state some properties for invertible ?'y-algebroids.

Let & be an invertible “x-algebroid. Then for any o,¢’ € 2(U),
Fom(c,d’) is an invertible 7 ;;-module.

For two invertible “'x-algebroids 7’7 and Z. We denote by
P1 @y P2 the C-linear stack associated with the prestack whose objects
over an open set U is 1(U) x P(U), and FHom((o1,02), (0'1, o'z))
= Fom(oy, a'l) ®cy T om(oz, a’z). Then 7’1 ®., 7’2 is an invertible ©x-
algebroid. Note that the set of equivalence classes of invertible 'x-al-
gebroids has structure of an additive group by the operation - ®., -, and
this group is isomorphic to H?(X, %) ([4], [9D.

The following remark is due to Prof. Joseph Oesterle and is crucial for
the paper.

REMARK 2.5. For a smooth algebraic variety X as Zariski topology over
C, the group H*(X, %) is trivial. Hence any invertible 7 x-algebroid - is
equivalent to “'y.

We sketch the proof of it. Let K be the field of rational functions on X
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and let K be the constant sheaf with stalk the abelian group K*. Denote by
X, = {x € X|dim @x, = 1} (or the set of closed irreducible hypersurfaces
of X). Let x € X;, since X is a variety, the ring x ,, is a DVR with valuation
v, and quotient field K. Let 7, = (i,),(7) where ¢, : t — X and let U C X
be an open set, then 7Z,(U) = 0ifx ¢ U and Z,(U) = 7 if x € U. Consider
the sheaf @@ 7, then ( é ZO(U) =P Z.,(U)= 7% Hence we can
xeXy reX, reXy
define a morphism of sheaves

v: Ky — @ e
reX,
by: v(f) = (x(f))pex,nv Where U is a nonempty open subset of X and
f € Kx(U) = K*. Then one has an exact sequence

x W

0— 0% 5Ky =P 7Z:—0

reXy

where w is the natural morphism. Since Ky is constant, it is a flabby sheaf
for the Zariski topology. On the other hand, the sheaf @ 7, is also flabby.
It follows that H/(X; %) is zero for j > 1. veX;

Letf : X — Y be a morphism of complex manifolds or smooth varieties.
For an invertible “'y-algebroid #’y, we denote by f*7’y the C-linear stack
on X associated with the prestack whose objects on U are the objects of
(f*7y)U) and Zom(o,d') = Ox Q1. FHom, (a,0). Then f*7y is
an invertible 7'x-algebroid.

Star-products.

Let X be a complex manifold (or a smooth variety). We denote by
Ox : X — X x X the diagonal embedding and we set Ay = dx(X). We de-
note by x the structure sheaf on X, by Qx the sheaf of differential forms
of maximal degree and by @y the sheaf of vector fields. As usual, we denote
by Zx the sheaf of rings of differential operators on X. Recall that a bi-
differential operator P on X is a C-bilinear morphism @y x @x — Oy
which is obtained as the composition d5' o P where P is a differential op-
erator on X x X defined on a neighborhood of the diagonal and ¢ is the
restriction to the diagonal:

P(f,9)@) = (P(@y, 03 Oy, D) @1)G@2))] o

Hence the sheaf of bi-differential operators is isomorphic to ¥y ®., Zx,
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where the both &y are regarded as ?y-modules by the left multi-
plications.

DEFINITION 2.6. A star algebra on “x[[i]] is a C"_bilinear sheaf

morphism
*: Oxl[R]] x Ox[[R]] — O x[[R]]

satisfying the following conditions:
(@) the star product makes @x[[%]] into a sheaf of associated unital Cch-
algebra with unit 1 € @’x.

(ii) there is a sequence P; : @x x (Ox — (@x of bi-differential opera-
tors, such that for any two local sections f,g € @'x one has

frg=Ffg+d Pif.gh'.
=1
Note that f xg =fg mod %, and P;(f,1) = P;(1,f) =0 for all f and
1> 0. We call (@x[[%]], %) a star algebra.

DQ-algebras.

DEFINITION 2.7. A DQ-algebra .Z on X is a ("-algebra locally iso-
morphic to a star-algebra (“x[[%]], x) as a Ch—algebra.

Clearly, a DQ-algebra is a sheaf of %-adically complete flat C"-algebra
on X satisfying .Z/h.# ~ 7x. Note also that for an algebraic variety X, a
DQ-algebra . 7 is called deformation quantization of 7k in [3] and [12].

REMARK 2.8. For a smooth projective variety X, there exists a DQ-
algebra . Zx on X. For details, one refers to [3].

DQ-algebroids.

DEFINITION 2.9. A DQ-algebroid . Z on X is a C"-algebroid such that
for each open set U C X and each g € .Z(U), the Ch—algebra T om_,(0,0)
is a DQ-algebra on U.

Let .Zx be a DQ-algebroid on X. For an .Zx-module .7, the local
notions of being coherent or locally free, etc. make sense.
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The category Mod(.Zx) is a Grothendieck category and we denote by
D(_7y) its derived category and by D°( Zx) its bounded derived category.
We also denote by D'goh(.,%x) the full triangulated subcategory of DP(_ %)
consisting of objects with coherent cohomologies.

Graded modules.

Let .Zx be a DQ-algebroid on X. Let us denote by gr(.Zx) the C-al-
gebroid associated with the prestack © given by

Ob(S(U)) = Ob(.#x(U)) for an open subset U of X,
Homg(o,0’) = Hom_,,(0,0")/hHom ,,(a,d") for a,0’ € .Zx(U).
Then it is easy to see that gr(_Zy) is an invertible ?'xy-algebroid and the left
derived functor of the right exact functor Mod(. Zx) — Mod(gr (. Zx)) given

by . % — 7 /h.7 is denoted by gr : D*(_Zx) — DP(gr (_Zy)).
The functor gr induces a functor (we keep the same notation):

2.6) gr: DV, (Zx) — D, (gr( Zx)).

The following lemma is in [8].

LEMMA 2.10. The functor gr of (2.6) is conservative (i.e., a morphism
m Dlgoh((féfX) 18 am isomorphism as soon as its vmage by gr is an 1iso-
morphism in D'é’oh(gr (Ax)).

Denote by Dp(C") := Dg,,(C") and DY(C) := Dy, (C) the full triangu-
lated subcategories of Db(Ch) and Db(C) consisting of objects with finitely
generated cohomologies, respectively.

Hence we have a well defined functor C @ . - : D}?(C") - D}’(C). As an
application of Lemma 2.10, we get the following.

L
COROLLARY 2.11. The functor C @i -: DAC") — DRC). is con-
servative.

Proor. Applying the functor gr in Lemma 2.10 to X = {pt}. |
The following proposition is in [8] which will be used in Theorem 4.2.

ProposiTiON 2.12. Let (X;,.7x,) be complex manifolds or smooth
varieties endowed with DQ-algebroids .7x, (1 =1,2,3).
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() Let 7; € D™(Ay,xxe ) (i =1,2). Then

L L
gr (71 ®. s, H'2) = T (1) Qgr( 1) 8T (F2).

(i) Let %; € D*(%x,xx.,,) (i = 1,2). Then

i+1

grR7Zom_»,(71, %) ~ R omgy( 1,)(gr (F21), 81 (%'2)).

Finiteness for DQ-kernels.

Recall that we have the following Finiteness theorem.

FINITENESS THEOREM 2.13 ([8]). Let (X,.Zx) be a compact complex
manifold or a smooth projective variety endowed with a DQ-algebroid
Ax. Let . # and ./ be two objects of Dlgoh(,,/yx). Then the object

RHom ,,(.7Z,.1") belongs to DR(C").

3. Analytization of a DQ-algebroid.

In this section, we denote by X a smooth algebraic variety. Let X,, be
the corresponding complex analytic manifold of X with continuous map

f:Xm— X
affine open covering of X. Consider the data:

a C-algebroid . Zx on X
o; € 4x(U,).

Then by Theorem 2.3, we have the following gluing data:

° /41 = g%d /5(01') :(K‘Ul[[h]]a‘)%)’
o fi: -’?gj|U,~j — ./{éi|Uij the C"-algebra isomorphism,
e a;;: invertible elements of Z;(Uy)

which satisfies:
{fij o fiy. = Ad(ayr) o fir

Qi it = fij( Qi) Wiji-

AAAAA

Since . #; =(C'y,[[1]], %;) is a star algebrafor each? =1, - - -, n, by definition,
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we have

fixigi =Ffigi+ > B(figdW
=

for ﬁ,gi S C7 = I'(U;,@x)and ﬂj : éU7 X (’?“'Ui — (/;'U;: is a bi-differential
operators for each j.

From the inclusion C; — C" := I'(U;, 7x,,), we can define a star pro-
duct x2" on the analytic sheaf @', to be

f;'an *gn g?n — f%an g?n + Z ﬁ?n( fian’ ggn)h] for fian’ g?n c C?n’
j=1

where 5" : @y, x @y, — 'y, is a bi-differential operators on the analytic
sheaf @y, for each j. Hence, we obtain the (analytic) star algebra
A5 =(Oy,[[1]], =) for each 1.

Therefore, we get the corresponding descent data on X,):

o AT =(Cy [T,

i
an . zan zan h_ s .
o fit Ay, — Ay, the Cl-algebra isomorphism,

o aif, the invertible element of . 2" (Uj;.)

and we obtain the DQ-algebroid . 7y, on X,, by Theorem 2.1 (note that X;,
is paracompact).

Hence for a DQ-algebroid . Zy on X, we have the induced analytic DQ-
algebroid . Zx,, on Xiy.

Furthemore,

A € MOd(f_l,/ZX R /égén)

Hence for a DQ-algebroid .Zx on a smooth variety X, we have the
functor f* 1= . Zx,, @p-1( 4 fH(+) : Mod(Zx) — Mod( Zx,,) which sends
A0 Ax, @p1( sy f 1 #). Denote by Modon(#Zx) and Modeon (- Zx,,) the
categories consisting of coherent .Zy-modules and .7y, -modules, re-
spectively. If .7 € Moden( 7x), then f*(.7) € Modcon(.%x,,)-

4. The main theorem.

In this section, we prove the main theorem of this paper. Let . Zx be a
DQ-algebroid on a smooth algebraic variety X.
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Flatness.

Let X, be the corresponding complex analytic manifold of X with
continuous map f : Xy, — X. First, we need the following lemma. The
following lemma over one point as a corollary of Theorem 1.6.5 of [8].

LemMA 4.1. The functor f*:Mod(.7x)— Mod( 7x,) constructed
above 1s exact.

Proor. We may assume that. 7Zx and . Zx, are DQ-algebras. We need
to show that B := . Zx_ , is flat over R := . Zx, for each x € X. Note that:

an ¥
(a) B has no 7i-torsion,
(b) By := B/hB =

(¢) B~ limB/h"B.
w

is a flat By := R/RR = 'x ;-module,

an,¥

Hence applying Theorem 1.6.5 of [8] to X = {pt}, one gets the result. 0O

From Lemma 4.1, one can see that the functor f*: Mod( 7Zx) —
— Mod(.“Zx,,) induces a functor (we keep the same notation):

friDP (#Zx) — DO (4x,)

Fully faithfulness.
Now we can prove the following theorem.

THEOREM 4.2. Let X be a smooth projective variety, then the functor f*:
D", (#x) — DV, (Zx,) is fully faithful.

ProoF. For any .7,/ € DY, (#x), we need to show that the
morphism
4.1) HomDEOh(. //;X)(.,,//l,!/f;-) — HomDth('/ AXW)( F ), 5

is a bijection. In order to show that the morphism of (4.1) is a bijection, it is
sufficient to show that the morphism

42)  RHompy (, (#,.4) — RHomy , (f*(/2),f(1)

h(' /ZX)

is an isomorphism. Since X is projective, by Theorem 2.13, the com-
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plexes RHongoh(. //}X)(.///dw/f/') and RHongoh(l/ZXan)( f2),f*(17)) belong
to D}’(‘Ch). Moreover, since X is a smooth variety and gr(.#x) is an
invertible @x-algebroid, gr(. Zx) is equivalent to ©x by Remark 2.5
and hence gr(-7Zx,) is equivalent to @x_. Thus, the equivalence
D°,(@x) = D°,(7x,) (Corollary 1.4) implies that the following
morphism

4.3) RHomDugo ¢ %X))(gr.,//z, gr./faﬂ)HRHomD.c,Oh(gT an,,))( fi(gr.Z),f*(gr.)")

n(gr

L
is an isomorphism in D}]?(fC). Applying the functor C @ - to (4.2) and using

L
Proposition 2.12, we get (4.3). Since the functor C ® . - is conservative by
Corollary 2.11, the morphism of (4.2) is an isomorphism and the result
follows. O

COROLLARY 4.3. Let X be a smooth projective variety, then the natural
Sunctor f* : Modeon(7x) — Modeon(2Zx,,) is exact and fully faithful.

For eachn > 0, we denote by Mod(. Zx /&". Zx) (resp. Mod(.Zx,, /1". 7x,.))
the full subcategory of Mod(.7Zx) (resp. Mod( 7x,, )) consisting of objects .7
such that #" : .7 — _# is the zero morphism.

Similarly, we denote by Modon (. Zx /1", 7x) (resp. Modeon(Zx,, /7" 7x,.))
the full subcategory of Modg.n(Zx) (resp. Modn(Zx, )) consisting of
objects .7 such that k" : .# — _# is the zero morphism for each n > 0.
Therefore, we have a functorf,; := f*|vioq,, 7y /i 2y * M0deon(#Zx /1" #x) —
— Modeon(#x,, /1" 7x,,) for each n > 0.

Note that for » = 1, the category Mod,on(.Zx/ it Zx) ~ Modeo, (@x) is
equivalent to the category Modcon(Zx,,/ hl.,n/éxan) ~ Modeoh(“x,,) by
Theorem 1.1.

COROLLARY 4.4. Let X be a smooth projective variety, then the functor
s Modeon(2Zx /1" 2x) — Modeon(2x,, /B".7x,,) is exact and fully faith-
ful for each n > 0.

E'ssential surjectivity.

Denote by X a smooth projective variety. Next, we shall prove that the

functor f*: Dlgoh(. Ax) — D'goh(. #x,.) 1s essentially surjective.

We first prove that the functor f;: Moden (. Zx /,h" 7x) —
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— Modeon(7Zx,, /1" 7x,) is essentially surjective for each n > 0. We
need the following lemma.

LEMMA 4.5. Let A" and B’ be thick subcategories of abelian categories
A and B, respectively. Let @ : A — B be an exact functor which takes A’ to
B and such that the matural functor (we keep the same motation)
@ :D%(A) — D%(B) mduced by @ is fully faithful. Consider an exact
sequence in B

(*) 0—dM)— N — dM") — 0,

with M',M" € A" and N € B.
Then there exists a commutative diagram

0 — (M) — (M) — P(M") —— 0
| | |
0O — (M) — N —— d(M") —— 0

for some M € A’ (note that the middle arrow is an isomorphism,).

ProOOF. Since (*) is an exact sequence, we get the morphism
v: ®M") — dM)[1] = &M'[1]) in DL (B). Since @ is fully faithful, there
exists a morphism u : M” — M'[1] in Dg/(A) such that v = @&(u). Consider
the distinguished triangle

M M —L L
in DY, (A) induced byuwith L € D (A). Then from the long exact sequence
- —H'M") — HMN) — HL) — HM'1) — -,

we get H'(L)=0 for i+#—1. Hence L[—1] is isomorphic to
H(L[-1)) € A’ in D%(A). Denote by M = H(L[ — 1]), then from the
morphism of distinguished triangles

(M) —— (M) —— d(M") —— D(M'[1])

H l | H
O

M)y —> N — &M') —— d(M'[1

we obtain N ~ @(M) and the result follows. O
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Set A = Mod (/Zx/hn///x), .A/ = MOdcoh (./Zx/hn./ﬁx), B:=
:= Mod(7x,, /R".7x,,) and B = Modn( 7x,, /1" 7x,,). We shall apply
Lemma 4.5.

THEOREM 4.6. The functor
v s Modeon (#Zx / 1" Zx) — Modeon(Zx,, /1" 7x,,)

1s essentially surjective for each n > 0.

Proor. We shall prove this by induction.
When » = 1, it is Theorem 1.1.
We shall prove the theorem for n > 1.
For any . 7™ € Mod.o( ?x,, /1" 7x,,), consider the exact sequence

0— 2t — " — 2 [ — 0

where 7.7 € Moden( #x,, /h”fl.ﬁ/éxm) and . Z* |h.#* € Modeon(Px,,)-
Denote by .#{" =h.#*" and by .73 =.7#*/h.7#*. By induction
hypothesis, there exists . 71 € Modon(.Zx/ fz”_l,/ZX) suchthatf: (#1) ~
~ _73". On the other hand, by Theorem 1.1, there exists. Z2 € Modon(7x)
such that f;"(.#2) ~ .73". Since f*| , : A — Bis exact by Lemma 4.1 and the
functor DY (A) — D5 (B) induced by f*| , is fully faithful by the proof of
Theorem 4.2, applying Lemma 4.5, we obtain the following commutative
diagram

0 —— fulth) —— [i( M) —— fi(Ms) —— 0

| i §

0 — A" — A" — M —— 0
for some .7 € A'. Hence f;' is essentially surjective. O

From Corollary 4.4 and Theorem 4.6, we obtain the following.

THEOREM 4.7. The functor
£ Modeon(#x /1" 2x) — Modeon(-Zx,, /1" 7x,,)

1s an equivalence for each n > 0.

In order to prove that the functor f*: D, (Zx) — D" (#x,) is es-

coh coh
sentially surjective, we need the notion of projective limit in the 2-category

Cat. For its definition, we refer to [9] Definition 19.1.6.
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Recall that a presite X is nothing but a category which we denote by Cx.
If © is a prestack on X, then we have the morphism u : U; — Uz in Cx, and
the functor », : ©(Us) — ©(U;) for any Uy, Us € Cy.

Denote by I\ the set of positive integers, viewed as a category defined by

Ob(IN) = N
(o fi<],
Homy(2,5) =
N(©9) {(Z) otherwise.

We define prestacks © and ©,, on N as follows:

o S(n) := Modeon(#Zx /1" 7x) for any n € N,

o 7, : ©(j) — S(9) is the functor for any ¢ < j and u € Homx(4,7),
and

o S.n(n) := Modeon(2Zx,, /1" 7x,,) for any n € N,

o7, : ©,()) — San(9) is the functor for any ¢ < j and u € Homy (4, 7).

The following lemma shows that coherent . Z-modules are Z-complete.

Lemma 4.8 ([8]). Let (X,.7x) be a complex manifold or a smooth
variety endowed with a DQ-algebroid . 7x. Let {.72,,},~, be a projective
system of coherent .Zx-modules. Assume that B, =0 and the
induced morphism o1 /W My — My is an isomorphism for
any n>0. Then # := l{ir_n My, 18 a coherent _Zx-module and

n
MW — 0, is an isomorphism for any n > 0.
We need the following theorem.

THEOREM 4.9. We have the following equivalences:

(1) lim &) — Modeon( Zx),
2) im &, () — Modcoh(. Zx,,)-
neN

Proor. We only need to prove (1) and (2) can be proved similarly. Let
A € Modeen(.#x), then we obtain the family {(¥,, ¢,)} wWhere:
(G) Fy = . #/0" 7% € S(n) for any n € NN,

(i) ¢, : r.Fj — F; for any i <j and u € Homx(i,j) and 7, : &(j) —
— ©(i) is defined by sending .7 to .7 /h' 7.
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It is easy to check that {(F,, ¢,)} satisfies the cocycle condition (a) of [9]
19.1.6 and hence {(Fy, ¢,)} € lim &(xn).

Let %, #' € Modep( 7x), then these define two objects F =
={(Fy,p)} and F' ={F,,¢,)} in <li_n_1@(n). Let f: . # — % ¢

neN
€ Modcon(-Zx), then we have the set of families {f,},.., Where
fo: I A — W 7 € Homg (A R 24, 2" |R" 7). Ttis easy to
check that {f,} satisfies the commutative diagram of definition (b) of [9]
19.1.6 and hence {f.},cn € Hom ji, g0, F’). Hence we can define a
Jim

neN

functor @ : Mod o, (2x) — ﬁﬁ@(n) by sending .7# to {(F,,¢,)} and

nelN

feHom , (A, 7') to { fu}nex-

On the other hand, if {(F,,¢,)} € g@ ©(n), then by definition (a) of [9]
19.1.6, we have neN

() F), € ©(n) for any n € N,

(i) ¢, : 1 F; — F; for any i <j and u € Homx(i,7) and 7, : ©(j) —

— S(i).

Hence the system {F,},.n is a projective system and liﬁFn €

€ Mod,n(.Zx) by Lemma 4.8. N

For two objects F' = {(F,,¢,)} and F' = {(F],,¢)} in lim S(n). By
neN
definition (b) of [9] 19.1.6, Hom jy, s¢y(F,F") is the set of families
Am

neN

f = {fu},ex such that f, € Homz,(F,,F’,) and the following diagram
commutes for any « : i — j and 7 <,

@
Tqu — E

Tu(fj)l lfi

!
/ Pu /
roFl —2s F.

Hence the system f = {f,}, < is a projective system and we get that the
morphism (1LII_1 fn belongs to Mod,,(.#x). Therefore, we can define a

neN
functor ¥ : (hﬂ ©m) — Moden(2x) by PEFy, 0,0} = @Fn and
nelN nelN

P(f = {futpen) = mfn. Now it is easy to check that @ o ¥ ~ id(nl cm)

neN

€N
and ¥ o @ ~ idModc:;f y)- Therefore, the result follows. O
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COROLLARY 4.10. The functor f* : Modeon(Zx) — Modeon( #x,,) is an
equivalence.

Proor. This follows from Theorem 4.7 and Theorem 4.9. O

From Theorem 4.2, Corollary 4.10 and the proof of Lemma 1.2 for es-
sentially surjectivity, we obtain what we want mentioned above.

COROLLARY 4.11. The natural functor f*: D%, (#x) — D2, (#x,) is
essentially surjective.

Equivalence.
Therefore, we obtain the main theorem of this paper.

MAIN THEOREM 4.12.  The natural functor f*: D2, (#x) — D2, (#x,.)
s an equivalence.

ProoF. This follows from Theorem 4.2 and Corollary 4.11. O
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