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Cycles and Bipartite Graph on Conjugacy Class of Groups

B1jaN TAERI (*)

ABSTRACT - Let G be a finite non abelian group and B(G) be the bipartite divisor
graph of a finite group related to the conjugacy classes of G. We prove that B(G)
is a cycle if and only if B(G) is a cycle of length 6 and G =~ A x SLy(q), where A is
abelian, and q € {4,8}. We also prove that if G/Z(G) simple, where Z(G) is the
center of G, then B(G) has no cycle of length 4 if and only if G = A x SLy(q),
where q € {4,8}.

Introduction and results.

Assigning a graph to a group is one of the interesting tools in in-
vestigating the structure of groups. One of the extensively studied graphs
is the graph related to conjugacy class sizes. In fact various graphs related
to conjugacy class sizes have been defined and studied. For a survey on the
subject see [15]. The bipartite divisor graph is recently introduced for a set
of arbitrary integers in [11]. The bipartite graph divisor for the set of
conjugacy classes is the object of [3].

Let us introduce some notation. Let G be a finite group « be any ele-
ment of G. We denote by % = {29 | g € G}, where 2 = g 'xg, the con-
jugacy class of 2 in G and by es(G) = {|x%| | x € G} the set of the conjugacy
class sizes of G. Let cs*(G) = cs(G) \ {1} be the set of sizes of the non-
central classes of G. Recall that the prime vertex graph 4 := A4(G) is the
graph with vertex set V(4) = p(G) = |J =n(n), where n(n) is the set of

nees(@)

prime divisors of %, and edge set E(4) = {{p,q}|pq divides some
n € ¢s(G)}. The common divisor graph I':=I'(G) is the graph with
vertex set V(I') = cs*(GG), and two vertices n,m € cs*(G) are joined if
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ged(m,n) # 1. The bipartite divisor graph B(G), studied in [3], is the
graph with vertex set the disjoint union p(G) U es*(G) and with edge set
{{p,n} | p € p(G), n € cs*(G) and p divides n}.

In [3] the authors, among other things, characterized finite groups G
such that B(G) is a path of length 5. In this paper we consider a similar
problem and characterize finite groups G such that B(G) is cycle.

THEOREM 1. Let G be a finite group such that B(G) is a cycle. Then
G =A xS, where A is abelian, and S =2 SLs(q), q = 4,8. Consequently
B(G)is a cycleif and only if B(G) isthe 6-cycle2 —12 —3 — 15— 5 —20 — 2
and G =2 A x SLy(4), or is the 6-cycle 2 —T2—-3 —63 —T7—56 —2 and
G = A x SLy(8), where A is abelian.

In [6] the authors studied the groups G such that I'(G) has no triangle.
In this paper we study the groups G such that B(G) has no square. We
prove that

THEOREM 2. Let G be a finite group such that G/Z(G), where Z(G)
denotes the center of G, is simple. Then B(G) has no cycle of length 4 if and
only if G = A x S, where A is abelian, and S =2 SLo(q), ¢ = 4, 8.

Finite groups with cyclic bipartite divisor graphs.
We use the following lemma which contains some well known facts.

Lemma 1. Let G and H be groups.

(i) es(G x H)={ab | a € cs(G),b € cs(H)}.
(i) If v,y € G commute and have coprime orders, then Cg(xy) =
= Cg(x) N Ce(y) and so [«C| and |y®| divide |(xy)|.
(iii) If N is a normal subgroup of G and x € N, then |xV| divides
|€G|. Also if y € G, then |(yN)*/N |divides |y |.

All of the cycles are 2-regular graphs and bipartite 2-regular graphs are
cycles. If B(G) is 2-regular then every noncentral conjugacy class has ex-
actly 2 prime divisors. Thus we can use a result of Casolo.

LeEmMA 2 (Proposition 1 of [4]). Let G be a non-solvable group with
c*(@) = 2, where ¢*(G) = max{|7z(gG)| :9 € G}. Then G = A x S, where A
18 abelian and S is isomorphic to either PSLy(4) or PSLs(8).
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A non abelian group G is an F'-group if for all non central elements x, ¥,
Ci(x) < Cg(y) implies that Cg(x) = Ca(y). The concept of F-group is es-
sential in this paper. The structure of an F-groups is given by Rebmann.

LEmMMA 3 (See [17]). Let G be a non abelian group. Then G is an
F-group if and only if it is one of the following types:

1) G has a normal abelian subgroup of prime index.

(2) G/Z(G) is a Frobenius group with Frobenius kernel L/Z(G) and
Frobenius complement K/Z(G) with K and L abelian.

@) G/Z(G) is a Frobenius group with Frobenius kernel L/Z(G) and
Frobenius complement K/Z(G) with K abelian, Z(L) = Z(G),
L/Z(G) has prime power order and L is an F-group.

@) G/Z(G) = Sy and if V | Z(G) is the Klein four-group in G/ Z(G), then
V s not abelion.

(5) G =P x A where P is an F-group of prime power order and A is
abelian.

6) G/Z(G) = PSLa(p™) or PGL2(p"), G' = SLa(p"), where G’ is the
derived subgroup of G, p a prime, p* > 3.

() G/Z(G) = PSLy(9)( =2 Ag) or PGLy(9), and G’ is isomorphic to the
Schur cover of PSLy(9).

In what follows we find a characterization of finite groups with cyclic
bipartite graphs.

Proor oF THEOEREM 4. If G non-solvable then by Lemma 2,
G =2 A x SLs(q), where © =4,8, and A is abelian. If G =2 A x SLy(4) =
~ A x As, then since cs*(45) ={12,15,20}, B(G) is the 6-cycle
2-12-3-15—-5—-20—-2. If G =2 A x SLx(8), then since cs*(SLx(8)) =
= {56, 63,72}, B(G) is the 6-cycle 2 -T2 -3 — 63 —7— 56 — 2.

Now we show that G cannot be solvable. By the way of contradiction,
suppose that G is solvable and B(G) is a cycle. Thus, for all non-central g € G,
we have n(gG) = 2. First note that by Corollary C of [9], if es*(G) = {m, n}
and ged(m, n) # 1, then either m or n is a prime power and thus B(G) cannot
be a cycle of length 4. By [4, Theorem 3.7] we have |V(4(G))| < 4. If
|V (4(G))| = 2, then since B(G) is 2-regular, B(G) is a cycle of length 4, which
is a contradiction. So |V (A(®))| > 3. Also we know that n(G/Z(G)) = V(A(G))
(see for example [3, Corollary 7]),and so3 < |n(G/Z(G))| < 4.1f |es*(G)| = 2,
then B(G) is a cycle of length 4, which is impossible. Hence |es*(G)| > 3.
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We claim that G is an F-group. First note that if ¢ = p®q® € es*(G), with
a and b positive, then for all x € G with p € n(x%) C {p,q} we must have
|xC| = p®q?, since B(G) is 2-regular. Let x, y be two elements of G such that
Ca(x) < Cg(y). We have to prove Cq(x) = Cg(y). If Cq(x) <Cq(y), then |9cG|
and |y%| are distinct and |y¢| divides |x¢|, which is impossible. Hence G is
an F'-group and so is one of the groups listed in Lemma 3. The groups listed
in Lemma 3 (6) and (7) are non-solvable. Thus G is one of the group listed in
(1-5).

Suppose (1) holds. Then G has an abelian normal subgroup N of prime
index p. We show that cs*(G) = {p, m}, for some m. Let x be any non-central
element of G. If x € N, then since N < Cg(x) <G and |G/N| = p, we have
|2G| = p. If & ¢ N, then G = N(x) and so m := x| = |N : Cy(x)|. For any
non-central element y € @G, there exists a € N such that y = ax. Therefore
Cy(x) = Cy(y) and hence |yG| = m. Thus ¢s*(G) = {p, m}, a contradiction.

If (2) holds, then |es*(G)| = 2, a contradiction. (Recall that if G is quasi-
Frobenius with abelian kernel and complement has exactly three con-
jugacy class sizes, see for example [16, Lemma 4.4]).

Suppose (3) holds. Let # € K \ Z(G). Since Cg(x) = K we have [2%] =
= |G : K| = |L: LN Z(G)|, which is a prime power, a contradiction.

If (4) holds, then n(G/Z(G)) = n(Sy) = {2, 3}, a contradiction.

If (5) holds, then e¢s*(G) = e¢s*(P), a contradiction.

Thus G cannot be solvable. O

As mentioned above there is no group with B(G) a cycle of length 4. Let
K, be a complete bipartite graph with bipartite halves of sizes m and .
Since Ks3 is a cycle of length 4 the following question arises.

QUESTION 1. Is there a group G with B(G) = Ky, ?

Finite groups whose bipartite divisor graphs contain no cycle of
length 4.

In this section we investigate the structure of groups such that B(G)
contains no cycle of length 4. We say that G satisfies the one-prime power
hypothesis,ifm,n € cs*(G), then either ged(m, n) = 1 or ged(m, n)is a power
of a prime. The terminology is similar to the one-prime hypothesis introduced
by Lewis [15] on character degrees. One can see easily that the graph B(G)
has no cycle of length 4 if and only if G satisfies the one-prime power
hypothesis: Suppose B(G) has no cycle of length 4 and let m,n € es*(G). If
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pq divides ged(m, n), then p — m — ¢ — n — p is a cycle of length 4 in B(G),
a contradiction. Thus ged(m,n) = p*, for some prime p and integer a > 0.
Conversely if for all m,n € es*(G), ged(m, n) is a prime power, then G has
no cycle of length 4. In fact if p — m — g —n — p is a cycle of length 4 in
B(G), then pq divides ged(m,n) and so ged(m,n) is not a prime power.

Suppose that G/Z(G) = S, where S is a group such that S = S’. If x is
a non-central element of G, then |90G| = ca,, where ¢ = |(acZ(G))G/ Z(G)| and
a is a divisor of |M(S)| (M(S) is the Schur multiplier of S). To see this,
let D= {g cG|lg,x] € Z(G)}, where [g,x] = g~ '¢*, be the pre-image of
Ce/z)(@Z(G)) in G. Since Cg(x) is the kernel of the homomorphism
D—G'NnZ(G) with dw— [d,x], it follows that |D/Cg(x)| divides
|G'NZ(G)|. By [18, Theorem 9.18 (1) and (6)], |G’ NZ(G)| divides
IM(S)| and so a:=|D/C| divides |[M(S)|. Now |2 = |G : Cqx)| =
=|G/Z(@) : D/Z(®)| |D/Z(G) : Cg(x)/Z(G)| = ca, as claimed.

By [10, Satz 25.7] we know that if ¢ # 9 is odd, then |[M(PSLy(q))| = 2;
if ¢ #4 is a power of 2, then |M(PSL2(q))| =1; and |M(PSLx(4))| =2,
|M(PSL2(9))] = 6. We can use these information in the proof of the fol-
lowing lemma.

In the following lemma we also use the well known Burnside’s p*-
Lemma which states that a finite group which has a conjugacy class of a
prime power size is not simple.

LEmMMA 4.  Let G be a finite non-solvable F'-group. If G satisfies the one-
prime power hypothesis, then G/Z(G) = SLs(4) or SLa(8).

Proor. Notethatin Lemma 3 all groups satisfying (1)-(5) are solvable.
So a non-solvable F-group satisfying the one-power prime hypothesis sa-
tisfies either (6) or (7). Suppose G/Z(G) =2 PSLs(q) and ¢ is odd. We want to
obtain a contradiction. Recall that if ¢ = 1[mod 4] we have es*(G/Z(G)) =
{qlg+ 1), q(q — 1),1q(¢ + 1),1(¢ — 1)(g + D} and if ¢ = 3[mod 4] we have
es*(G/Z(G) ={q(q+1),39(q+1),5(g— (g + 1), ;g(¢g—1)}. Suppose that
we have the first case.

By above discussion, for anyx € G \ Z(G) we have |9cG| = |(90Z(G))G/ Z(G)|a,
where a € {1,2}. Note that, by Burnside’s p*-Lemma, there is no non-trivial
conjugacy class of G/Z(G) of prime power size. If b; = ca; € es*(G) and
bs = cag € cs*(@), where ¢ € cs*(G/Z(G)), then ¢ divides ged(by, b2) and so
ged(by, b2) not a prime power. Thus b; = bs. Hence at most one conjugacy
class size of G is a multiple of ¢, for every c € cs*(G/Z(G)). So
es*(@) = {q(g + Daq, (g — Das,1q(q + Das,1 (g — (g + Das}, where a;,
az, ag, a4 €{1,2}, and |es*(G)| <4. If by =q(g+ 1a; € cs*(G) and
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be = q(q — Dag € cs*(G), are distinct, then 2¢ divides ged(by, b2) and so
(b1, b2) not a prime power. So b; = be. Thus there exist at most one con-
jugacy class size which is multiple of ¢(¢+1) and ¢(g¢ —1). Thus
es*(@) = {q(q + Dax,3q(q + Das, 3 (g — (g + Day} and |es*(G)] < 3. Now
consider b; = q(q + 1)ay € cs*(G) and by = %(q — 1D(q 4+ Day € cs*(G), then
q + 1 divides ged(by, b2) and so (b1, bs) not a prime power (if ¢+ 1 is a
prime power, the since ¢ is odd we have ¢ + 1 = 2*. Since by hypothesis
q =4c + 1, we have 2¥ — 1 = 4¢ + 1 and so 2 = 2(2¢c + 1), which is a con-
tradiction). So b; = b, and there exist at most one conjugacy class size
which is multiple of g(qg + 1) and %(q — 1)(g + 1). Thus es*(G) = {q(q + Day,
q(@ — Daz} and |es*(G)| < 2 and G/Z(G) is solvable, which is a contra-
diction. Similarly in the second case we can obtain a contradiction.

If G/Z(G) = PGLsy(q), where q is odd, then cs*(G/Z(@)) = {q(g + 1),
qlg—1),(¢ — )¢+ 1),3q(g+1),3q(g — 1}. As above, at most one con-
jugacy class size of G is a multiple of ¢, for every c € es*(G/Z(G)), and
es*(G) = {q(q+ a1, q(q — Daz, (g — (g +Das, 3 g(g+ Dag, 3 q(q — as} and
les*(G)] < 5. As above there exist at most one conjugacy class size
which is multiple of g(¢ +1) and q(q — 1). Thus ¢s*(G) = {q(q + 1ay,
(g —1(q + l)ag,%q(q + 1)a4,%q(q —Das} and |es*(G)] < 4. Now either
q =4k +1 or q =4k + 3. Suppose ¢ =4k + 1, then ¢+ 1 is not a prime
power. Since ¢+ 1 divides ged(by,b3), where b; =q(g+ a1, b3 =
= (¢ — 1)(g + 1)ag we have b; = b3 and cs*(G) = {q(q + l)al,%q(q + Day,
%q(q — Das}. Hence by the main theorem of [13], PGLa(q) = G/Z(G) =
=~ PSLy(2™), a contradiction. Now suppose q¢ =4k + 3. Then 2q divides
ged(bs, bs), where by =1q(q+ Dag, bs =1q(g — as. Thus by = b5 and
es*(G) = {q(g + Va1, (@ — D(g + l)ag,%q(q + 1)as}. Hence by the main
theorem of [13], PGL2(q) = G/Z(G) = PSLy(2™), a contradiction.

Finally suppose that G/Z(G)=PSLy(2")=PGL3(2"). Then c¢s*(G/Z(G))=
={@2"-1)(@2"+1),2"(2"—1),2"(2"+1)}. Therefore cs*(G)={(2"—1) (2" +1)ay,
2"2" — Dag,2"(2" 4+ Dag}. Since 2" —1 divides ged(by,b2), where b; =
= (2" — D@" + Daq, bg = 2"(2" — 1)ag and 2" + 1 divides ged(b, b3), where
bg = 2"(2" 4 1)ag, we conclude that 2" — 1 and 2" + 1 are both prime power.
Thus n = 2 or n = 3. Hence G/Z(G) = SLs(4) or SLa(8). O

A generalization of Burnside p*-Lemma, which is due to Wielandt (see
[1, Lemma 6]) states that if « is a p-element, p a prime, of p-power class size,
then x € 0,(G), where O,(G) is the largest normal p-subgroup of G. Camina
and Camina generalized this result and proved that all elements of prime
power conjugacy class size are in the Fitting subgroup (see [5, Theorem 1]).
We use this result in the following lemma.
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LEmMA 5. Let G be a finite group satisfying the one-prime power hy-
pothesis. If G/ Z(G) has no solvable normal subgroup, then G is an F-group

Proor. Let x,y be two non central elements of G such that Cq(x) <
< Cg(y). Wehave to prove Cg(x) = Cq(y). If Cg(x) < Cg(y), then |2¢| and |y€|
are distinct and |y¢| divides |[x%| and so ged(jx%], |y%|) = |y%|. Since G sa-
tisfies he one-prime power hypothesis |y| is a prime power. But since
|(yZ (G))G/ 2 | divides |yG | it follows that |(yZ/ (G))G/ Z® |is also a prime power.
Thus, by [5, Theorem 1], the Fitting subgroup of G/Z(G) is non-trivial, which
is a contradiction. Therefore C;(x) = Cq(y) and so G is an F-group. O

COROLLARY 1. Let G be a finite simple group. Then G satisfies the
one-prime power hypothesis if and only if G =2 SLy(4) or SLs(8).

The converse of Lemma 4 is not true. For example if G = SLz(5), then
G/Z(G) = SLa(4)( =2 As) and cs*(G) = {12,20,30}. In the following lemma
we characterize a finite group whose factor group over its center is the
alternating group on 5 letters, in terms of its conjugacy class sizes of the
group. As a corollary we find sufficient conditions for a group to satisfy the
one-prime power hypothesis. It is well known that in A5 every element of
order 3 or b, is self centralizing, that is C4, (x) = (x), for all ¥ € A5 of order
3 or 5. Also if «x is any element of order 2 in As, then Cy, (%) is a Sylow 2-
subgroup. Thus if & € P is any element of Sylow p-subgroup P of As,
p € {2,3,5}, then Cg(x) = P.

We claim that if x is a non-central element of a group G such that

Ce ()
| Z(@G)
centralizer of any non-central element of G strictly contained in Cg(x). We
use this fact in the proof of following lemma. To see the claim suppose, on

Z(C C
the contrary that, Z(Cg(x)) < Cg(x). Then (Z (G(%C)) < Zczgﬁ)) and

| = p%, where p is a prime, then Cg(x) is abelian and thus there is no

Co(x) Z(Cgqlx)|
ZG6 " ZG) |

Thus Cg(x) is abelian, contradicting to Z(Cg(x)) <Cq(x). Thus Z(Cg(x)) =
= Cg(x) and so Cg(x) is abelian. Now let  be any non-central element of G
such that Cg(y) < Cg(x). We want to show that Cgp(y) = Ca(x). Let
u € Cg(x). Since Ci(x) is abelian, [u,v] = 1, for all v € Cg(x). In particular,
since y € Cq(y) < Cg(x), we have [u,y] =1 and so u € Cq(y). Hence
Ca(y) = Cg(x), as required. This completes the proof of the claim.

|Ce(x) : Z(Cp (@) =
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LEMMA 6. Let G be a finite group such that G/Z(G) = As. Then
cs*(G) = {12,15,20}, G’ =A; or cs*(G)={12,20,30}, G’ =SLy(b5).
Therefore G satisfies the one-prime power hypothesis if and only if
G~ A5.

Proor. Let x be a non central element of G. Then since Z(G) <
< Cg@x)<@G, we have |G:Z(G)| = |9cG||CG(ac) : Z(G)] and so 60 =
= [2€| |Ce(x) : Z(G)|. Since |@Z(G)/2?| divides [xC|, we have |x%]| €
€ {12a,15b,20c}, where a,b,c are positive integers. If |x¢| = 12a, then
5 =a|Cg(x) : Z(G)| and so a = 1, also Cg(x) is abelian. If |9cG| = 20c¢, then
3 =c¢|Cs(@) : Z(G)] and so ¢ = 1, also Ci(x) is abelian. If |9cG\ = 15b, then
4 = b|Cq(x) : Z(G)| and so b = 1 or 2, also in the case b = 2, Cg(x) is abelian.
Therefore [x¢| € {12,15b,20}, where b = 1 or 2. We distinguish two cases.

CASE 1. Suppose that there exists « € G such that |(90Z(G))G/ Z(G)| =15

with CZ%?;? Ca/z)(@Z(G)). Therefore
G Ce) G
G| _ e _ . -
Il = ‘Z(G) 2G| ‘Z(G) : Co z0)(@Z(@))| = 15.
We want to prove for all y € G with |(yZ(G)%/%?| =15, we have
Ce(y)
% = Co /26 (WZ(®) and so |y¥| = 15.

First of all, we know that Cg/z)(@Z(G)) is a Sylow 2-subgroup of

G/Z(@) and, for every yZ(G) € Cg/zc)(@Z(G)), we have Cg/zq)(@Z(G)) =
C

Coy2aWHG). T YZ(6) € oo G, then T2 < Co0 () =

Ce/z0)(@Z(G)) = %igc)). By the discussion in the paragraph preceding

this Lemma, we have Cg(x) = Cq(y). Therefore

Cey)  Colw)
A RAG)

= Cg/20(@Z(@) = Co/ze)YZ(G)).

Now suppose yZ(G) ¢ Cg/z)(@Z(G)). Then Cg 7 (yZ(G)) is a Sylow 2-
subgroup of G/Z(G) different from Cg/zq)(xZ(G)). Since Ajs acts transi-
tively, by conjugation, on the set of its Sylow 2-subgroups, there exists
u € G such that u lxuZ(G) e Ce/z0)WZ(G)). Hence Cgz)(y4(G)) =
= C(;/Z(G)(M_lﬁﬁuZ(G)) and

Ce(y)
Z(G)

< Co/uaWZ(@) = Cgze)@Z(G)" = <CG(x)> _ G

ZG))  ZG)
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Hence, by the discussion in the paragraph preceding this Lemma,

Ce(y)  Ce(x") Ce(y)

26 ~ 2@ M 7@ ~ oo O o)
Thus we have proved that if |@Z(G)¥#®| =15 and Z(éG) -

= Co/u0)(@Z(@), then for all y € G with |(¥Z(G)*”?| = 15, we have
Cow)
Z(G)
= {12,15,20}.

Note that if [x¢| = 12 or 20, then Cg(x) is abelian. Also if || = 15 we
saw that Cg(x) is abelian. Hence there is no centralizer of any non-central
element of G strictly contained in Cg(x). Thus G is an F-group. Therefore
by Lemma 3, G/Z(G) =2 PSLy(4) = A5 and G’ =2 SLy(4) = As. Note that
in this case G/Z(G) = PSLq(5) = A5 but we can not have G’ = SLy(5),
since otherwise 30 divides a conjugacy class size of G.

= Ce/z)(yZ%(@)) and so |y%| = 15. Thus in this case cs*(G) =

CASE 2. Now suppose that % <Cq/7)(@Z(G)), for all for x € G
with |(#Z(®))%/%@| = 15. Therefore
G Ce) Ce ()
G| _ e _ G/Z(@) el
| | = Z_(G) : Z(G) |(90Z(G)) | Cg/z(G)(.’)CZ(G)) : Z(G)
g Ce(®) . . »
and so |x“| =30 and also 720 | 2. Thus in this case cs*(G) =

= {12,20, 30}.
Note that in the case Cg(x) is abelian, for all x € G. Thus G is an F-
group and by Lemma 3, G/Z(G) = PSLy(5) = A5 and G’ = SLy(5). O

Now we investigate the structure a finite group satisfying the one-
prime power hypothesis whose factor group over its center is SL2(q).

LEmMA 7. Let G be a finite group such that G/Z(G) = S, where S is a
stmple group with trivial Schur multiplier. Then G =2 Z(G) x S. Therefore
if G/Z(G) = SLa(2™), where m > 3, then G satisfies the one-prime power
hypothesis if and only if G = Z(G) x SLs(8).

Proor. By [18, Theorem 9.18 (1) and (6)], |G’ N Z(G)| divides the order
of the Schur multiplier of S. Therefore G'NZ(G) =1. Now since
G'Z(G)/Z(G)is a normal subgroup of a simple group G/Z(G) = S, it follows
that G = Z(G) x G' = Z(G) x S. Now since, by [10, Satz 25.7], the Schur
multiplier of SL2(2™), m > 3, is trivial, and SL2(2™), m > 3, satisfies the
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one-prime power hypothesis if and only if m = 3 (by the proof of Lemma 4)
the other assertion follows. O

Now we can prove Theorem 2.

Proor oF THEOREM 2. Suppose that G satisfies the one-prime power
hypothesis. Then, by Lemma 5, G is an F-groups and so, by Lemma 4,
G/Z(G) = SLa(q), where q € {4,8}. Hence by Lemmas 6 and 7, G/Z(G) =
~ SLy(q) =2 G', where q € {4,8}. Let H = Z(G)G'. Then H = Z(G) x G' is
a normal subgroup of G. Therefore G’ =~ H/Z(G) is a normal subgroup of
G/Z(G) and so H = G. Hence G = A x G’, where A is an abelian subgroup
of G.

The converse is obvious. O

We can find some information of the socle of finite groups satisfying
the one-prime power hypothesis. Recall that the socle of a finite group
G is the subgroup generated by the minimal normal subgroups. It is
well known that the socle of G is a direct product of minimal normal
subgroups.

ProposITION 1. Let G be a finite group satisfying the one-prime
power hypothesis. Then the socle of G is either abelian or is a direct
product of a non abelian simple group and an abelian group.

Proor. We claim that if N =S x T, where S is a non abelian simple
group, is a normal subgroup of G, then Z(T) # 1. The results follows from
this claim. To prove the claim suppose Z(T') = 1 and choose elements x € S,
y € T with coprime order. Then Cg(xy) = Cge(x)NCq(y) < Cglx). If
Ca(xy) = Ca(x), then T < Ca(x) < Cp(y) and so y € Z(T) =1, a contra-
diction. Therefore Cg(xy) < Cg(x) and thus \acG| is a proper divisor of |(xy)G l.
Since G satisfies the one-prime power hypothesis, ged(|z%|, |(xy)¢]) = |«C|
is a prime power. Since || divides |x"| which is a divisor of |x¢/, it follows
that |«%| is a prime power. Thus, by Burnside p*-Lemma, S is not simple, a
contradiction. O

Now we consider finite groups satisfying the one-prime power hy-
pothesis with simple socle, that is almost simple groups. First we need the
following lemma.
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LEMMA 8. IfN be a normal subgroup of G of index p, where p is a prime,
then for all a € cs(N) either a € cs(G) or pa € e¢s(G). Thus if there exist
a,b € cs(N) such that a <b, |n(ged(a, b))| > 2, and b # pa, then G does not
satisfy the one-prime power hypothesis.

Proor. The first assertion is obvious. For the second assertion, sup-
pose that g¢r divide ged(a,b), where ¢ and r are primes. By above,
a,b € cs(@)ora,pb € cs(G)orpa, b € cs(G) or pa, pb € cs(G). In any case qr
divides two distinct conjugacy class sizes of G. Thus G does not satisfy the
one-prime power hypothesis. O

In the following lemma we prove that if G is an almost simple group
whose socle is 4,, then G does not satisfy the one-prime power hypothesis.

LEmMMA 9.  The symmetric group on n letters, n > b, does not satisfy the
one-prime power hypothesis. In particular if A, < G < Aut(4,), then G
does not satisfy the one-prime power hypothesis.

Proor. We have es(S5) = {10,15,20,24,30} and hence S5, do not sa-
tisfy the one-prime power hypothesis. Suppose that n > 6. It is obvious that

1 nn—1) (n—2)(n — 3)

Py— S?l J—
0= 1287 = 5 | = 5

and b= (12345 | == 1)(7;; 200 =3) s o= 3b and so ged(a, b) = b.
Since b = |(1234)A” |, we have that b is not a prime power, by Burnside p*-
Lemma. Hence S,, does not satisfy the one-prime power hypothesis.

Now if n # 6, then Aut(4,) =S, and thus either G = A, or G = S,,.
Hence, by above, G does not satisfy the one-prime power hypothesis.

The outer automorphism group of Ag is a Klein 4-group and if
Ag < G < Aut(4g), then G is one of Ag, S¢, PGL2(9), My, or Aut(4g). In
Atlas [8] notation, these are the groups Ag, Ag.21, Ag.-22, Ag.23, and Sg.22,
respectively.

We have Ag =2 PSL2(9) and A = Aut(A4g) = PI'Ls(9), where PI'Ly(9) =
= I'L2(9)/Z(I'L2(9)) and I'L2(9) is the group of all the semi-linear trans-
formation of the vector space of dimension 2 over the Galois field with ¢
element. By [8], A = PI'L3(9) has elements x and y of orders 2 and 5,
respectively such that |Ca(x)| =24 and |C4(y)| = 5. Therefore |x?| =
=1440/24 = 60 and |y*| = 1440/5 = 288 and (x4, |y?|) = 12 is not a
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prime power. Thus Aut(4¢) does not satisfies the one-prime power hy-
pothesis. Now, by above, S¢ and, by Corollary 1, Ag, M9 do not satisfy the
one-prime power hypothesis. Finally cs*(PGL2(9)) = {36,45,72,80,90}
and so PGL3(9) does not satisfy the one-prime power hypothesis. O

Now we consider sporadic simple groups.

Lemma 10.  If S is a sporadic simple group and S < G < Aut(S), then G
does not satisfy the one-prime power hypothesis.

Proor. It is well known that the outer automorphism group of S is
either trivial or of order 2. If S is one of the groups M11, Ms3, M4, Cos, Cog,
Coy, Fiigs, Th, B, M, J1, Ly, Ru, J4, then the outer automorphism group of S
is trivial and so the result follows from Corollary 1. So suppose that S is one
of the groups Mlg, Mgg, J2, S’LLZ, HS, MCL, H@, Fi22, F'I:/24, HN, O/N, J3
Using Atlas, in Table 1, the group S and the order of centralizers of two
elements x,y € S, such that a = || <b = |y°| and b # 2a, is given.

TABLE 1.

N IS| |Cs()] ICs(y)
My 26.33.5.11 11 6
Mo 27.32.5.7-11 11 7
Jiz 21.33.52.7 7 6
Suz 213.37.52.7.11-13 13 11
HS 29.32.5.7.11 11 7
MeL 27.30.5%.7.11 11 5
He 210.33.52.73. 11 17 14
Figy 217.39.52.7.11-13 14 13
Fi}, 221.316.52.73.11.13-17-23-29 29 23
HN 214.36.56.7.11.19 22 19
O'N 29.31.5.7.11-19-31 31 19
J3 27.35.5.17-19 19 17

Hence, by Lemma 8, G does not satisfy the one-prime power hypo-
thesis. O
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Investigating the structure of a group G such that B(G) has no cycle of
length 4 seems a difficult task. For instance for a finite p-group G, I'(G) is a
complete graph and B(G) is a star graph, and there is no bound on the
cardinality of the set of conjugacy class sizes of the group. In the case
diam(I") = 3, the diameter of I, (recall that, by [7], diam(/(G)) < 3) we are
able to find such bound using a result of Kazarin [14]. For non-solvable
groups we make the following conjecture.

CONJECTURE 1. If G is a finite non-solvable group, then B(G) has no
cycle of length 4 if and only if G = A x S, S = SLs(q), where A is abelian,
and S = SLy(q), ¢ = 4,8.

By [7] we know that diam(/'(G)) < 3. Recall also that, by [2, Theorem 1],
w((G)), the number of the connected components of I'(G) is not grater
than 3. In the following we find some information on a group satisfying the
one-prime power hypothesis such that diam(/'(G)) = 3.

ProposiTION 2. Let G satisfy the one-prime power hypothesis and
assume I'(GQ) 1s connected with diam(I") = 3. Then G 1s soluble and either
Q) = 3, |es(G)| = 6 or n(G) =4, |es(G)| = 9.

Proor. By [14], G = (Ay x By) x Cy where Ay, By, Cy are groups with
pairwise coprime orders, Ay and By are abelian and A¢By/Z(A¢By) is a
Frobenius group. Further, cs(G) = {n,na,nb|n € c¢s(Cy)}, where a =
= ‘Ao/(AO ﬂZ(AoBo))| and b= |Bo/(BO ﬂZ(AoBo))‘ For all m € es(Cy),
with m > 1, we have a path a — ma — m — mb — b. This implies that a, b are
distinct prime powers and cs(Cp) = {1,uy,...,%,}, where u;, 1=1,...,7,
are distinet prime powers other than a, b. Since I” is connected, » > 1. Since
Cy is a direct factor of G, it satisfies the one-prime power hypothesis. Also
n(I'(Cy)) < 2 and diam(I") = 3. So r < 2. If r = 1, then es(Cp) = {1,u} and
so es(G) ={1,a,b,u,ua,ub} and |es(G)| =6, see Figure 1 (I). If » =2,
then ¢s(Cy) = {1,u,v} and so es(G) ={1,a,b,u,v,ua,va,ub,vb} and
les(@)] =9, see Figure 1 (II). 0

Let G = S3 x E, where E is an extra special group of order 5°. Then
es(@) ={1,6a =2,b =3,u =5,ua = 10,ub = 15}. Let H and K be non
abelian groups of order 10 and 21, respectively, and put G = H x K.
Then cs(H)=1{1,2,5}, es(K)={1,3,7} and cs(G)={1,a=3,b=T,u=2,
v =5,ua = 6,va = 15,ub = 14, vb = 35}. Therefore diam(I") =3 and G
satisfies the one-prime power hypothesis. We note that there exists a group
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Fig. 1. — Graph I'(G) of a group G satisfying the one-prime power hypothesis with
diameter 3.

whose bipartite graph have diameter 3 and does not satisfy the one-prime
power hypothesis. For instance, let G = H x K, where H is a non abelian
group of order 21 and K is a dihedral group of order 30. Then
es(H)={1,3,7},¢es(K)={1,2,15} and so cs(G) ={1,2,3,6,7,14,15,45,105}
and diam(I") = 3.
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