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Right Utumi P.P.-Rings

ULRICH ALBRECHT

ABSTRACT - The class of right Utumi p.p.-rings plays a central role when developing
a notion of torsion-freeness over non-commutative rings. This paper shows that
it also arises naturally when considering divisible modules. Various notions of
divisibility were introduced for modules over integral domains. We determine
their relation in the non-commutative case and show that there are significant
differences between this and the commutative setting. Finally, we determine
large classes of semi-prime Goldie rings for which two or more of these notions
coincide.

1. Introduction.

The straightforward attempt to extend the notion of torsion-freeness
from integral domains to non-commutative rings encounters immediate
difficulties. To overcome these, one can concentrate on either the compu-
tational or the homological properties of torsion-free modules. Goodearl
and others took the first approach when they introduced the notion of a
non-singular module [8]. A right B-module M is non-singular if Z(M) = 0
where Z(M) = {x € M | «I =0 for some essential right ideal I of R} de-
notes the singular submodule of M. On the other hand, M is singular if
Z(M) = M. Moreover, a submodule U of an R-module M is S-closed if
M /U is non-singular. Finally, R is a right non-singular ring if Rp is non-
singular. The right non-singular rings are precisely the rings which have a
regular, right self-injective maximal right ring of quotients, which will be
denoted by Q" (see [8] and [12] for details). Following [12, Chapter XI], @"
is a perfect left localization of R if Q" is flat as a right R-module and the
multiplication map Q" ® Q" — Q" is an isomorphism. In particular, Q" is a
perfect left localization of R if and only if every finitely generated non-
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singular right R-module can be embedded into a projective module ([8,
Theorem 5.17] and [12, Corollary XII.7.3]). We call such a ring right
strongly non-singular.

Hattori took the second approach by defining M to be torsion-free if
T01ﬂ1113 (M,R/Rr) =0 for all » € R [9]. The classes of torsion-free and non-
singular right R-modules coincide if and only if R is a right Utumi p.p.-ring
without an infinite set of orthogonal idempotents [4, Theorem 3.7]. Here, R
is aright p.p.-ring if all principal right ideals of R are projective. Moreover,
a right non-singular ring R is a right Utumi-ring if every S-closed right
ideal of R is a right annihilator. The right and left Utumi-rings are pre-
cisely the right and left non-singular rings whose maximal right and left
ring of quotients coincide (see [8, Theorem 2.38] and [12, Proposition
XI1.4.9]).

Section 2 investigates the structure of right Utumi p.p.-rings without
an infinite set of orthogonal idempotents. Theorem 2.3 and Corollary 2.4
show that these rings can be viewed as lower triangular matrix rings.
Closely related to the notion of torsion-freeness is that of divisibility where
aright R-module D is divisible if Extjll2 (R/rR,D) =0forallr € R. From [5,
Section 2], one obtains that a right R-module M is torsion-free if and only if
its character module M* = Hom (M, Q/7) is divisible. Moreover, if R is a
left p.p.-ring, then a left module N is divisible if and only if N* is torsion-
free. Therefore, it is not surprising that Utumi p.p.-rings also arise in the
discussion of divisible modules (Theorem 3.2).

In Section 4, we look at other notions of divisibility. A right R-module D
is diwvisible in the classical sense if Dc = D for all regular elements ¢ of E.
Finally, it is h-divisible if it is an epimorphic image of a direct sum of copies
of @". In case of domains, the notions of divisibility and divisibility in the
classical sense coincide. Moreover, they also are equivalent to h-divisibility
if R is a countable integral domain ([7, Theorem VII.2.8] and [10]). Al-
though we show in Sections 4 and 5 that this need not be the case if R is
non-commutative, the various notions of divisibility will, nevertheless, co-
incide if R is a semi-prime right and left Goldie p.p.-ring whose classical
ring of quotients is countably generated as a right and left R-module
(Theorems 5.2 and 5.5).

2. The Structure of Right Utumi P.P.-Rings.

A ring R is a Baer-ring if the right annihilator of a subset of R is
generated by an idempotent. In contrast to the p.p.-condition, being a
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Baer-ring is right-left symmetric. Our first result characterizes the right
Utumi p.p.-rings without an infinite family of orthogonal idempotents in
terms of their idempotents.

PRrROPOSITION 2.1. A right non-singular ring R is a right Utumi p.p.-
ring without an infinite set of orthogonal idempotents if and only if the
following hold:

i) R has finite right Goldie dimension.
i) If f € Q" is an idempotent, then there is an idempotent e € R
with ef =f and fe = e.

ProoF. Suppose that R is a right Utumi p.p.-ring without an infinite
family of orthogonal idempotents. By [4], R is a Baer-ring, and has finite
right Goldie dimension. If f € Q" is an idempotent, then 7 = f@" N R is an
S-closed right ideal of R since R/I = [fQ" + R]/fQ" C Q" /fQ" = (1 — Q"
is non-singular. Because R is a right Utumi-ring, we obtain that I is the
right annihilator of a subset of . Since R is Baer, there is an idempotent
e € Rwith] = eR. Then, eQ" = IQ" C fQ". Because R is essentialin Q", IQ"
is an essential R-submodule of fQ)". In view of the fact that Q" is semi-simple
Artinian, IQ" is a direct summand of fQ", and hence fQ" = eQ". But then
ef =fandfe=e.

Conversely, assume that the right non-singular R satisfies the two con-
ditions in the proposition. Clearly, R contains no infinite set of orthogonal
idempotents; and Q" is semi-simple Artinian by i) [12, Theorem XI1.2.5]. It
remains to show that R is a right Utumi p.p.-ring. For this, it suffices to show
that every S-closed right ideal I of R is generated by an idempotent. Since Q"
is semi-simple Artinian, there is an idempotent f € Q" with IQ" = fQ".
Choose an idempotent e € R as in ii), and observe eQ" = fQ". To show
I = ¢eR, observe that e € IQ" yields that there exists an essential right
ideal J of R with eJ C I. Since I is S-closed in R, one has eR C I, and
I=eR®d[INA —e)R]. However, IN(1—e)R Ce@Q" N1 —-e)Q" =0. O

A family {M; |7 € I} of right modules over a ring R is semi-rigid if
Homg(M;, M;) # 0 implies Homp(M;, M;) = 0 for all ¢ # j in I. Modules U
and V are quasi-isomorphic if there exist essential monomorphisms
U—V and V — U. Finally, if S C R, then rz(S) = {r € R|Sr = 0} de-
notes the right annihilator of S in R.

LEMMA2.2. LetR = S x T bearight Utumi p.p.-ring without an infinite
set of orthogonal idempotents. Then the same holds for the rings S and T.
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ProoF. Since S is a subring of R, it does not contain an infinite set of
orthogonal idempotents either. If s € S, then rz((s, 17)) = rs(s) x {0} is
generated by an idempotent f = (e,0) of R since R is a right p.p.-ring.
Clearly, e is an idempotent of S with rs(s) = eS. Thus, S is a right p.p.-ring.

Finally, if I is an essential right ideal of R, then I = Iy x Iy where Ig
and Ir are essential right ideals of S and T respectively. Therefore,
whenever J is a S-closed right ideal of S, then J x T is a S-closed right
ideal of R. Since R is a right Utumi-ring, there is a subset X of R with
J x T'=rp(X). Choose a subset Y of S with X =Y x {0}. Clearly,
J =rs(Y), and S is a right Utumi-ring. O

THEOREM 2.3. Let R be a right Utumi p.p.-ring without an infinite
SJamily of orthogonal idempotents. Then,

a) R=R; X...xR,, where Ry...,R, are indecomposable right
Utumi-p.p.-rings such that, forall i=1,....m R;=1;1 © ... ® Iy,
Sfor uniform vight ideals I;1, ... ,1;, of R;.

b) N(R) = 0 if and only if, for each 1 =1,...,m, the right ideals I; ;
and I;;, are quasi-isomorphic whenever 1 <j. k < n;.

Proor. Since R is a right Utumi p.p.-ring without an infinite set of
orthogonal idempotents, its maximal right ring of quotients, ", is semi-
simple Artinian by Proposition 2.1. Moreover, K is a Baer-ring by [4,
Theorem 3.7]. Hence, [4, Lemma 3.5] yields that every S-closed right ideal
of R is generated by an idempotent. Write " = @1 x ... x @, where each
Q; is a simple Artinian ring. Let f1, . . ., f,, be the central idempotents of Q"
associated with this decomposition, and consider the two-sided ideals
I; =RnNQ; of R. Since R/I; =~ [R + Q;]/Q; is non-singular as a right R-
module, /; is an S-closed right ideal of R. Consequently, it is generated by
an idempotent e; € R. Since I; is an essential submodule of @;, one has
fiQ = Q; = I,Q = ¢;Q. Then, f; = e;f; = fie; = e; for1 =1,...,n. Therefore,
R =R; x... xR, where R; = ¢;Re; is indecomposable as a ring since
e;Qe; is a simple ring. Moreover, N(R) = N(R1) x ... X N(R,). By Lemma
2.2, each R; is a right Utumi p.p.-ring without an infinite set of orthogonal
idempotents. Hence, we may assume for the remainder of the proof that R
is indecomposable as a ring.

Since R has finite right Goldie dimension, there exists a non-zero uni-
form right ideal U; of R. If V7 is the S-closure of U; in R, then V7 is a direct
summand of R because R is a Baer and right Utumi-ring. Write
R =V ® W;. If Wy # 0, then W contains an S-closed non-zero uniform
submodule V.. Since Vs, is a direct summand of R, we obtain
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R =V, &V, & Wy for some right ideal W; of R. Since R has finite Goldie-
dimension, this process has to stop, and R = V1 & ... ® V, for some {<w
and uniform right ideals V71, ..., V,. This proves a).

On {V1,...,V,}, define V; ~V; if and only if Homp(V;,V;) # 0 and
Homg(V;,V;) # 0. Since the V;’s are uniform, each V; is a non-singular
right R-module of Goldie dimension 1. Therefore, every non-zero sub-
module of V; is essential in V;. Moreover, if U is a S-closed submodule of
V1, then 1 =dimV = dimU + dimV /U yields U =0 or U = V. Hence,
every non-zero map « : V; — Vj is an essential monomorphism. Therefore,
Vi ~ V;if and only if V; and V; are quasi-isomorphic. In particular, ~ is an
equivalence relation. Without loss of generality, one may assume that
there is m < ¢ such that Vy,...,V,, are the distinct representatives of the
equivalence classes of ~. Forj=1,...,m, set I; = ®{V; | V; ~ V;}. Since
non-zero maps between the V’s are essential monomorphism,
R=L@&...®1, such that {I1,...,1,} is a semi-rigid family such that,
for each j, I; = 1;; @ ... ® I;;, with each [;; uniform and /;; and [;, are
quasi-isomorphic for all k¥ and ¢. Select a family {ey, ..., e,} of orthogonal
idempotents of R with I; = ¢;R.

Suppose that R is semi-prime. If Hompg ([}, I}) # 0 for some j # k, then
Hompg(I), I;) = 0 by the semi-rigidity condition. Because Homg(Z},I},) # 0,
there is » € R with 0 # rl; C I;. In particular, e,re; # 0. In view of the fact
that N(R) = 0, we have e;rejRere; # 0. If s € R satisfies ejsej, # 0, then
left multiplication by e;se;. induces a non-zero endomorphism o of B with
a(l;) € I;, which contradicts Homg (I, I;) = 0. Therefore, Homp(/;,1;,) = 0
whenever j # k.

If there is » € Rwith rl; Z I; for some j, then we can find k& # j such that
eirx # 0 for some x € I;. Thus, multiplication from the left by e, induces a
non-zero map I; — Ij, a contradiction. Therefore, each I; is a two-sided
ideal of R. Since R is indecomposable, we have m = 1.

Conversely, suppose that R has a decomposition of the stated form.
Again, we may assume m = 1. Write R =J; & ... ® J, where each J; is a
uniform right ideal of R, and J; and J, are quasi-isomorphic for all j and k.
Select orthogonal idempotents dy,...,d, of R such that J; = d;R. If
N(R) # 0, then there exists a non-zero a € R such that aRa = 0. Select
1€ {1,...,¢} with d;a # 0. Moreover, there exists k such that d;ad; # 0.
Thus, left multiplication by d;a is a non-zero map from J; to J;. Since
Hompg(J;, Ji) # 0, there is s € R such that 0 # sJ; C J;. Because non-zero
maps between the J;’s are monomorphisms, left multiplication by d;as is a
one-to-one map from J; to J;. Thus, d;asd;a # 0, and the same holds for
asd;a, a contradiction. O
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COROLLARY 24. Let R be a right Utumi p.p.-ring without an
mfinite family of orthogonal idempotents. Then, R=>= Ry X ... x R,
where each R; is an indecomposable ring which is isomorphic to a
lower triangular matrix ring over rings R;i,...,R;, such that each
R; j is a prime ring.

Proor. By Theorem 2.3, we may assume that R is indecomposable.
Observe that Q"(R) = Mat,(D) for some division algebra D. Using the
notation of Theorem 2.3, write R =1; &...® [, such that {I,...,[,}
forms a semi-rigid family. We actually may assume that I;,...,1,, are
arranged in such a way that Homg(l;,I;) =0 if j<k. Setting
M. = Hompg(I;,I1,), one obtains that R is isomorphic to the ring of ma-
trices with entries from M;;. Clearly, this is a lower triangular matrix
ring. Furthermore, R; = Homg(/;, ;) has a full matrix ring over D as its
maximal right ring of quotients. O

COROLLARY 2.5. Let R be a right and left Utumi-p.p.-ring without an
mfinite family of orthogonal idempotents, and A an essential submodule
of Q" which is also a submodule of rQ". Then, A = A, @ ... A, such that

a) {Ai1,...,An} s semi-rigid.

b) Forall t=1,...,m, A; =A;1 ® ... DA, where each A;; is uni-
form; and A; ; and A;j arve quasi-isomorphic for all i =1,...,m
and all 1 <j,k <mn;

Proor. Observe that S = Endg(Ag) is a subring @" which con-
tains R. By [1, Proposition 3.1] and Proposition 2.1, S contains pri-
mitive idempotents e;; such that e; ;S has the desired property. Let
Ai,j = Bi’jA. O

3. Divisible Modules.

Although the class of divisible modules is closed with respect to epi-
morphic images if R is an integral domain, this does not hold in our more
general setting:

LemMa 3.1. A ring R is a right p.p.-ring if and only if the class of di-
visible right R-modules is closed with respect to epimorphic images.
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Proor. Let R be a right p.p.-ring, and consider a submodule U of a
divisible module D. For all » € R, we have an exact sequence

0 = ExtL(R/rR, D) — Extp(R/rR,D/U) — Exth(R/rR,U) =0

from which we obtain that D/U is divisible.

Conversely, suppose that epimorphic images of divisible modules are
divisible. Then, Extﬁg(R /rR,E/U) = 0 for all submodules U of an injective
module £ and all » € R. We therefore have the exact sequence

Homg(R, E/U) — Homp(rR, E/U) — Extyp(R/*R,E/U) = 0.

By [11, Lemma 4.22], R is projective. O

For integral domains, the notions of divisibility and divisibility in the
classical sense obviously coincide. Although all divisible modules are divi-
sible in the classical sense in the non-commutative setting, the converse
may fail in view of the last result.

THEOREM 3.2. The following are equivalent for a right non-singular
ring R:

a) R is a right Utumi p.p.-ring without an infinite set of orthogonal
idempotents.

b) Qf is torsion-free and D € p M is divisible if and only if M @ D =0
for all singular M € Mgp.

¢) rQ" is divisible, and D € g M is divisible if and only if ID = D for
all essential right ideals I of R.

PrOOF. a)=c¢): If D is a divisible left R-module, then D* =
= Homy (D, Q/7) is a torsion-free right R-module in the sense of Hattori
[5]. Since R is a right Utumi p.p.-ring without an infinite set of orthogonal
idempotents, D* is non-singular by [4]. If there is an essential right ideal I of
Rwith D/ID # 0, then there exists a non-zero morphism ¢ : D/ID — Q/7.
We view ¢ as a non-zero map D — Q/7 with ¢(ID) = 0. Then, [¢r](d) =
= ¢(rd) = 0 for all » € I, so that ¢ € Z(D*) = 0, a contradiction.

Conversely, suppose D = ID for all essential right ideals I of R. For
o € Z(D*), there is an essential right ideal J of R such that o/ = 0. But then
a(JD) = 0, and D* is non-singular. By [4], this means that D* is torsion-free,
from which we get that D is divisible [5]. Finally, R has finite right Goldie-
dimension. Therefore, Q" is semi-simple Artinian by [12, Theorem XI1.2.5],
and IQ" = Q" for all essential right ideals I of R by [8, Proposition 2.32].
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¢) = b): Since the condition D = ID is preserved by epimorphicimages, the
class of divisible left R-modules is closed with respect to epimorphic images.
By Lemma 3.1, R is a left p.p.-ring. As in [5], we obtain that D is divisible if
and only if D* is torsion-free. Since Q" is divisible as a left R-module by c), we
obtain that (Q")" is torsion-free. Moreover, / NR)Q" = Q" for all essential
right ideals I of @". By [8, Proposition 2.32], @" is semi-simple Artinian.

Let S1, ..., S, be the pairwise non-isomorphic simple right @"-modules.
Write @ = R; x ... x R, where R; = Mat,,(D;) and D; is the division al-
gebraEndg(S;). Since (Q")" is aright Q@"-module, we obtain a decomposition
®QN" = U1 &...® U, where each U; is an R;-module with U;R; = 0 for
t # J. Therefore, U; = ©,, S; for some suitable 7; < . Suppose that m; = 0
for somej. Let ¢ € (Q")", and consider x € Q" and gj € R;.Since (Q")'R; =0,
we have 0 = [¢g;](x) = ¢(g;x). Thus, ¢(R;) = ¢(R;Q") = 0. This is only pos-
sibleif R; = 0, a contradiction. Hence, m; > 0for allj. Since (zQ")" is torsion-
free, the same holds for Si, . .., Sy, and, therefore, for Q7 too.

Furthermore, if D is a left R-module and J is a right ideal of R, then the
standard homological arguments show (R/J) ®g D = D/JD. Therefore, D
is divisible if and only if (R/I) ®p D = 0 for all essential right ideals 7 of B
because of ¢). Since every singular right B-module M is the epimorphic
image of ®;R/I; for essential right ideals I; of R, we have M ®g D = 0 for
every divisible left module D.

b) = a): By [4], it suffices to show that the classes of torsion-free and
non-singular right R-modules coincide. Using b), we obtain that epi-
morphic images of divisible left R-modules are divisible, and R is a left p.p.-
ring. By [4], all non-singular right R-modules are torsion-free.

Conversely, consider a torsion-free right R-module M, and an essential
right ideal I of R. Since M* is a divisible left module [5], IM* = M* because of
0= (R/I)@r M* = M*/IM* by b). Suppose that there is ¢ € M*™* with
¢l = 0. For x € M*, there are ry,...,7, € I and y1,...,Y, € M* such that
X =7rY1 + ... 7Yy Then, &) = d(riy1) + ... + ¢rpyn) = [dr1ly) + ... +
+[¢ry1(yn) = 0. Therefore, M** is non-singular, and the same holds for its
submodule M. By [4], R is a ring as in a). O

COROLLARY 3.3. Let R be a right Ore-ring which is a right Utumi,
right p.p-ring without an infinite set of orthogonal idempotents. Then, Q.
18 a divisible left R-module if and only if R is semi-prime.

Proor. If Q. is divisible, then 1Q.; = Q.; for all essential right ideals I
of R by Theorem 3.2. Thus, there are aregular element c of R and « € I with
xc ! =1,ie.c €I By[8, Theorem 3.35], R is semi-prime. O
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A right R-module D is absolutely pure if Ext}E (M, D) = 0 for all finitely
presented modules M.

COROLLARY 3.4. The following are equivalent for a strongly non-
singular right Utumi-ring R without an infinite set of orthogonal idem-
potents:

a) R is right semi-hereditary.
b) All divisible right R-modules are absolutely pure.

PrOOF. a) = b): Let D be a divisible right B-module, and » € R. As in
the proof of Theorem 3.2, we use [5] to obtain that D* is a torsion-free left R-
module in the sense of Hattori. By [4], D* is flat since R is right semi-
hereditary. Then, D** is injective, and D is a pure submodule of an injective
module. However, the class of absolutely pure modules is closed with re-
spect to pure submodules.

b) = a) is established using arguments similar to the ones used in the
proof of Lemma 3.1. O

4. The Singular Submodule of a Divisible Module.

Over an integral domain R, the h-divisible modules are the epimorphic
images of injective modules. This does not have to hold in our setting:

THEOREM 4.1. The following are equivalent for a right non-singular
ring R:

a) R has finite right Goldie-dimension.

b) A module is h-divisible if and only if it an epimorphic image of an
myjective module.

¢) Non-singular h-divisible modules are injective.

Furthermore, Z(D) is a direct summand of D whenever D is an h-divisible
module over a finite dimensional right non-singular ring.

PRrOOF. @) = b): Suppose that U is a submodule of an injective module
E, and consider an epimorphism 7z : R — E for some index-set I. It ex-
tends to an epimorphism 7 : Q" — E. Thus, E/U is h-divisible. Con-
versely, observe that Q" is X-injective since R has finite right Goldie-di-
mension.
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b) = ¢): Let D be a non-singular h-divisible module. By b), there are an
injective module £ and an epimorphism ¢ : £ — D. As before, we can find an
index-set / and an epimorphism 7 : Q"? — E. We define a Q"-module
structure on D, which is compatible with its B-module structure, as follows:
Whenever ¢ € Q" and d € D, select x € Q" with ¢n(x) =d, and set
d* q = ¢n(xq). To see that this is well-defined, consider y € Q™" with
¢n(y) = d. There is an essential right ideal J of R with ¢/ C R. Forallr € J,
we have [¢n(xq) — pnlyq)lr = [¢n(x) — ¢n(y)lgr = 0. Since D is non-singular,
én(xq) = én(yq). Finally, let ' € D and s € R. If 2/ € Q" with ¢n(@’) = d/,
thend' x s = ¢n(a’s) = ¢n(x’)s = d’s. In particular, ¢ : Q’"(D — D becomes a
Q"-epimorphism. Suppose that we have already shown that Q" is a semi-
simple Artinian ring. Then, D is a projective Q"-module, and the epimorphism
¢ splits. Consequently, D is injective since it is isomorphie to a direct sum-
mand of the injective module ¥.

To see that Q" is semi-simple Artinian, it suffices to show that direct
sums of copies of Q" are injective as right R-modules [12, Proposition
XIII.3.3] since @}, is the injective hull of Ry by [8, Chapter 2C]. To see this,
we consider an index-set J, and apply the construction of the last para-
graph to the h-divisible module D = @®;Q". Observe that the two Q"-
module structures on D actually coincide: Select d € D and « € Q"? with
¢n(x) = d as before. For ¢ € Q" select an essential right ideal J with
qJ C R. For all s € J, we have

(d * @)s = [pr(x)ls = pn(x(gs)) = [¢n(x)l(gs) = d(gs) = (d@)s.

Hence, d x ¢ = dq as desired. In particular, (D, %) is a free Q"-module, and
the Q"-epimorphism ¢n : QP — D has to split, say ¢na. = 1p for some
morphism o« : D — Q"?. But then, ¢: E — D splits, and D = @;Q" is in-
jective for all index-sets J.

¢) = a) is a direct consequence of the previously mentioned result
of [12].

Finally, let A : D — D/Z(D) be the canonical projection. If ¢ and = are
chosen as in the proof of b) = ¢), then A¢n : Q’”(]) — D/Z(D) splits, say
J¢my = 1p, 7y for some y:D/Z(D) — Q". Hence, Z(D) is a direct
summand of D. O

Although h-divisible modules are divisible in the classical sense, they
need not be divisible:

COROLLARY 4.2. The following are equivalent for a right non-singular
ring R of finite right Goldie-dimension:
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a) R is a right p.p.-ring.
b) Every h-divisible right R-module is divisible.

Proor. a) = b): By Theorem 4.1, every h-divisible module M is an
epimorphic image of an injective module, and hence divisible by Lemma 3.1.
b) = a): Since every image of an injective is h-divisible by Theorem 4.1,
we obtain that epimorphic images of injective modules are divisible. As in
Lemma 3.1, R is a right p.p.-ring. O

We say that a right R-module M is weakly cotorsion if Ext}_e(Q’", M) =0.

THEOREM 4.3. Let R be a right Utuma p.p.-ring without an infinite set
of orthogonal idempotents:

a) A right R-module D s divisible if and only if Z(D) is divisible and
D/Z(D) is injective.

b) Z(D) s direct summand whenever D is divisible if and only if all
dwisible R-modules are weakly cotorsion.

Proor. a)Letr € R, and let J be the S-closure of ¥R in R. Since R is a
right Utumi p.p.-ring, J is a direct summand of R by [4], say R=P @ J.
Thus, Exth(R/7R, —) = Exty,(J /R, —). In particular, the divisibility of D
guarantees Ext}g(J /TR, D) = 0. On the other hand, we have the exact se-
quence

0 = Homg(J /rR,D/Z(D)) — Exty,(J /rR, Z(D)) — Exty(J/rR,D) = 0,

from which we obtain Ext}i,(R /TR, Z(D)) = 0. Thus, Z(D) is divisible.

To show that D/Z(D) is injective, observe that it is divisible since R
is a right p.p.-ring. Therefore, we may assume that D is non-singular,
and the same holds for its injective hull E. Since D is divisible, it is an
RD-submodule of E. By [4], RD-submodules of non-singular modules
are S-closed. Thus, £/D is non-singular, which contradicts the fact that
D is essential in E.

The converse is obvious since the class of divisible modules is closed
with respect to extensions.

b) Assume that Z(D) is a direct summand whenever D is divisible, and
consider an exact sequence 0 — D — M — Q" — 0. Then, M is divisible,
and Z(M) = Z(D). By i), M = Z(D) ® U. Then, D = Z(D) & (U N D). Be-
cause of a), UND is injective. Hence, U =(UND)® D;. Then,
M=ZD)oU=ZD)a(UND)® D, =D ® D, as desired.
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Conversely, suppose that divisible modules are weakly cotorsion.
If D is divisible, then Z(D) is divisible, and D/Z(D) is an injective
module by a). Therefore, Ext}z(QT,Z(D)):O. Since R is a finite
dimensional ring, D/Z(D) is a direct summand of ®;Q" for some
index-set I. However, EXt}g(@I Q",Z(D)) =0, from which we obtain
Exty(D/Z(D), Z(D)) = 0. 0

We now give an example of a ring such that modules which are divisible
in the classical sense need not be weakly cotorsion:

EXAMPLE 4.4. Let F be a field, and I an infinite index set. In @ = F”
consider R = FO 4 F1y. By [8, Example 3.11], R is a right non-singular ring
whose maximal ring of quotientsis Q. Since all regular elements of R are units,
every R-moduleis divisible in the classical sense. However, @ is not projective,
for otherwise it would be finitely generated by Sandomirski’s Theorem [6,
Proposition 8.24]. In this case, dimpQ < (dimpR)Ry <2l < FIl = dimrQ, a
contradiction. Hence, we can find an R-module with Ext}%(Q, M) #£ 0.

We conclude this section by looking at the semi-prime case:

COROLLARY 4.5. Let R be a semi-prime right Goldie-ring. The follow-
g are equivalent for a non-singular module D:

a) D is injective.
b) D 1is divisible.
¢) D is divisible in the classical sense.

Proor. It remains to show ¢) = a): Let J be an essential right ideal of
R. Choose aregular element ¢ € J. Foramap ¢ : J — D, consider d = ¢(c)
and select x € D with x¢ =d. If w : R — D is defined by w(1) = x, then
¥|.p — ¢l.r = 0. Since D is non-singular, and J/cR is singular, y|; = ¢. O

Furthermore, we obtain

COROLLARY 4.6. Let R be a semi-prime right and left Goldie-ring.

a) R is a p.p.-ring if and only if the classes of divisible modules co-
incides with the class of modules which are divisible in the classical
sense.

b) All R-modules which are divisible in the classical sense are weakly
cotorsion if and only if Z(D) is a direct summand of D whenever D
18 divisible in the classical sense.
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ProoF. a) In case that R is a p.p.-ring, consider a right R-module D
which is divisible in the classical sense. By [5], it is enough to show that
D* = Homy(D,Q/7) is a non-singular left R-module. Suppose that
¢: D — Q/7 such that c¢ = 0 for some regular element ¢ of R. For d € D
select d’ € D such that d = d’c. Then, ¢(d) = ¢(d'c) = cg(d’) = 0.

Conversely, observe that the class of modules which are divisible in the
classical sense is closed with respect to epimorphic images. By Lemma 3.1,
R is a right p.p.-ring.

b) Suppose that D is divisible in the classical sense. Then the same holds
for D/Z(D), which is injective by Corollary 4.5. To see that Z(D) is divisible
in the classical sense, let x € Z(D). If ¢ € R is regular, then thereisy € D
with & = yc. Since x € Z(D), there is a regular d € R with xd = 0. Then,
yed = 0 yields y € Z(D). We now can adapt the proof of Theorem 4.3 to
establish b). O

Example 5.6 will show that the condition that R is semi-prime cannot
be removed from the last result. The ring R in Example 5.6 is divisible in
the classical sense when viewed as a right module. However, it is not
divisible. Otherwise, it would be absolutely pure by Corollary 3.4 since R
is hereditary. Because R is right and left Noetherian, absolutely pure
modules are injective, a contradiction.

5. The Projective Dimension of Q".

Our first result relates the splitting of Z(D) to the projective dimension
of Qp:

PRrROPOSITION 5.1. Let R be a right non-singular ring. If Z(D) is a
direct summand of every module D which is divisible in the classical
sense, then p.d.(QF) < 1.

Proor. Let M be a right R-module with injective hull £. The singular
module £ /M is divisible in the classical sense. Consider an exact sequence
0—E/M— X — Q" — 0 of right R-modules. Since £//M and Q" are di-
visible in the classical sense, the same holds for X. By hypothesis, the se-
quence splits, and Ext},(Q", E/M) = 0. We obtain

0 = BExtx(Q", E/M) — Ext3(Q", M) — Ext5(@Q", E) = 0,

and Q" has projective dimension at most 1. O
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We now give a non-commutative version of [7, Theorem VII.2.8]:

THEOREM 5.2. Let R be a semi-prime, right and left Goldie-ring such
that (Q/R)g is a direct sum of countably generated modules.

a) p.d.(Qr) <1
b) A right R-module is h-divisible if and only if it is divisible in the
classical sense and weakly cotorsion.

Proor. Let U be a countably generated submodule of @z containing
R, say it is generated by {u,, | n<w}. Without loss of generality, we may
assume %o = 1. We construct an ascending chain {V,},_, such that
Vo=R,V, = d;lR for some regular element d,, of R subject to the con-
ditions dy = 1 and d,, 11 = ¢,d,, and u, . .., U, € V,,.Since R is a semi-prime
right and left Goldie-ring, there is a regular element g, € R such that
Uni1 € g, R. Select ¢,,, 7, € R with ¢, regular such that d,g;! = ¢;'r, and
set dy.1 = cudy, = gy Then, U CV = U, ., V). Since each V,, is free, we
have p.d.(V) <1, and hence p.d.(V/R) < 1.

Now write @/R = ¢;A;/R where each A; is a countably generated
submodule of Qg containing R. Select V; D A; as was constructed in the
last paragraph. Then, A;/R is a direct summand of V;/R, and hence has
projective dimension at most 1, and the same holds for Q.

Let D be h-divisible, and select an epimorphism 7 : @ — D for some
index-set I. Since R has finite right Goldie-dimension, Q¥ is injective.
Hence, we obtain a sequence

0 = Exth(Q,Q") — Exth(Q,D) — Ext5(Q,ker 7) =0

which is exact since p.d.(Qg) < 1. Consequently, D is weakly cotorsion.
Conversely, suppose that D is weakly cotorsion and divisible in the
classical sense. Consider the sequence

Homg(Q, D) — Homg(R, D) — ExthL(Q/R, D) — ExtL(Q,D) = 0.

Once we have shown that Ext}%(Q /R,D) =0, then D is injective with re-
spectto 0 — R — Q. Consequently, D is an image of a direct sum of copies
of Q.

Now Ext}g(Q /R,D) =11 IExt}E(Ai /R, D). Thus, it suffices to show that
Exth(4;/R,D) = 0. However, Q/A; =~ (Q/R)/(A;/R) =~ ®;.i(Aj/R) has
projective dimension at most 1. The exact sequence

0 = ExtL(Q, D) — Ext}s(A;, D) — Ext%(Q/A;, D) =0
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yields Ext}%(Ai,D) = 0. Thus, Ext}?(Ai/R,D) =0 provided that D is
injective with respect to 0 — R — A;. Since A;/R is countably gener-
ated, there are regular elements uy=1,u;,... of R such that
W; = (u,,'R | n<w) contains A;. If ¢ : R — D, then it is enough to show
that ¢ can be extended to W;. As before, there are regular elements
do,dy, ... of R such that d,, 1 = ¢,d,, and u,;! € V,, = d'R.

Let ¢,(1) = ¢(1), and assume that we have already defined maps
$;:Vi— Dfori=0,...,nsuchthatg, |, = ¢ fori=0,...,n—1. Now,
Vii1/Va = d; e, 'R/d, 'R = R/c,R. Since D is divisible in the classical
sense, Extp(R/c,R,D) =0, and hence ¢, extends to ¢,,, as desired.

Therefore, ¢ can be extended to the submodule U, ..V, of Qr which
contains W;. O

However, decompositions of " /R need not be as nice as in the case that
R is an integral domain. For instance, it was shown in [7], that
Q/R =A/R @ B/R yields that A and B are subrings of Q. This need not
hold in the non-commutative setting:

PrOPOSITION 5.3.  Let R be a right and left Utumi-ring of finite Goldie-
dimension whose maximal right and left ring of quotients is Q. If
Q/R = A/R® B/R for submodules A and B of Qr containing R, then
the following are equivalent:

a) A and B are subrings of Q.
b) A and B are submodules of pQ.

PrROOF. b) = a): Let J be an essential right ideal of R. Since R has
finite Goldie dimension, @ is a semi-simple Artinian ring, and JQ = Q
by [12, Proposition Theorem XI1.2.5] and [8, Theorem 3.35]. For every
g€ Q, we can find r,...,7, €J and q1,...,q, € Q with ¢ =27 rq;.
For each ¢, there are a;, € A and b, € B with ¢; = a; + b;. Then,
q =27 ra; + 27 1;ib; € JA+ JB. Thus, Q =JA + JB. Moreover, if q
has been chosen from A, then ¢ — (27 r;0;) = 27 70 € ANB =R by
b). Hence, A = JA + R.

Select a € A, and choose an essential right ideal I of R with al C R.
Then, aA = a(IA + R) = (al) + aR € A by what has been shown in the
last paragraph and b).

a) = b) is obvious. O

ExampLE 5.4. Let S be an integral domain with field of quotients F'
which is not a field. The ring R = Maty(S) is a prime right and left Goldie-
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ring whose classical right and left ring of quotients @ is a simple Artinian
ring. Suppose that e; and e are the canonical idempotents of R with a 1 in
one positions and zero everywhere else. Then it is easy to see that
A=eQQ+R and B=e0Q + R are not subrings of Q. Moreover,
A+B=¢1Q+eQ+R=QandANnB=R.

THEOREM 5.5. Let R be a semi-prime right and left Goldie-ring such
that Qr s a countably generated right R-module.

a) An R-module s h-divisible if and only if it is divisible in the
classical sense. In particular, every R-module M which is divisible
wn the classical sense is weakly cotorsion.

b) Z(D) is a dirvect summand of D whenever D s divisible in the
classical sense.

c) R is ap.p.-ring if and only if the classes of h-divisible and divisible
modules coincide.

Proor. a) By Theorem 5.2, it remains to show that every right R-
module, which is divisible in the classical sense, is weakly cotorsion. Since
the class of modules, which are divisible in the classical sense, is closed with
respect to extensions, it suffices to consider a module D which is divisible in
the classical sense, and to show that every epimorphism = : D — @ splits.

Suppose that Q = 2, -, u, R where 4y = 1. We construct an ascending
chain {V, }, _,, of submodules of Qg such that V, = R, V,, = d, 1R for some
regular element d,, of R subject to the conditions dy =1, d,,.;1 = ¢, d,, for
some regular element ¢, of R, and u,, € V.

Suppose that regular elements dy, . . ., d,, and submodules Vo C ... C V,
of R have already been constructed with the desired properties. Since @ is
the classical right and left ring of quotients of R, there are ¢, r, € R with ¢,
regular such that d,u,.1 = c,'r,. Set dyi1 =cyd, and V1 =d, 1R,
Since d,! =d, ! c,, we obtain V, C V,.1. Moreover, u,.1 = d, c,'r, =
=d, 1,1 € Vyy1. Therefore, Q = Uy <o,V

Choose sy € D with n(sg) =1 € R, and define dy(1) = s¢. Suppose that
we have already defined morphisms {J; : V; — D[t =0,...,n} such that
6j|lVi =0; for all 0 <i<j<m and nd; =1y, for all :=0,...,n. Let
sy = Ou(d;1). Because D is divisible in the classical sense, there is s,,.1 € D
such that s, 1¢, = s,. Since V1 = dﬁ}dR is a free R-module, setting
6,1+1(d;}r1) = Sy.+1 induces an R-module map dy.1 : Vi1 — D. In view of
d;;l = d;ilcm we obtain 5n+1(d;1) = 6n+1(dﬁi1)cn = Sp41Cn = Sy = 517,(d,;1);
and 0,11|Vy, = J,. Moreover, ﬂénJrl(dﬁil)Cn = ﬂ5n+1(d1;41_10n) = T0n41 (dﬁl) =
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= nd,(d,!) = d,* = d,1,c,.Since Qisnon-singular, 79, 1(d, ;) = d,},;and
non+1 = ly,.,. Then, ¢ : @ — D defined by d(x) = d,(x) if x € V), satisfies
0 = ].Q.

b) follows from Corollary 4.6 and part a).

¢) If R is a p.p.-ring, then h-divisible modules are divisible by Corollary
4.2. Conversely, every divisible module D is divisible in the classical sense.
By a), D is h-divisible.

On the other hand, if h-divisible modules and divisible modules coincide,
then the class of divisible modules is closed with respect to epimorphic
images. By Lemma 3.1, R is a p.p.-ring. O

If R = Mats(7Z[x]), then the class of h-divisible modules coincides with
the class of modules which are divisible in the classical sense. However,
there exist h-divisible modules which are not divisible since R is not a
p-p--ring [6, Theorem 8.17].

We now give an example that there may exist weakly cotorsion modules
which are divisible in the classical sense but not h-divisible if R is not semi-
prime:

ExaMPLE 5.6. Let R be any lower triangular matrix ring over a field ¥
of order at least 2. By [8, Theorem 5.27], R is right and left hereditary.
Hence, h-divisible modules are injective. However, since R is Artinian, all
regular elements of R are units. Thus, every R-module is divisible in the
classical sense. Furthermore, another application of [8, Theorem 5.27]
yields that Q" is flat as a right and left R-module. Since Q" also is finitely
generated, it is projective. Therefore, Ext(Q", M) = 0 for all R-modules
M. On the other hand, since R is not semi-prime, there exist an E-module
which is not injective.

PrOPOSITION 5.7. Let R and S be a rings, and F : Mg — Mg an
equivalence with inverse G.

a) If R is a semi-prime right and left Goldie-ring such that Q/R is a
direct sum of countably generated modules, then the same holds for S.

b) If R has finite right Goldie-dimension, then F(D) is h-divisible
whenever D is h-divisible.

Proor. a) It remains to show that Q(S)/S is a direct sum of countably
generated modules. Since Q(S) is the injective hull of S, we obtain that G(Q(S))
is the injective hull of G(S). Because G(S) is a finitely generated projective R-
module, there is a projective module P such that G(S) ® P = R" for some
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n<w. Then, GQ(S)) ® E(P) = Q". Thus, G(Q(S))/G(S) & E(P)/P = (Q/R)".
By Kaplansky’s Theorem, G(Q(S))/G(S) = @;U; where each U is countably
generated. Since 7 (R) is finitely generated, 7 (U;) is countably generated.
b) Since R has finite right Goldie-dimension, D is an epimorphic image
of an injective. O

Combining the last two results shows that the property that the classes
of divisible and h-divisible modules coincide is not Morita-invariant.
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