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Metric Currents and Geometry of Wasserstein Spaces

LucA GRANIERI (*)

ABSTRACT - We investigate some geometric aspects of Wasserstein spaces through the
continuity equation as worked out in mass transportation theory. By defining a
suitable homology on the flat torus ", we prove that the space P,(I") has non-
trivial homology in a metric sense. As a byproduct of the developed tools, we show
that every parametrization of a Mather’s minimal measure on [ corresponds to a
mass minimizing metric current on P,(1") in its homology class.

1. Introduction.
1.1 — The Monge-Kantorovich problem.

Optimal transport problems, also known as Monge-Kantorovich pro-
blems, have been very intensively studied in the last 10 years and, due to
the numerous and important applications to PDE, shape optimization and
Calculus of Variations, we witnessed a spectacular development of the
field. For the details of this theory, the interested reader may look at the
book and lecture notes [1, 7, 31, 32], the paper [17] and for some of the
applications [6, 22]. Our description will be restricted to the setting of a
compact Riemannian manifold M without boundary, however many of the
concepts of this section could be formulated in general metric spaces.

Let ¢ : M x M — R* be a Borel function. The Monge problem is for-
mulated as follows: given two probability measures u,v find a map
t : M — M such that ¢y = v (§ denotes the push-forward of measures) and
such that ¢ minimizes

/ (e, 8@y
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among the maps with the same property. It may happens that the set of
1
admissible maps is empty (e.g. 4 = J, and v = é(éy + 9;)). Then the pro-

blem is reformulated in its Kantorovich’s relaxation. Find y € P(M x M)
such that 7}y =y and 7y = v (z' and 7* are the projection on factors of
M x M) and such that y minimizes

/ c@, y)dy(e, y).

MxM

If ¢ is admissible for the Monge problem then the measure associated in the
usual way to the graph of ¢, i.e. y = (I x t);u, is admissible for the Kantor-
ovich problem. However the class of admissible measures for the Kantor-
ovich problem is never empty as it contains x ® v. Moreover, the Kantor-
ovich problem is linear. Existence of minimizers for the Monge problem is
difficult and may fails, while for the Kantorovich problem semicontinuity of
¢ is enough.
If ¢ is a distance then the cost

de(p,v) = min{ / e, dye,y) : my=p, 7y = V}

MxM

defines a distance on P(M). If d is the geodesic distance of the manifold
then for p > 1 also

1/p
Wi, v) = (min{ / &P, ydye,y) = my = u, ﬂ§y=V})

MxM

defines a distance on P(M) called Wasserstein distance. Moreover,
(P(M), W) is complete and W, metrizes the weak* convergence of mea-
sures. The metric structure induced on P(M) is extremely rich and will play
an important role in this paper. In particular P,(M) := (P(M), W) admits a
tangent space. We will get in details in a subsection of preliminary results.

Finally, whenever c(x,y) is a “length” cost, which means that there
exists a Lagrangian L : TM — R™ such that

cwy)=_nt [ Lo, 00
0)=a,y(1)=y

then the transport problem has a third formulation due to Brenier. The
basic idea is to look at paths connecting the two measures u, v € P(M) that
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we want to transport. If, in the simplest case of 4 = 6, and v = J,, we take a
regular curve y connecting x to y, then the measure p; = J,) and the ve-
locity field v; = () are related by the equation

1.1) gtJrV (v¢p) =0 on (0,1) x M,

in the sense of distribution. Indeed, if we take a test function
ot,x) € C°((0,1) x M), we have

ap
( Vv wtpt)) () —

1

1
_ / / Drot, 2)dpydt — / / (dogp(t, @), v0)dpydt
0 M
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More generally, we can consider couples (p;,v(x,t)) € P(M) x M"(M)
which satisfy the equation (1.1) as admissible configurations. In this setting,
Brenier’s formulation of the optimal mass transportation problem amounts
to minimize
1

/ / L, e, 0)dp )it

0 M
among the pair (p,v) where p :[0,1] — P(M), and for each t, v(-, 1) is a
tangent vector field on M defined p; almost everywhere, which satisfies the
continuity equation:

i +V (vp) =0 on (0,1) x M,
1.2) at
pO)=u, p)=v.

We remark that if f f |lve|ldp,dt < + oo, then for every ¢ € C*(M) the map

t— f pdp, € ewh 1(0, 1). Actually, it turns out that p; is an absolutely con-

loc

tmuous (a.c.) curve in the space P(M) endowed with the 1-Wasserstein
distance.
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1.2 — Mather’s minimal measures and Eulerian representations.

A measure u € M(TM) is said to be closed if for all exact forms w it
results

(13) / (@), v)dp = 0.

™

According to this definition we set

M = {,u € M(TM) | s closed, u € P(TM), / L(x,v)du< + oo}.
™

To each measure u € M® we can associate the homology class of u
which we will denote by [u] € Hi(M,R) (by duality with H'). Indeed,

thanks to the fact that L is superlinear and [ L(x,v)du< + oo, uactsin a
™

natural way on the set of the closed 1-forms on M by
1.4) w— / (o), v)du
™

and thanks to condition (1.3), this action passes to the quotient by the exact
forms.

Once we fix an homology class [k], Mather’s variational problem
amounts to:

(M) Minimize{ / L(x,v)du | 1€ M [u]l = [h]}.

™

A remarkable property of problem M is the following: we minimize an
action functional which depends on L on measures which are merely
closed. However, it turns out that the minimal measures are also invariant
for the flow associated to the Lagrangian L, see for example [5, 10].

There is a deep connection between Mather’s problem and the Monge-
Kantorovich theory (see [9, 11, 19, 20]). In particular, in [11] is considered
the following problem: minimize the convex and l.s.c. functional

1

K(p,v) = / / L(x, v(x, t)dp,dt,
0 M
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among all pairs p : [0,1] — P(M) and v : M x [0,1] — TM which solve

ap .
—+V-(wp)=0 in (0,1) x M,
(1.5) ot P

p(0) = p(1)

and satisfy an homological constraint in a sense that will be explained right
below. To each solution (p, v) of (1.5) we can associate a closed, normal 1-
current

1
nwwH//@mmmmmm
0 M

As already noticed 7', , has a well defined homology class. Then the problem
is formulated as follows

P) Minimize {/C(p, v) | (p,v) satisfies (1.5) and [T),] = [h]}.

It turns out that problem P is equivalent to the Mather’s problem M.
Moreover, to every Mather’s minimal measure one can associate an optimal
couple (p, v) of P and vice-versa. Each minimizing pair (p, v) will be called an
Eulerian representation of the current 7,, and of the corresponding
Mather’s minimal measure.

Notice that different Eulerian representations can be associated to the
same current or measure.

Finally, in the case L(x, v) = |v|” problem P is equivalent to the classical
problem of minimizing the mass (to the power p) of closed 1-currents in a
given homology class (see [5, 11]).

1.3 — Description of the results.

Every Eulerian representation (p,v) of a Mather’s minimal measure
leads naturally to a closed 1-metric currents on a Wasserstein space
(see the next section for definitions and main properties). It is natural
to ask whether these Kulerian representations enjoy metric minimality
properties or not. To make sense to this question we need some tools
able to recover that two closed metric 1-currents are homologous on
PpM).

The matter is to specify the meaning of homology classes in a metric
framework. Since a deep theory of metric currents is already available in
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[3], a natural way is to define metric currents 7 and S to be homologous if
there exists a metric 2-current N such that 7 — S = ON. Regarding this
metric definition of homology, at the best of our knowledge, it seems that
all the tools available in the literature rely on some cone construction as in
[3, 33, 34], or by a differential form approach as in [16]. In any case, these
methods are relative to metric spaces with trivial homology in the metric
sense, and they are not applicable to general Wasserstein spaces P,(M). In
Section 3 we show that also on nice spaces such as Hadamard spaces M, we
cannot say in general too much about the homology of P,(M). Indeed, we
are just able to show that all the closed Lipschitz curves d,; on P,(M),
corresponding to closed cycles y of the Hadamard space M, are homo-
logous to zero. This fact is proved by considering barycenter maps.
However, the existence of a barycenter map imposes many restrictions to
the geometry of M (see Theorem 3.3). As a byproduct, this discussion
furnishes a counterexample to the extension of Lipschitz maps between
metric spaces (see Example 3.5).

Although P,(M) is always contractible, see Proposition 3.1, it is
known that P, (M) has trivial homology only for special geometry of the
underlying space M (see [16, 34]). In Section 4 and Section 5 we propose
to investigate the metric homology of P,(M) by means of mass trans-
portation tools. More precisely, by using the continuity equation (1.2) we
associate an euclidean current on M to every metric current on P,(M) by
a~ operator defined by equation (4.3). It turns out that this operator well
relates metric 1-currents to metric 0-currents as stated in Theorem 4.5.
Unfortunately, we are not able to prove the same well behavior for the
analogous ~ operator which relates metric 2-currents to metric 1-cur-
rents. However, on the flat torus T" some of the program can be carried
on. In particular, we restrict the homology by considering metric 2-
currents which satisfy the compatibility condition (5.8). It results that to
every distinet homology classes on T” correspond distinct such re-
stricted metric homology classes on P,(1") (see Lemma 5.4). Therefore,
the space P,(1") is a first example of a metric space with non-trivial
homology in a metric sense. Once the question of finding homology
classes in a metric sense has some answer, although partial, it is
meaningful to address the question of recovering mass minimizing cur-
rents on P,(M) by knowing the structure of the Eulerian representa-
tions of Mather’s measures on the underlying space M. As a byproduct of
the developed tools, in Section 5.3 we show that to every Mather’s
minimal Eulerian representation (p,v) corresponds a mass minimizing
metric 1-current on P,(T") in its homology class.
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2. Preliminary results.

2.1 — Normal 1-currents.

This section collects some definitions and technical facts about normal
1-currents and their representations which will be used explicitly in the
paper or which are useful to give sense to some definitions. The exposition
is adapted to the fact that the manifold M is compact and then different
from what would be on an open subset 2 of RY.

By I'™(T*M) we denote the space of C*, 1l-dimensional forms.
I'*(T*M) is usually equipped with the norm |||, = supy |w(x)|. The
space of normal, 1-dimensional currents is the space of linear, continuous
(as well the boundary) functionals on I"*°(T*M) and is denoted by N1(M).

The subspace of the currents 7' € N'1(M) such that T'(w) = 0 whenever
w is an exact form is the space of normal, closed 1-currents and it is de-
noted by N7(M).

The mass norm of a normal current (in short: “mass”) is defined as
follows:

M(T) = sup{T(@) | ||, <1}.

The boundary of a current is defined by duality with the differential
through the formula:

T(d¢) = T (@) for all ¢ € C(M).

Then for a current 7', being closed is equivalent to 9T = 0.
Any T € N1(M) can be represented by integration using a probability
measure ¢ on M and a tangent vector field X defined g-a.e. as follows:

T(w) = /(w(.%‘),X}da.
M

There are many references in the literature for the representation of
normal currents, among them we refer to [15] or Theorem 1 in section 2.3
of [18].

2.2 — Currents in metric spaces.

In this section we introduce the notion of (normal, rectifiable, integer)
currents in a metric space F, according to the paper [3], who first contains
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a complete treatment of the subject. We will apply this theory in Section 5
for the Wasserstein space P,(M). Since we are mostly interested in 0,1 and
2-currents we confine ourselves to state the principal results regarding
these particular (metric) functionals.

DEFINITION 2.1. A k-current T, k = 0, 1, 2, is a multilinear functional on
the set of (k + 1)-couples ( fo, fi,....fe) € Lip(E)"*!, with fy € L™(E), sa-
tisfying the following properties:

i) T is continuous along sequences ( fy, f{",..., f;') converging point-
wise and with sup,, Lip( f/*) < 4 oo;

ii) T is local, in the sense that T'( fy, fi,...,fr) = 0 if f; is constant for
some 7 € {1,...,k} in a neighborhood of f; # 0;

iii) T has finite mass, ie. there exist ue€ M(E) such that

ITCfo, fis - fi)l < Iy Lip(f) [ foldys
E

The least measure u satisfying iii) is said mass of T' and it is denoted by
[|7l, while M(T) := ||T||(&) is the total mass of T.

REMARK 2.2. Given a k-current T, its total mass can be computed
also as

N

M(T)sup{z T(g,. fis - - - D {Bi}; Borel partition of E.f € Lipl(E)},
=1

where Lip;(¥) is the set of Lipschitz functions with Lipschitz constant
Lip( f) not greater than 1. Observe that the metric functional 7' could be
extended on k-tuples with the first argument a merely bounded fune-
tion. For k-currents it is possible to define a boundary operator 0T as
follows

8T(.ﬁ)?f17 s 7fk71) = T(17,ﬁ)7.f17 s 7fk71)-

The restriction 7 A of T to a Borel set A C E is given by

Tl—A(ﬁ)afl7”'7fk) = T(fb)(Aafi77f}C)

If ¢ € Lip(®, F), with F' another metric space, we define also the push-
Jorward of T, as ¢, (T)( fo, f1,-. ., fi) :==T(foo g, fiop,..., fi o p). Notice
that the boundary and the push-forward operator commute. The push-
forward operator will be very useful since every integer rectifiable current
will be generated by Lipschitz images of euclidean metric currents as be-
low, with g € LY(R*, 7).
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Examples of 1-currents for E = R, and 2-currents if £ = R?, can be
given once fixed a function g € LY(R) or g € LY(R?) in the following way:

Ty oo fi) = / Y@@ @) da

R

Nyfor fiofe) = / o@)fs(@) det (Vfy, Vf)da.

R?

2.1)

We'll come back to these fundamental examples to define integer currents
and also in view of the representation Theorem 2.4.

Even if it will be used only to introduce rectifiable currents, we define
countably H*-rectifiable sets as sets S such that

HE(S\ (JhiKD) =0
i=0
for K; compact sets and &; : K; — E bi-Lipschitz functions.
We can now introduce the notion of normal, rectifiable and integer k-
currents.

DEFINITION 2.3. A k-current T will be said normal if 0T is still a (k — 1)-
current.

A k-current T will be said integer rectifiable if ||T'|| is concentrated on a
countably H*-rectifiable set and, for any ¢ € Lip(E, R¥) and for any open
set A of £, ¢, (T A) = T, (see representation in (2.1)) with g € Ll(R"’, 7).
The set of integer rectifiable k-currents will be denoted as Z(E) while
N(E) will be the set of normal k-currents. Finally, we denote by I.(E) the
space of integer rectifiable normal currents.

If k = 1,2 any k-current in R can be represented, uniquely, as in (2.1);
moreover, if T is normal the function g turns out to be BV (R").

Finally we state the result that allows to decompose any integer rec-
tifiable currents as sums of Lipschitz push-forward of integer euclidean
metric currents.

THEOREM 2.4. T € Iy(E) if and only if there exist compact sets
K; c R* 0, € L\(R*,7) and bi-Lipschitz functions h; : K; — E with
supp(0;) C K; such that T =37 hiy(Ty,) and M(T) = 372 M (hiy(Ty,)).

For normal currents it turns out that the functions 0; of Theorem 2.4
are actually BV functions, see Theorem 3.7 of [3]. In the case k =1, and
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considering a geodesic space E (see Section 2.5), the Lipschitz function
h; : K; — E can be extended in a Lipschitz way to intervals such that
K; C [a;,b;]. As a reference for extension of Lipschitz maps we refer for
instance to [12]. Therefore, in such a case Theorem 2.4 yields the re-
presentation T = >, Ty, ,. where p; : [a;,b;] — E is a Lipschitz function
while the current Ty, ,. is defined by

b;
Topp s i) = / OO ) S DN

The definition of Z; (&) allows us to introduce the homology of E as
follows. Consider the chains induced by the boundary operator 0 (observe
that 9% = 0)

T B S TE) S T (B) S -

we define the k-homology as

Ker 0y,

=,

In particular we will use the homology of P,(M).

2.3 — Kantorovich duality.

In this section we recall some useful duality results for the Monge-
Kantorovich problem. The following Theorem can be found in [31].

THEOREM 2.5. Let c(x,y) a positive continuous cost on M. Then the
minimum value of the Kantorovich problem is equal to

@2 s ){ / o@df* + / v | ¢<x>+w(y)5c<x,y)}.
M

o weCM, R
M

If ¢ is the geodesic distance d on M, duality formulation becomes:

THEOREM 2.6. If c(x,y) = d(x,y) then the minimum value of the
Kantorovich problem is equal to

sup{/ud(f+ - lue Lipl(M,d)}.

M
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Actually, the supremum in Theorem 2.6 is attained and the optimal
are called Kantorovich potentials.

2.4 — The continuity equation and the tangent space to P,(M).

The continuity equation (1.2) has been used in the Monge-Kantorovich
theory since its beginning for many applications. The fact that it char-
acterizes the a.c. curves on the space of probability measures equipped
with the Wasserstein metric was only recently pointed out and the full
proof is contained in [2]. Here we summarize some results from that paper.
For an analysis in metric spaces we refer to [2, 4]. For Lipschitz function on
a metric space (M, d) we introduce the metric derivative according to the
following definition.

DEFINITION 2.7. Given a curve p : [a,b] — (M, d) we define the metric
derivative at the point ¢ € Ja, b[ as the limit

@3) lim d(pt + k), p@®))
h—0 h

whenever it exists and in this case we denote it by ||(®).
If p: [a,b] — (M, d) is a Lipschitz curve, by metric Rademacher The-

orem the metric derivative of p exists at Ll-ae. point in [a, b]. Further-
more, the length of the Lipschitz curve p is given by

b
) = / Pl

We restrict our treatment to the case of P,(M) := (P(M), W),) for p > 1.
The tangent space to P, (M) at a point x is defined as follows:

Tan,Py(M) := {J,(Vp) ¢ € COO(M)}L,,(/D

where ¢ is the dual exponent of p and J, : L9(y) — LP(n) denotes the
duality map

ol

Jq(v) =

—2 -
[l

The following theorem relates a. c. curves in P,(}) to the continuity
equation and, in some sense, justifies the definition of the tangent
space.
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THEOREM 2.8. Let p:[0,1] = P,(M) be a curve. If p is a.c. and
Ip| € LY(0,1) is its metric derivative, then there exists a Borel vector field
v : (t, x)—v(x) such that

2.4) v € LP(p) and |[|ve|pp,, < [0l for £'—a.e. t €[0,1]

and the continuity equation

%—i—v-vp:O m (0,1) x M
18 satisfied in the sense of distributions. Moreover for a.e. t € (0,1) v; be-
longs to Ty Pp(M).

Conversely, if p satisfies the continuity equation for some vector fields
vy such that |[vil| 1, € L'0,1), then t— p(t) is a.c. and

PI® < vl g, for L£'—ae. te0,1].

REMARK 2.9. The minimality property (2.4) uniquely determines a
tangent field v;. We will refer to v; as the tangent vector associated to the
curve p.

There are also previous definitions of tangent space to x in P,(M), see
for example [26]. In [2] there is also an infinitesimal characterization of the
tangent space in terms of transport maps.

2.5 — Basic properties of Wasserstein distances.

Since we are interested to study the space P(M) with M a compact
Riemannian manifold, throughout this paper (M,d) is assumed to be a
complete, separable and geodesic space. A metric space is said geodesic if
for each pair of points «,y € M the distance d(x, y) is given by

1
2.5) d(, y)zmin{l(y) =/ [7|(®)dt |y € Lip([0,11, M), 7(0) = a, (1) = y}
0

Where [j| is the metric derivative of y defined by (2.3). If x,y € M, we say
that a Lipschitz curve y : [0,1] — M is a geodesic between « and y if y is a
minimizing curve in (2.5). Usually, geodesics are parametrized pro-
portionally to arclength, i.e. d(a(t), a(s)) = v|t — s|, where v is the constant
speed. We say that the metric space (M, d) admits a measurable choice of
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geodesics if there exists a measurable function f: M x M x [0,1] = M
such that the map t—f(x,y,t) is a geodesic between x and y. If for instance
M is a Banach space, the function

is a measurable choice of geodesics. Actually, f is a continuous function.
This is also true if M is a compact Riemannian manifold replacing the
segments with geodesics. Observe that all this notions are inherited by
P,(M) as stated in the following (see [2, 29, 20])

PrOPOSITION 2.10.  If M admits a measurable choice of geodesics, then
for every 1 < p the space P,(M) is complete, separable and geodesic.

The following proposition collects some important inequalities for the
Wasserstein distances.

PropoSITION 2.11.  Let 1 < p < q. Then

W, <W,.

2) W, < W5 diam(M)* .

Proor. Claim 1) is a direct application of Holder’s inequality. To check

claim 2) let y be an optimal plan between its marginal x, v for W),. Hence

1

qu,v)s( / d(x,wqdy) =( / d(ac,y)pd(ac,y)quy) <

MxM MxM

< W, (V)i diam(M)'T = W,o(u, v)i diam(M)". ]

Therefore, on bounded metric spaces all the Wasserstein distances
produce the same topology. The following convexity property is an im-
portant feature of the Wasserstein distances.

ProrosiTION 2.12. Let p>1 and py,uy,v1,v2 € Ppy(M). Then
Vi e[0,1]:

W (Apy + (1 = Dty vy + (1 = D)’ < AW, (pag, 1)+ (1 — W (pg, v2).

PrOOF. Let y; be an optimal plan between y; and v; for¢ = 1, 2. Observe
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that Ay; + (1 — A)y, is a transport plan between Au; + (1 — Duy and
v1 + (1 — A)ve. Then

W, gy + (4 — Dptg, dvy + (A — Dve)? < AW, (g, )" + A — DWo(stg, o)
O

Convexity properties of the distance are related to important geometric
notions, in particular to curvature properties, see [2, 20, 29].

3. Wasserstein spaces P, (/) with trivial homology.

Fixed T € Z1(M) without boundary, 9T = 0, the generalized Plateau
problem asks to minimize M(S) among all S € Zo(M) such that S = T.
Of course, this problem is meaningful for metric space M provided the
class of admissible currents is not empty and sufficiently rich. There-
fore, the usual setting is to consider metric space of euclidean type,
namely such that every closed 1-current is the boundary of a 2-current.
In other words, by defining two metric 1-currents 7',S to be homo-
logous if there exist a metric 2-current N such that 7'— S = 0N, this
corresponds to spaces with trivial metric homology. By a cone con-
struction, in [3] it is shown that Banach spaces have such a trivial
homology. By a slightly modified construction, it is possible to show
that more general metric spaces enjoy trivial metric homology (see
[33]). Among these spaces we mention Hadamard spaces, i.e. complete
simply-connected metrie spaces of non-positive curvature in the Alex-
androv sense, and Busemann spaces, i.e. with convex metric. We refer
to [23, 24, 25, 28, 29, 30, 33] for precise definitions and main properties.
Here we focus our attention on Wasserstein spaces. As a first glance we
have that the homology on P,(l{) cannot be recovered in general by
homotopy. Indeed, we have the following

ProposITION 3.1.  P,(M) is contractible and locally contractible.

Proor. Let y; a continuous curve in P,(M). Consider the function
F:10,1] x [0,1] — P, (M),
defined by

3.1) F(t,s) = sy + (1 — $)p.
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We have that F'(¢,0) = x;, while F'(¢,1) = x,. By Proposition 2.12 we have

Wy (F(t, ), F(to, 50)) = Wp(spy + (1 — )y, soty + (1 — so)py,) <
< Wplsug + (1 = )y, spg + (1 — $)py) +

+ Wy(spo + (1 — $)pty,, Soptg + (1 — Sodry,) <

<(@1- s)rlJWp(,ut,uto) + Wp(sug + (1 — $)py, , soptg + (1 — so)y,) < &,

provided that |s — so|, [t — 0| < J because of the continuity of 1. To check
the second claim consider the ball B(v,1) C P,(M). If 1, is a curve on the ball
such that 1, = v, by Proposition 2.12 and (3.1) we have

W, (v, F(s, ) = W, (g, st + (1 — $)t) < (1 — Wy (g 1) < 1.
O

Observe that by defining the metric homology through metric cur-
rents, it results that the homology is not a topological invariant. In
particular, in this metric setting, at least Lipschitz regularity of maps
between metric spaces is needed. Therefore, although Wasserstein
spaces are contractible, in general it could happen that this contraction
is not a Lipschitz map. Therefore, Wasserstein spaces could have non-
trivial metric homology.

3.1 — Barycenter maps.

A possible strategy to investigate the homology of P, (M) is to relate the
geometry of P,(M) with the geometry of the underlying space M. This
program can be certainly realized if a barycenter map is available. Here for
barycenter map we mean a function

B:PiM)— M,

which satisfy the conditions:
Q) Yee M : p(6,) =,
) f € Lip,(P1(M), M).
Because of Proposition 2.11 f € Lip,(P,(M), M) for every p > 1 as well.
However, we point out that the existence of barycenter maps produces
some restrictions on the geometry of the space M.
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o If x,y € M we can define the curve o(¢) := f((1 — ¢)d, + td,) which
turns out to be a geodesic curve. Furthermore the distance is convex
along such geodesics. Hence, if geodesics on M are unique then M is a
Busemann space.

e If M is a Riemannian manifold then M must have sectional curvature
< 0.Indeed, if My C M it also admits a barycenter map. Choosing M
sufficiently small, geodesics on M, are unique and then the distance
is convex on M. This implies that M has sectional curvature < 0.

Actually, barycenter maps can be canonically constructed on Hadamard
spaces (see [20, 24, 29]). Consider a Lipschitz cycle y : [a,b] — M on the
Hadamard space M. It results that also the curve J,; on the Wasserstein
space Pp(M) is a Lipschitz curve. Therefore, this curve corresponds to a
metric 1-current on P,(M), which we denote by T',, defined as

b
T,(fo, fi) = /f()(éy(t))%fl(@(t)) dt.

We have the following

THEOREM 3.2. Let M be an Hadamard space. Then for every Lipschitz
cycle y on M the 1-currents T, is homologous to zevo in Pp(M).

Proor. We have T, € Z{(P,(M)). Therefore, ﬁ#Ty is a closed metric
current on M. By the cone construction of [33] there exists S € Zo(M) such
that §, T, = 0S. Consider the canonical embedding i : M — P, (M) defined
by i(x) = . Since i o f(J,) = o, for every x € M, we have

T, = iy (B, (T,) = i4(0S) = AipS).
O

Hence, by Theorem 3.2 the 1-currents 7', belong to the same homology
class of P,(M). However, we don’t know whether there could exist other
homology classes in P,(M) or not. In [16] is discussed an approach by
differential forms on Pg(Rd), showing that in some sense the space
Po(RY) has trivial homology. We may conjecture that actually also
Hy(P,(M)) = {0} for Hadamard spaces M. Probably, it would be necessary
different tools to prove or reject this conjecture. In the next sections we
develop a more general approach, based on mass transportation tools,
ables to check if two metric closed 1-currents are homologous in P,(M). By
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using these results we will prove that P, (1") is an example of Wasserstein
space with distinct homology classes in a metric sense. Since every com-
plete simply-connected Riemannian manifolds of non-positive sectional
curvature is an Hadamard space, to recover non trivial homology on P, (M)
we have to look for manifolds with local sectional curvature < 0 or with
non-negative curvature. Observe that there is no canonical way to define
barycenter maps on such spaces. Furthermore, whenever the space M is
non-contractible, such a barycenter map cannot exist.

THEOREM 3.3. Ewvery non-contractible metric space (M,d) does not
admit a barycenter map.

ProOF. Suppose by contradiction that there exists a barycenter
map f: Pp(M) — M. Consider a closed continuous curve y:[0,1] - M
not homotopic to a constant. Let ¢ : M — P,(}) be the canonical iso-
metry defined by i(x) = J,. Take the continuous function F :[0,1] x
x[0,1] — Pp(M) defined by (3.1) with y; = i(y(¥)) and consider the con-
tinuous composition o F : [0,1] x [0,1] — M. We have

poF(t,0) = pa(y®) = y@),
BoF(t,1) = puy),

which is a contradiction since the curve y is not homotopic to a constant.[]

Since we can always define barycenters on the set 4 of Dirac deltas by
p(6,) = «, certainly satisfying the Lipschitz condition of barycenters, a
possible strategy is to try to extend the map S to the whole space P; (M) in
a Lipschitz way. The following statement, adapted to the case of curvature
< 0 and > 0 in the Alexandorov sense, is taken from [25].

THEOREM 3.4 (General Kirszbraun theorem). Let E,F geodesics me-
tric spaces such that E has curvature > 0, while F' is complete with global
curvature < 0. If A C E, every f € Lip(A, F) admits a Lipschitz extension
with the same Lipschitz constant.

We remark that this statement actually holds whenever the curva-
tures are bounded by a constant k € R instead of 0, provided that
T
vk
following example shows that in Theorem 3.4 the assumption of target

space of global curvature < 0 cannot be reduced to a local one.

diam( f(A)) < %Dk, where D, = if k>0, D, = +oco otherwise. The
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ExamPLE 3.5. Consider the flat torus T". It is known that the space
(P(T™),Ws) has curvature > 0 (see [2, 20, 29]). Of course, 1" is non-
contractible and it has local curvature < 0. Therefore, by Theorem 3.3 we
infer that the 1-Lipschitz map

Bid—T"

defined by f(d,) = x cannot be extended in a Lipschitz way to the whole
PeT™).

If M is a manifold the same example can be done using the isometric
embedding of M in R for k big enough.

4. Entire metric currents on P, ().

On a general manifold M we need to base our approach on more in-
trinsic instruments. In [34] is developed a general approach to define an
homology for the class of metric spaces which are locally contractible in a
Lipschitz way. Among them we mention metric space with global Alex-
androv curvature bounded from above. However, Wasserstein spaces does
not enjoy these curvature properties, unless for P,(IR), see [21]. Here we
start to study some relationships between the entire homology of P, (M)
and the real homology of M. The basic idea is to relate these homologies by
the continuity equation (1.2).

We begin by recalling how a Lipschitz curve p: [a,b] — Pp(M) is
identified with an entire 1-current on P,(M) which we denote by 7',. Fol-
lowing [3], T, is defined by

b
T, fofi) = / fo(ﬂ(t))%ﬁ@(t))dt-

If we have to take in account a multiplicity function 0 € L', we define

b
To,(forft) = / OO D) & )

For reader convenience, in the following lemma we compute the total mass
of Tg} re

LEMMA 4.1.  For every 0 € LY(R, 7)) it results Ty, € Z:(Pp(M)), and its
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total mass is given by
b
4.1) MTy,) = / 0| |pl,@) dt
a

where |pl, @) is the metric derivative of p w.r.t. Wp,.

Proor. Notice that Ty, = p,(Ty), so that Ty, € Z1(P,(M)). Since

%fl(ﬂ(t)) < Lip( f)|pl,(®) we easily get

b
T foo 10 < LinCR) [ 10OIfp®)]71, 0 .

Hence, for any Borel partition {B; }j of Pp(M), and 1-Lipschitz functions flj

) b
we have ZJZ\L 1 Tgﬂ,,(;{Bﬁ f1'7) < [10®)] |p|p(t) dt. Therefore we get

b
M%ps/wmwwmt

To prove the opposite inequality, let us start with the case 0 = y; for a given
interval I. Now let ¢ > 0 be fixed. Since [ |p| p(t)dt coincides with the length
1

of the curve p in I (see [4]), there is a partition {¢;, ...,y 1} of I such that
N
/ |pl,@®)dt < ZWp(P(th),P(tj)) +e.
I J=1

Foranyj;j=1,..., N +1, considerflj(ﬂ) = Wp(p(tj),,u);flj are 1-Lipschitz
funections and
tj1
d
tnwmammz/%ﬁwww

]

Defining B; := p([t;, tj1]) for j =1,...,N and By := P,(M) \ szilBj, it
follows that

t.
s N+1

N . .
[ iwar <> [ S ficponds +6= 31,0 1) 5
I = =
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Being {B;}; a Borel partition of 7,(M), taking into account remark 2.2 and
letting ¢ — 0, we get

/ pl,dt < M(T, L p(I)).

I

Therefore, if a Lipschitz curve pis defined on the interval J, we have proved
that

zmm:/wNMt

In the general case we approximate 6 by piece-wise constant functions.
Therefore, there exists a Borel partition of [a, b] made of intervals J; and
constants ¢; such that

/WWMMtEE/wwm ZM%wﬂMbM%ﬂ
=1
Ol

Formula (4.1) also holds true for any 0 € L' and for any metric space £
instead of P,(M). An immediate consequence of the continuity equation is
the following

LEmMA 4.2.  For every solution (p,v) of the continuity equation (1.2)
and for every f € C1(M) it vesults

42) %( / f(x)dpt) = / (dof (), v(, 1)) dp,
M

M

m the sense of distributions.

Proor. For every ¢ € C;°(0,1) we evaluate
1 1

/m(/fm@)(wﬁ /’m(/ﬂm@Jﬁ

0
1
/ ( / (t)f(w)dpt) dt = t(qof)z V- (wp)of) =
0 M

1
=/</uﬁmwwamwm
0

M
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loc

Actually, it turns out that the map fi— [ fdp; € W0, 1). Therefore,
M

formula (4.2) holds for a.e. t € (0,1).

We define a natural operator which associates to each entire metric
1-current 7' € I,(P,(M)) a normal euclidean 1-current 7' € N'{(M). The
structure Theorem 2.4 gives a representation for 7' = >, T}, ,., and to
each p; is associated its tangent vector v;. Then for a 1-form w on M we
can define

b;
4.3) T(w) = Z / 0;(®) ( / (o(), vi(t, %)>dﬂi) dt.
i=1 a; M

We get the following
PROPOSITION 4.3.  For every T € I,(P,(M)) it vesults T € N'1(M).

Proor. To compute the mass we evaluate

bi i~ bi
T < o).y / 101 ( / |vi<t,x>dpi> dt < floll, 3 / 04101l
=1 a M =1 a;

Using Lemma 4.1, Theorem 2.8 and Theorem 2.4 we get
T()] < IlelmZ/ 10310l Dt = o]l Y- M(Ty,,) = l|ol| M(T).
=1, i=1

Taking the supremum with respect to ||w||,, < 1 it results
M(T) < M(T)< + oo.

To handle with the boundary operator, we state the following preliminary

remark. For every f e C'M) the map f;: Pp(M) — R defined by

fo(w) = [ fduis abounded Lipschitz function. Indeed, recalling Proposition
M

2.11 and Theorem 2.6 it results

(40 — fo()] = / FdGu—v
M

< Lip( /)Wi(u,v) < Lip( /YW (1, v).
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Using Lemma 4.2 we evaluate

b;
oT(f) =T = / 0;®) ( / (df @), vi(t, x)>dpi) dt =
i=1 be

M

b b
= ; /Hi(t)% (/fdpi)dt = ; / Hi(t)%fo(pi(t)) dt = T(, fy) = OT(fy).

M

a
Observing that ||f]|,, < 1= ol <1, we get MOT)< + . O

If multiplicity functions 6;, or more generally multiplicity measures y;,
are associated to the curves p;, we will define

T(w) = f; / ( / (w(x),vi(t,x»dpi) du ().
=R\

We will apply a similar definition for multiplicity depending on a more
parameter. It is easy to define the operator ~also for entire 0-currents,
indeed if S is an entire O-current then its representation is given by
S =3%°,a;0, and then we define S = Y_;°, a;x;.

REMARK 4.4. We attract the attention of the reader to the fact that
with this definition 7', coincides with the euclidean current 7, involved in
problem P.

The following theorem holds

THEOREM 4.5. The diagram

L(P,(M)) —"— Iy(P,(M))

Ni(M) © o Ny(M)
commutes.

Proor. TakeT e I,(P,(M)), T =%;°; Ty,,, according to Theorem 2.4.
If f is a Lipschitz bounded function on P,(M) we have:

o0

bi b;
o1 =Y [0 5ot =Y | 0ereon, - [ s o
i=1 & &

=1
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For f € C(M), passing to the ~operator we get

b;
(f) = Z SA0:(b; )p;(b;) — Oi(a;)p;(a) — ( fdpi) aoi@ |-
() i(;

a;

On the other hand, if f € cr, taking into account Lemma 4.2, it re-
sults

b;
OT(f) =Tdf) =" / 0;(t) ( / (df @), vit, m))dpi> dt =
=1 a; M

/ 00 ( / f(x)dpl) dt =
0 b
= Z ( /fd(ﬁi(b{)m(bi) — 0i(a;) )pi(a;)) — / (/fdpi) doi) | = IT( f).

M a; M

o0 bl

=1

O

A fundamental step toward the proof of our initial claim would be to
answer the following question: let p and p be two closed Lipschitz curves in
Pp(M) such that 7, and T lie in the same homology class of H1(P,(M)), is
it true that T, and T are in the same real homology class of H;(M, R)?

This would be accomplished by defining a suitable ~ operator for 2-
currents and showing that also the diagram

Io(Py(M)) —2— L, (P,(M))

No(M) —2—— N (M)

commutes. Unfortunately we are currently not able to prove this last fact in
full generality. There are two main obstacles, one is the absence of a natural
analogous of the continuity equation in higher dimensions, the other is that
in the representation Theorem 2.4 for entire 2-currents it is not known if
one can choose regular sets K;.



114 Luca Granieri
5. Metric currents and metric homology of P,(1™).

5.1 — The ~ operator for 2-currents on P,(M).

As stated in the Introduction, for every Mather’s minimal measure u
in a given homology class there are minimal Eulerian representations
(p,v), i.e. solutions of problem P (see [11] and [9] for details and related
results). It is natural to ask if each of them enjoys a certain intrinsic
minimality, namely that it minimizes an action functional (in its entire
homology class in H1(P,(M)). In order to discuss this question, in this
Section we define a ~ operator for metric 2-currents on P,(M). In the
next Sections we will focus our attention on the flat n-torus 1" on which
some of the program can be carried on and it is easier to show which are
the obstacles in doing it in full generality. This will also help to un-
derstand the geometric structure of P,(). Let us recall from [3] that if
N € I,(P,(M)) we have

iy ({99 i ,t 5 0, i ,t
:Z/Hi(s,t)ﬁ(%(s,t)) det ( Wipis, D), 0filpits ))>dsdt
=0 ; 05 folpi(s,8),  Orfalpi(s, 1))

where ¢; : K; — P,(M) are bi-Lipschitz curves. To consider tangent vec-
tors we give the following

DEFINITION 5.1. We say that ¢; is regular if K; = [a;, b;] x [¢;,d;] is a
rectangle of R? and the tangent vectors v;(x, s, 1), ve(x, s, %), obtained by
Theorem 2.8 fixing respectively the third and the second variable of ¢;, are
well defined Borel vector fields. If the curves ¢, in (5.1) are regular for every
i we say that N € IY(P,(M)).

For N € I,(P,(M)) we can formally define
(5.2) N(dw):=

+00 b b
- _?Z:; / 0;(s,1) {&]J(w,m)d%(s,t)—£1!<w,vg>d¢i(s,t)] dsdt.

K;

Observe that the right hand side of (5.2) formally correspond to a closed
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1-current. Indeed, for every f € C*(M), by Lemma 4.2 it results

0
5 [ @ odnts =

M
32 52 9
~ otos / Jaois,0 = 55t / fdyi(s,t) = o / (df v2) (s, )
M M

M

in the sense of distribution. To relate N € I,(P,(M)) to a well defined
euclidean current N, we need some more regularity of the curves ?;.
Therefore, for ¢ > 0 and denoting for simplicity » := (s, ), we consider the
following convolution approximation of a Lipschitz curve ¢ : R* — Pp(M)

wm:/%mwwwMGmm,

R?
(Ei(w), w) = /pg(u—v)(/<w7vi>d¢(v)> dv i=1,2
R? M

where p, is a standard convolution kernel. Observing that

(i), w) = ( P — v){(w, Ui>d(0('v)) dv=[ (w,v;)dyp"(w),
/() /

RZ \M
it follows that the tangent vectors correspondent to ¢ are v;, 1 = 1,2, as
well. We have the following

LEmMA 5.2.  Under the previous assumptions we have
@ lil(§1+ o° = o uniformly with respect to the Wasserstein metric,

(2) The functions ¢° are equi-Lipschitz,
(3) Ef and E% solve the continuity equations

00 +V -E{ =0, 00p°+V- -E5=0,
4) ill% Ei(w) = Ei(u) weakly fori=1,2.

Proor. 1) We use Kantorovich duality. If p = 1 consider f € Lip,(M).
We evaluate

/fdwmw—amy:/fd /pmwwmwwf¢mmw _
M M

IR?
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= / (pg(u -v) / S d(p(v) — co(u))) dv < / p.(u — V)Wi(p), p(u))dv <
M

R? R?

< Lip(p) / p,u — v)||u — v|jdv < Lip(p)e.

R?

Taking the supremum with respect to f € Lip;(M) the claim follows. If
p > 1, take a couple (f,9) € L*(p*(u)) x L'(p(w)) such that f(x) + g(y) <
< d(x,y)’ for every (x,y) € M. Then we compute

M/ S do(u) + / g do(u) = / pg(u—v)( j{ f d(p(v)) dv+

M R?

/ p(u —v) ( A/ g d(ﬂ(u)) dv = / p(u —v) ( M/ f do() + M/ g d(ﬂ(u)) dv <

R? R

< / p.(u — VYW, (p), p(u))dv < Lip(p) / p(u — v)||u — v||dv < Lip(p)e.
RR? R2

Taking the supremum with respect to ( f, g) the claim follows.
2) For p =11let f € Lip;(M). We compute

/ fdo*(w) — ¢*(w) = / p(v) ( / Sdlp(uw —v) — p(u — v))) dv <
M M

IR?
< Wilp(u — ), p(it — v)) < Lip(g)|ju — ul|.
Taking the supremum with respect to f € Lip; (M) we obtain
Wi(p*(w), 9*(w)) < Lip(p)|ju — u]|.
A similar argument works for p > 1.
3) 00"+ V- Ef = é p.(u —v)(0s0 + V - (119))dv = Osince (p, v;) solves

the continuity equation with respect to the s variable. The same argument
works for the other equation as well.
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4) For every 1-form w we have

(Bi(w) — Ei(n), w) = / . —v) ( /(w, vi>d¢(v)) dv—

R? M
- / /)8(71 —v) ( / <wa vi>d§0(v)) dv =
R? M
= / (/@, ;) d(”(v)) [p,(u —v) — p,( — v)]dv.
RZ \M

Therefore, by Theorem 2.8 we estimate
(B~ Ei@). )| < [l [ 100], o~ ) = pa— oldv <

]RZ

. 1 _ Co _
<Clipofoly [ lu-aldo<Zu-al.
B(u,e)UB(1,£)
O

In particular, the last computation of the above proof shows that the
funetion (E%(u), ) is Lipschitz with respect to the u variable and then the
formula (5.2) for ¢! in place of ¢; is well defined. Therefore, for
N € IY(P,(M)) we define

(5.3) N(dw) :=
=32 0 ) 0 )
—=> lm [o0G0|5 [@oadien - g [ o.umdei.|dsdt,
5 0t ot ’ s
K; M M

where vy ;, k = 1,2, are the tangent vectors associated to the curves ¢:. By
using Lemma 5.2, and the well known weakx* continuity properties of de-
terminants in the Sobolev space W' (see for instance [12]), we have

ON(fo, /1) = NQ, fo, /1)

+o00 . .
— Z / (91:(87 t) det(as.]co(¢1(s7t))a at.fb((pz(sa t)) )dsdt —
=0

(5.4) O0s f1(0;(s,1)),  O:fi(p;(s,1))

= D fo(wis, 1), D1 fo(i(s, )
=) 1 0,(s,t) det ' ! dsdt.
;5311{/ (5. de <asfl<¢;<s,t)>, atﬁws,t») i
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Since we are dealing with normal currents it results 0; € BV (K;) while, by
convolution approximation, we may assume that the compositions
Si(gi(s, 1)) are C? functions. Integrating by parts the i-terms of the above
expression we obtain

(5.5) / 0:(s,t)[0s fo(0(s, 0B, f1(95(s, 1)) — Oy fol9ls, £)Ds f1(wi(s, 1)) | dsdt =

d; b;

/ 0: 00l / 10,00, i ="ds /fo 0001 — 00,0, F))(5, ) =
d; b;

~[ (0:podnfii / Oufi0 Al ds + [ f.i010,5.) ~ [ 00,060
¢ a; K; K;

Passing to the ~ operator for the 1-currents in (5.5) we have

d; s=b; b; t=d;
(5.6) 6N(w) Z /[ /w vzl>dgol} dt —/ {&/(w,vl,i)d(pi] ds +
Ci M s=a; @ M t=c;
+f ( / <w,v1,i>drpz-) o0~ [ ( / <w7v2.i>d<oi) 2.0,(5,) .
K; M K; M

On the other hand, integrating by parts in (5.3) we get

Ndw)=— Z hm /0 (s, t)[at/@ v1.4)dpi(s, D) — %5 /a) L ACS t)}dsdt

d; b; t=d;

s=b;
+00
= 11151+ /[91'/<60,1)27i>d(0§:| dt—/[@i/<w,’017i>d(ﬂ;{| ds +
=0 ° B o

Gi M s=a; i t=c;

+/ (/<(077)1,i>d(0?,) 010;(s,t) — /(/ w, Va7) d(ol>89(s t)| .
K i

i M
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By standard properties of convolution kernels and since ¢} are equi-Lip-
schitz, passing to the limit as ¢ — 0" under the integral sign, it follows

oo di S:bj bi t:di
(B.7) N(dw):z /[Hi/<w,v27i>d(oi] dt—/ lﬁi/(w,v1,i>d(pi] ds+
i=0

¢ M s=a; a; M t=c;

+/ (/(w,vl,i>d€0i> 0:0;(s,t) — / </<w,vz,i>dgoi> 950;(s,1)| .

K\l K \M

Hence, by inspection of (5.6) and (5.7) we get N(dw) = ON(w). Insuch away,
if T — 8 = ON in P,(M), passing to the “operator we obtain

T(w) — S(w) = ON(w) = N(dw)

for every 1-form w. Therefore, to conclude that two homologous metric
1-currents on P,(M) are in fact homologous as euclidean currents one
need just to prove that the right hand side of (5.3) vanishes along closed
1-forms.

5.2 — Metric homology of P,(1T™).

On the flat torus T" the above question has some answers, while for a
general manifold it seems that a better knowledge of the geometry of
P,(M) would be useful. Indeed, it is known that the homology H;(1", R)
and the cohomology H' (1", R) are n-dimensional vector spaces. Moreover,
the cohomology on [ is generated by the classes [dx1], [daz], . . ., [dx,]. In
other words, for every closed 1-forms w on T" there exists P € R" and
f € CY(T™) such that w = P + df. For details we refer for instance to [14,
23]. Therefore, the right hand side of (5.3) vanishes along closed 1-forms w
if, as a vector of R", it results

+00 ] 8 6
(5.8) Zoll%l / 0(s,t) (& / v dgi(s, D) — 5 / Vs dq;;?(s,t)) ds dt = 0.

K;

™ ™

Indeed, since every closed form is represented by P + df, it suffices to
check that the right hand side of (5.3) evaluated on df is equal to zero. For
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if, by Lemma 4.2 it results

0 X 0 X
[ o0 (& [ oo agisn - o [ (ar) d«);(s,ta ds dt =
K; ™ ™
:/gi(s’t)((‘?ta /f 08 — asat/fd(/ﬂ)ds dt
K;

Denoting by g(s,t) = [ fd¢%, approximating g by g,, = p, * g, where p, are
™
standard convolution kernels, the above integral is equal to

7 82
/0 (s, t)(até) g(s,t) — g(s t))ds dt =

2

= lim (Ji(s,t)< 0
n—+00

82
tds (s, t) — gn(s t))ds dt =

K;

Hence we get the following

DEFINITION 5.3. We say that N € I3 (P,(1")) if N is a regular metric 2-
current and the bi-Lipschitz curves ¢; of its parametric representation
satisfy the compatibility condition (5.8). Moreover we say that S, 7' € I5(T")
are homologous on P,(1T") if there exists N € I3*(P,(1")) such that
S —T =0N.

The above definition makes sense since on the flat torus we can recover
the homology classes by homotopy. Actually we have the following

LEMMA 5.4. Let y,5:[0,1] — T" be two smooth closed curves on T".
Then the metric closed 1-currents T, and T,, wheve p; = 0,1, 01 = Oy), ave
homologous on P,(1") if and only if y and n are smooth homologous curves
on T".

Proor. Fix xp a base point for the fundamental homotopy group
(1", ) = H1(T™). Therefore, if y,7 : [0,1] — T™ are two smooth homo-
logous closed curves there exists a smooth homotopy H :[0,1]x
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x [0,1] — T such that
H(Sa 1) = H(S7O) = Xo, H(lvt) = V(t); H(Ovt) = ’7(t)

Consider the Lipschitz function ¢(s,?) = dgy. It turns out that
v = OsH(s,t), ve = 0:H(s,t). Therefore, the curve ¢ is regular. Moreover,
the compatibility condition (5.8) amounts to 9?,H = 92,H. Therefore the
metric 2-current N associated to the Lipschitz function ¢ belongs to
I3(P,(T")). We compute

ON(fo, f1) = N, fo, f1) =

O\’_‘

1
/ (O fo(ols, DD, F (5, 8) — D1 Folp(s, ), Flp(s, ) dsdlt —
0

1

Folo(s, DO (ols, DY =N — / folo(s. D, fi(p(s, )" Lds —

0

o\_

[folo(L, )0, f1(p(1,1)) — fole(0, )0, f1((0, )] dE

o\_‘

[folpd fr(py) — fo(ads filanldt = Tp( fo, f1) — Tol fo, f1).

o\’_

Hence, T,; and T, are homologous on P,(1™). On the other hand, since for
pi = Oyp One has

1

T(w) = / (@0, 3(0)dt

0

if T, and T, are homologous on P,(1") then, because of the compatibility
condition, we have

T, —T, =N = T)(®) — T,(») = IN(») = N(dw) =
Therefore y and 7 are homologous on T” as well. O
Lemma 5.4 ensures that P,(T") has at least n distinct homology clas-

ses. Therefore, it make sense to address the question to recover mass
minimizing currents on P,(1") by knowing the structure of the Eulerian
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representations of Mather’s measures on the underlying space T". A re-
markable point in this question is that by changing the exponent p the
Eulerian representations on the manifold M are unchanged, i.e. the
minimization problem P does not depend on the exponent p of the La-
grangian L(x,v) = |v|’. However, in general we don’t know if an analogous
result could be true at the level of the Wasserstein space P,(M) since, by
changing the exponent p, we are changing the metric of the Wasserstein
space, and then it’s geodesic structure is in general modified. In the next
Section we show how, for this special choice of the Lagrangian, some in-
formation on the underlying space M can be transpose at the level of the
Wasserstein space P,(M).

5.3 — Mass minimizing metric currents on Py(1") and Eulerian repre-
sentations.

Let (p, v) be an Eulerian representation of a Mather’s minimal measure
on the flat torus T". We claim that the current 7, is a mass minimizing
metric 1-current of P,(I") in its homology class. Indeed, it results that
T, € Z{(P,(1T™)). Since (p, v) solves problem P and such problem with the
Lagrangian L(x,v) = |v|” is equivalent to minimize the mass (to the power
p) of currents in the corresponding homology class (see Proposition 3.7 of

[11]), for every 1-currents 7 belonging to [T, ] it results
1

/ / [v(x, ©)|Pdp,dt = K(p,v) < M(T).

0o 1™

Therefore, it S = 3"/ Ty, ,, € Z5(P,(T™) is homologous to 7T, by using
Theorem 2.8 and Lemma 4.1 we compute

M(T,) = (/ |p|pdt> g/|p|§dt:/ / (e, B)[Pdp,dt < M(S) <
0 0 0

™

b: p

—+00 . —+00 bi p
>/ fm( / |vi|dp,->dt <1/ |ei|< / |vi|pdpi) at | -
5 =1 b4

=g ™ ™

IN

b p

+ ‘ +00 p
= / 1031174l dt | = (ZM@WJ) — MY,
i i i=1

5

3

Il
-
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where we used also Jensen and Hoélder inequality. Actually, the above
computations hold for any manifold M as well. The matter is that for a
general manifold M we are not able to recover distinct metric homology
classes of P,(M). Moreover, it will be very interesting to study the above
minimization property for more general Lagrangian L(x, v). Actually, the
choice of L(x,v) = |[v|" is crucial to relate the mass of a metric current to the
action of the Eulerian representation by using the continuity equation.
Moreover, the continuity equation is the key tool to consider the ~ operator.
The matter is that for general Lagrangian the use of the continuity equa-
tion seems to be compromised. Therefore, we believe that any effort in this
direction necessarily would involve new ideas and different techniques than
those used in this paper.

5.4 — Some minimal Eulerian representation on T2

In this subsection we work out in detail an example of explicit minimal
measure on the flat 2-torus.

This example will be better described with the help of the Figure 5.1.
By {7;}i—1.._4 We denote both the curves and their supports. The distinction

will be clear from the context.

.....

Fig. 5.1. An example of path on the torus.

Consider u € P(T'T?) defined by

1
H=7 ((HEL9p) @ 8y + (HM L 75) ® Sy + (H L p3) @ e, + (HEL 1) ® 6y).
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The measure u is invariant for the geodesic flow, the homology class of 1 is
[l =0, 1) e RxR=H 1(T2), and u is minimal being its cost equal to the
length of the minimal geodesic in this class. It turns out that every curve of
measures of the form

1
p(t):Z(:ulLVl + oLy + gL s+ pg L yy), V(@ D) = e

is a minimal Eulerian representation of u, where w; (1 =1,...,4) is any
probability measures on S'concentrated on ;.

Acknowledgments. The author wishes to thank L. De Pascale and M.
S. Gelli for useful discussions on the subject. The author is also grateful
to L. Ambrosio for careful reading and precious comments on previous
versions of this paper.

REFERENCES

[1] L. AmBRosIO, Lecture Notes on Transport Problems, in “Mathematical
Aspects of Evolving Interfaces”. Lecture Notes in Mathematics, 1812 (Spring-
er, Berlin, 2003), pp. 1-52.

[2] L. AMBROSIO - N. GIGLI - G. SAVARE, Gradient Flows in Metric Spaces and in
the Space of Probability Measures, Lectures in Mathematics ETH Zurich,
Birkhauser Verlag, Basel, 2005.

[3] L. AMBROSIO - B. KIRCHHEIM, Currents in Metric Spaces, Acta Mathematica,
185, no. 1 (2000), pp. 1-80.

[4] L. AMBRosIO - P. T1LL1, Topics on Analysis in Metric Spaces, Oxford Lectures
Series in Mathematics and its Applications, 25, Oxford University Press,
Oxford, 2004.

[5] V. BANGERT, Minimal measures and minimizing closed normal one-cur-
rents, GAFA Geom. Funct. Anal., 9, no. 3 (1999), pp. 413—-4217.

[6] G. BOUCHITTE - G. BuTTAZZ0, Characterization of optimal shapes and masses
through Monge-Kantorovich equation, Journal European Math. Soc., 3 (2001),
pp. 139-168.

[7] Y. BRENIER, Extended Monge-Kantorovich Theory, in Optimal Transporta-
tion and Applications, Lecture Notes in Mathematics, 1813 (Springer, Berlin,
2003), pp. 91-121.

[8] J. BENAMOU - Y. BRENIER, A computational fluid mechanics solution to the
Monge-Kantorovich mass transfer problem, Numer. Math., 84, no. 3 (2000),
pp. 375-393.

[9] P. BERNARD - B. BUFFONI, Optimal mass transportation and Mather theory,
J. Eur. Math. Soc. (JEMS), 9, no. 1 (2007), pp. 85-121.

[10] G. CONTRERAS - R. ITURRIAGA, Global Minimizers of Autonomous Lagran-
gians. IMPA, Rio de Janeiro, 1999.

[11] L. DE PAscaLE - M. S. GELLI - L. GRANIERI, Minimal measures, one-
dimensional currents and the Monge-Kantorovich problem, Cale. Var., 27,
no. 1 (2006), pp. 1-23.



Metric Currents and Geometry of Wasserstein Spaces 125

[12] B. DACOROGNA, Direct Methods in the Calculus of Variations, second edition,
Springer, 2008.

[13] L. C. Evans, Partial differential equations and Monge-Kantorovich mass
transfer (survey paper), Current Developments in Mathematics, 1997, Inter-
national Press (1999), edited by S. T. Yau.

[14] W. FuLTon, Algebraic Topology. Springer, 1995.

[15] H. FEDERER, Geometric Measure Theory. Springer (Berlin), 1969.

[16] W. GaNGBO - H. KiL - T. PACINI, Differential forms on Wasserstein space and
mfinite-dimensional Hamiltonian systems, forthcoming on Memoirs AMS.

[17] W. GANGBO - R. J. Mc CANN, The geometry of optimal transportation, Acta
Math., 177 (1996), pp. 113-161.

[18] M. GIAQUINTA - G. MoDICA - J. SOUCEK, Cartesian currents in the calculus of
variations. 1. Cartesian currents. Ergebnisse der Mathematik und ihrer
Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics 37.
Springer-Verlag, Berlin, 1998.

[19] L. GRANIERI, On action minimizing measures for the Monge-Kantorovich
problem, NoDEA 14 (2007), pp. 125—-152.

[20] L. GRANIERI, Mass Transportation Problems and Minimal Measures. Ph.D.
Thesis in Mathematics, Pisa, 2005.

[21] B. KLOECKNER, Geometric study of Wasserstein spaces: Euclidean spaces,
Annali della Scuola Normale Superiore di Pisa, Classe di Scienze IX, 2 (2010),
pp. 297-323.

[22] R. JORDAN - D. KINDERLEHRER - F. OTT0, The variational formulation of the
Fokker-Plank equation, Siam J. Math. Anal., 29 (1998), pp. 1-17.

[23] J. Jost, Riemannian Geometry and Geometric Analysis. Springer, 2002.

[24] J. Jost, Nonpositive Curvature: Geometric and Analytic Aspects. Lectures in
Math. ETH Zurich, Birkhauser Verlag, Basel, 1997.

[25] U. LANG - V. SCHROEDER, Kirszbraun’s theorem and metric spaces of bounded
curvature, GAFA Geom. Funct. Anal., 7 (1997), pp. 535-560.

[26] F. OtT0, The geometry of dissipative evolution equations: the porus medium
equation, Comm. Partial Differential Equations 26, no. 1-2 (2001), pp. 101-174.

[27] K. T. STURM, Stochastics and Analysis on Metric Spaces, lecture notes in
preparation.

[28] K. T.STURM, Metric spaces of lower bounded curvature, Exposition. Math., 17,
no. 1 (1999), pp. 35—47.

[29] K.T.StUurM, Probability Measures on Metric Spaces of Nonpositive Curvature,
Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces (Paris,
2002), pp. 357-390, Contemp. Math., 338, AMS, Providence, RI, 2003.

[30] K. T. STURM, On the geometry of metric measure spaces. I, Acta Math., 196,
no.1 (2006), pp. 66—131.

[81] C. ViLLANI, Topics in Mass Transportation. Graduate Studies in mathe-
matics, 58, AMS, Providence, RI, 2003.

[32] C. ViLLant, Optimal Transport, Old and New. Springer, 2009.

[33] S. WENGER, Isoperimetric inequalities of euclidean type in metric spaces,
GAFA, Geom. funct. anal., Vol. 15 (2005), pp. 534—554.

[34] S. WENGER, Flat convergence for integral currents in metric spaces, Cale.
Var., 28 (2007), pp. 139-160.

Manoscritto pervenuto in redazione il 28 settembre 2009.






