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Rad-supplemented Modules

ENGIN BUYUKASIK (*) - ENGIN MERMUT (**) - SALAHATTIN OZDEMIR (*#%)

ABSTRACT - Let 7 be a radical for the category of left R-modules for a ring R. If M
is a 7-coatomic module, that is, if M has no nonzero t-torsion factor module,
then (M) is small in M. If V is a r-supplement in M, then the intersection of V
and t(M) is (V). In particular, if V is a Rad-supplement in M, then the in-
tersection of V and Rad(M) is Rad(V). A module M is t-supplemented if and
only if the factor module of M by P.(M) is t-supplemented where P.(M) is the
sum of all r-torsion submodules of M. Every left R-module is Rad-supple-
mented if and only if the direct sum of countably many copies of R is a Rad-
supplemented left R-module if and only if every reduced left R-module is
supplemented if and only if R/P(R) is left perfect where P(R) is the sum of all
left ideals I of R such that Radl = I. For a left duo ring R, R is a Rad-sup-
plemented left R-module if and only if R/P(R) is semiperfect. For a Dedekind
domain R, an R-module M is Rad-supplemented if and only if M/D is sup-
plemented where D is the divisible part of M.

1. Introduction.

All rings considered in this paper will be associative with an identity
element. Unless otherwise stated R denotes an arbitary ring and all
modules will be left unitary R-modules. By R-Mod, we denote the ca-
tegory of left R-modules. Unless otherwise stated, r is a radical on
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R-Mod. For fundamentals on module theory, see for example [17], [4]
and [30]. Let R be a ring and M be an R-module. Denote by X < M that
X is a submodule of M. As usual, RadM denotes the radical of M and
J(R) denotes the Jacobson radical of the ring E. A submodule K of M is
called small in M (denoted by K < M) if M # K + T for every proper
submodule T of M. For an index set I, M) denotes as usual the direct
sum € M. The set of natural numbers is denoted by N. See [30, § 41] and
the ;Zlcent monograph [10] for results (and the definitions) related to
(weak) supplements and (weakly) supplemented modules. Given sub-
modules K <L <M, the inclusion K <L is called cosmall in M if
L/K <« M/K (see [10, 3.1]). A submodule L < M is called coclosed in M
if L has no proper submodule K for which the inclusion K < L is cosmall
in M (see [10, 3.6]).

We shall investigate some properties of Rad-supplemented modules
and in general t-supplemented modules where 7 is a radical for R-Mod.
The motivation for considering Rad-supple-ments (coneat submodules)
and t-supplements in general is given in the next section. One of the
main questions we shall answer is when are all left E-modules Rad-
supplemented. In the investigation of this problem, the notion of radical
modules, reduced modules and coatomic modules turn out to be useful;
see [32, pp. 47]. In the definitions and properties for reduced and
coatomic modules, instead of Rad, we can use any (pre)radical z on
R-Mod (see Section 3), and these will be useful in the investigation of
the properties of 7-supplemented modules. For a module M, the sum of
all radical submodules of M is denoted by P(M), that is, P(M) is the sum
of all submodules U of M such that RadU = U. For submodules U and
V of a module M, the submodule V is said to be a Rad-supplement of U
in M or U is said to have a Rad-supplement Vin M if U +V =M and
UNV <RadV. A module M is called a Rad-supplemented module if
every submodule of M has a Rad-supplement in M. See also [29]; Rad-
supplemented modules are called generalized supplemented modules
there. In Section 6, we shall prove that every left R-module is Rad-
supplemented if and only if R/P(R) is left perfect. In [9], it is proved
that the class of Rad-supplemented rings lies properly between those of
the semiperfect and the semilocal rings. We show that a left duo ring R
is Rad-supplemented as a left R-module if and only if B/P(R) is semi-
perfect. Whenever possible the related results are given in general for a
radical ¢ for R-Mod. See [1] and [10, § 10] for some properties of z-
supplements and r-supplemented modules. We shall investigate some
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further properties of z-supplemented modules in Section 4. For some
rings R, we shall also determine when all left R-modules are z-supple-
mented in Section 5. We are also going to study the property
RadV = V n RadM for a submodule V of M. It is known that this holds
if V is a supplement in M (see [30, 41.1]) and moreover if V is coclosed in
M (see [10, 3.7]). We show that this property also holds when V is a Rad-
supplement in M (Corollary 4.2); in general for a radical 7 for R-Mod, we
show that if V is a r-supplement in M, then (V) = V N t«(M). It is clear
that every supplemented module is Rad-supplemented. But the con-
verse implication fails to be true. For example, the Z-module Q is Rad-
supplemented but not supplemented. Since RadQ = Q (see for example
[17, 2.3.7]), Q is Rad-supplemented (by Proposition 4.5-(i)). But Q is not
supplemented by example [10, 20.12]. In Section 7, we understand this
example clearly and describe Rad-supplemented modules over Dede-
kind domains using the structure of supplemented modules over De-
dekind domains which was completely determined in [32].

For definitions and elementary properties of preradicals, see [26, Ch.
VI, [6] or [10, § 6]. A preradical t for R-Mod is defined to be a subfunctor
of the identity functor on E-Mod. Let t be a preradical for R-Mod. The
following module classes are defined: the preradical or (pre)torsion class
of 7is

T, ={N € R-Mod | «(N) =N}
and the preradical free or (pre)torsion free class of 7 is
F, = {N € R-Mod | ©«(N) = 0}.

7 is said to be idempotent if 1(z(N)) = ©(N) for every R-module N. 7 is
said to be a radical if (N /7(N)) = 0 for every R-module N. For the main
elementary properties that we shall use frequently for a (pre)radical,
see for example [10, pp. 55]. For R-modules K < M, we always have
(M) + K)/K < t(M/K). If moreover 7 is a radical and K < 7(M), then
(M/K) =t(M)/K [26, Ch. VI, Lemma 1.1]. When we consider a ring R
as a left R-module, we already have that A = ©(zR) is a left ideal of R;
indeed it is a two-sided ideal of R [26, Ch. VI, § 1, Examples (3), pp. 139]
so that we can consider the quotient ring £/A which we shall use in the
results for r-supplemented modules. For a free R-module F, the prop-
erty ©(F) = t(R)F is easily obtained. This also holds for projective
modules. See also [13] and [7] for some related concepts in torsion
theories (mostly for a hereditary preradical).
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2. Coneat submodules and Rad-supplements.

Neat subgroups of abelian groups (introduced in [15, pp. 43-44]) have
been generalized to modules in [28, 9.6] (and [27, § 3]). The class of coneat
submodules has been introduced in [21] and [3]: A monomorphism
f: K — L is called coneat if each module M with RadM = 0 is injective
with respect to it, that is, the Hom sequence

Hom(L, M) — Hom(K, M) — 0

is exact. See [21, Proposition 3.4.2] or [10, 10.14] or [1, 1.14] for a char-
acterization of coneat submodules. This characterization will be the par-
ticular case v = Rad in Proposition 2.1 and this is the reason for con-
sidering Rad-supplements and in general z-supplements given below. For
more results on coneat submodules see [21], [3], [10, § 10 and 20.7-8], [1]
and [24].

Proper classes of monomorphisms and short exact sequences were in-
troduced in [8] to do relative homological algebra. In [27, Remark after
Proposition 6], it is pointed out that supplement submodules induce a
proper class of short exact sequences (the term ‘low’ is used for supple-
ments dualizing the term ‘high’ used in abelian groups). [12] uses the
terminology ‘cohigh’ for supplements and gives more general definitions
for proper classes of supplements related to another given proper class
(motivated by the considerations as pure-high extensions and neat-high
extensions in [14]). For the definition and properties of proper classes, see
[25], [20, Ch. 12, § 4], [28] and [22]. We shall follow the terminology and
notation as in [10, § 10] and [1] since we will mainly refer to these for z-
supplemented modules and Rad-supplemented modules.

Denote by Egyy, the class of all short exact sequences induced by
supplement submodules; that is g, is the class of all short exact se-
quences

0—A B L c—0

of R-modules and R-module homomorphisms such that Im(f) is a supple-
ment in B. Then as mentioned above, the class g, forms a proper class,
see for example [10, 20.7]. Every module M with RadM = 0 is [g,p-in-
jective that is M is injective with respect to every short exact sequence in
Eguppi- Thus supplement submodules are coneat submodules by the defi-
nition of coneat submodules. In the definition of coneat submodules, using
any radical 7 instead of Rad, the following result is obtained. It gives us the
definition of a t-supplement in a module because the last condition is like
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the usual supplement condition except that, instead of UNV « V|, the
condition U NV < ©(V) is required.

ProPOSITION 2.1 (see [10, 10.11] or [1, 1.11]). Let t be a radical for
R-Mod. For a submodule V < M, the following statements are equiva-
lent.

(i) Every module N with t(N) = 0 is injective with respect to the
mclusion V— M;
(i) there exists a submodule U < M such that

U+V=Mand UNV =(V);
(iii) there exists a submodule U < M such that

U+V=Mand UNnV < (V).

If these conditions are satisfied, then V is called a t-supplement in M.

The usual definitions are then given as follows. For submodules U and
V of amodule M, the submodule V is said to be a t-supplement of U in M
or U is said to have a t-supplement V in M if U4+V =M and
UNnV <to(V). A module M is called a t-supplemented module if every
submodule of M has a z-supplement in M. We call M totally t-supple-
mented if every submodule of M is t-supplemented. A submodule N of M
is said to have ample t-supplements in M if for every L < M with
N + L = M, there is a t-supplement L’ of N with L’ < L. A module M is
said to be amply t-supplemented if every submodule of M has ample
7-supplements in M.

For © = Rad, the above definitions give Rad-supplement submodules of
a module, Rad-supplemented modules, etc. By these definitions, a sub-
module V of a module M is a coneat submodule of M if and only if V is a
Rad-supplement of a submodule U of M in M.

3. z-reduced and t-coatomic modules, and the largest z-torsion
submodule P,.(M).

Let 7 be a preradical for R-Mod and let M be an R-module. By taking t
instead of Rad in the definitions of reduced and coatomic module defini-
tions in [32, pp. 47], we define the following:

(1) M is said to be a t-torston module if (M) = M, that is M is in the
pretorsion class T;.
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(i) By P.(M) we denote the sum of all z-torsion submodules of M,
that is,

P.M)=)Y {U<M| «(U)=U}

(iii) M is said to be a t-reduced module if it has 7o nonzero t-torsion
submodule, that is, for every submodule U of M, 1(U) = U implies U = 0;
equivalently, ©(U) # U for every nonzero submodule U of M. Clearly, M is
t-reduced if and only if M is P.-torsion free, that is, P.(M) = 0.

(iv) M is said to be a t-coatomic module if it has 7o nonzero t-tor-
sion factor module, that is, for every submodule U of M, ©(M/U) = M /U
implies U = M, equivalently, ©(M/U) # M/U for every proper sub-
module U of M.

For 7 =Rad, P,(M) will be denoted by just P(M), a Rad-torsion
module is called a radical module, a Rad-reduced module will be called a
reduced module and a Rad-coatomic module will be called a coatomic
module following the terminology in [32]. Coatomic modules appear in
the theory of supplemented, semiperfect, and perfect modules. See [32,
Lemma 1.5] for some properties of reduced and coatomic modules. For
the structure of coatomic modules over commutative Noetherian rings
see [33]; the Noetherian assumption is needed to have that every sub-
module of a coatomic module over a commutative Noetherian ring is
coatomic [33, Lemma 1.1].

For completeness note the following elementary properties of P.(M):

THEOREM 3.1. Let t be a preradical for R-Mod and let M be an R-
module.

(i) P, is an idempotent preradical.

(i) If M < N for a module N, then P.(M) < t(N). In particular,
P.(M) < (M)

(iii) ©(P.(M)) = P.(M), that is, P.(M) is t-torsion, and so by its de-
finition P.(M) is the largest t-torsion submodule of M.

(iv) If P.(M) <V for a submodule V of M, then P.(M) < (V).

W) P.(z(M)) = P.(M)

(vi) The pretorsion class of P, equals the pretorsion class of T and
the pretorsion free class of P, contains the pretorsion free class of ©:

TP, = TT and sz ) WT

(vil) Moreover, if T is a radical, then the factor module M /P.(M) is
t-reduced, that is, P.(M/P.(M)) = 0 and so P; is an idempotent radical.
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REMARK 3.2. In general, given any class A of modules, a preradical
is defined by setting for each module N,

©*(N) =) {Imf|f:A— Nin R-Mod, A € A}.

and if A is a pretorsion class, then t* is an idempotent preradical (see for
example [10, 6.5-6]). In our case, the preradical P; is equal to " when the
pretorsion class A = T, the torsion class of 7. See also [26, Ch. VI, § 1];
P, is the largest idempotent preradical that is smaller than 7 and see [26,
Ch. VI, Exercise 4, p. 157] for the properties Theorem 3.1-(iii,v). Since P,
is an idempotent radical when 7 is a radical, it gives a torsion theory for
R-Mod with torsion class Tp, = I'; and torsion free class I'p,. By the
results in [26, Ch. VI, § 2], the properties for z-torsion and z-reduced
modules in the following Proposition 3.4 are obtained because t-torsion
modules equate with P,-torsion modules and z-reduced modules form the
torsion free class I'p..

REMARK 3.3. See [13, pp. 29, 63] for the definitions and properties of -
dense submodules of a module and 7-cotorsionfree modules for a heredi-
tary idempotent preradical t on B-Mod: A submodule N of a module M is
said to be t-dense in M if M /N is t-torsion, that is, «(M /N) = M /N, and a
module M is said to be t-cotorsionfree if it has no proper t-dense sub-
modules. Our definition of r-coatomic module coincides with t-cotorsion-
free module but in our case, v need not be idempotent or hereditary. Ob-
serve that since being z-torsion is the same with being P.-torsion and P; is
an idempotent preradical, the idempotent assumption is not a problem. But
in our case 7 is not assumed to be hereditary; in particular, Rad is not
hereditary. The properties for t-cotorsionfree modules given in [13] hold
under this hereditary assumption. For example, arbitary direct sum of -
cotorsionfree modules is t-cotorsionfree when 7 is a hereditary idempotent
preradical but in our case, for just an (idempotent) preradical 7, arbitrary
direct sum of t-coatomic modules need not be z-coatomie.

Note also the following properties of t-reduced and t-coatomic modules
which are easily proved:

PRrROPOSITION 3.4. Let 7 be a preradical for R-Mod.

(i) The class of t-torsion modules s closed under quotients and
direct sums. Moreover, if T is a radical, then the class of T-torsion modules
is closed under extensions.
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(ii)) The class of t-reduced modules is closed under submodules,
direct products and direct sums.

(iii) Every factor module of a t-coatomic module is t-coatomic.

(iv) The class of t-reduced, respectively t-coatomic, modules 1s
closed under extensions, that is, if

0—A—B—C—0

18 a short exact sequence of modules such that A and C are t-reduced, re-
spectively t-coatomic, then B is also t-reduced, respectively t-coatomic.

ProrosiTION 3.5. Let t be a radical for R-Mod. If a module M is t-
coatomic, then ©(M) < M.

Proor. Suppose t(M)+ L =M for some submodule L < M. Since
M/L = M)+ L)/L <t(M/L), we obtain M/L =t(M/L). This gives
L = M since M is t-coatomic. Hence (M) < M. O

4. z-supplemented modules.

Throughout the rest of the paper, r denotes a radical on R-Mod (where
R is an arbitrary ring). See [1] and [10, § 10] for properties of z-supple-
ments and z-supplemented modules. In this section, we shall see some
other properties of t-supplemented modules. We shall frequently use the
fact that any factor module of a r-supplemented module is z-supplemented
[1, 2.2(2)].

THEOREM 4.1. If V is a t-supplement in a module M, then
(V) =V nuM).

Proor. (V) <V n(M) always holds. To show the converse we only
require to show that (V N «(M))/=(V) = 0. Since V is a t-supplement in M,
there exists a submodule U < M suchthat U+ V =Mand UNV = (V)
by Proposition 2.1-(ii)). Then

M/UNV) =W/ UNV)e(V/UNV))=U/«V)s V/«(V)).

Since 7 is a radical, we obtain:

M /(V)) = 2(U/(V)) @ 1(V/2(V)) = «(U /«(V)) & 0 = (U /(V)).
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By properties of a radical, since (V) < (M), we have:

(M) /7(V) = (M /=(V)) = (U /«(V)), and

VeD)/x(V) =V /z(V) 0 @) /2(V)) = (V/=(V)) N (U /7(V))
<V /(M) nWl/«(V))
=UNW)/t(V)=(V)/=(V) = 0.

COROLLARY 4.2. IfV is a Rad-supplement in a module M, then
RadV =V nRadM.

ProPOSITION 4.3. Let K, L, M be modules such that K < L < M.

(1) If K is a T-supplement in M, then it is a t-supplement in L.
() If K <L) and L/K is a t-supplement in M /K, then L is a
t-supplement in M.
(iii) If K is a t-supplement in L and L is a t-supplement in M, then
K is a t-supplement in M.

Proor. (i) Since K is a t-supplement in M, there exists a submodule
U<M such that U+K=M and UNnK<tK). So L=LnNnM
=LNU+K)=LNU+Kand LNU)NK =UNK < 1(K).

(ii) Since L/K is a t-supplement in M /K, there exists a submodule
U <M with K <U such that U/K+L/K =M/K and (U/K)N(L/K)
< to(L/K). So we obtain U + L = M and

(UNL)/K = U/K)N(LJ/K) < t(L/K) = t(L)/K

by properties of a radical since K < 7(L). Hence UNL < t(L.) and so L is a
t-supplement (of U) in M.

(iii) Temporarily denote by I the class induced by z-supplement sub-
modules; that is It is the class of all short exact sequences

0—A- B Y c—o

of R-modules and R-module homomorphisms such that Im(f) is a z-sup-
plement in B. For such a short exact sequence in the class Iti, f is said to be
an [f-monomorphism. By Proposition 2.1, the class It is the proper class
injectively generated by all modules M such that 7(M) = 0. By the defi-
nition of proper classes, the composition of two I,-monomorphisms is an -
monomorphism (see [10, 10.1]). If K is a r-supplement in L and L is a t-
supplement in M, then the inclusions K—L and L—M are [E-mono-
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morphisms and so their composition K< M is also an E-monomorphism,
that is, K is a t-supplement in M. O

PROPOSITION 4.4. Let M be a module and let N, K be submodules
of M such that M = N + K. If K is t-supplemented, then K contains a
T-supplement of N in M.

Proor. Since K is t-supplemented, the submodule N N K of K has
a t-supplement in K, that is, there exists a submodule L < K such
that NNK)+L=K and WNK)NL <t(l). Then M=N+K=N
+WNNK)+L=N+L and NNL=WnK)NL <1t(L). Hence L is a
z-supplement of N in M. O

It is trivial to show that:

PROPOSITION 4.5.

(i) Every t-torsion module is t-supplemented.
(ii) The module P.(M) is t-supplemented for every module M.

THEOREM 4.6. Ifamodule M is t-reduced and t-supplemented, then M
1s T-coatomic, RadM = (M) and M is weakly supplemented.

Proor. Let U be aproper submodule of M. Since M is t-supplemented,
there exists a submodule V < M suchthat U + V =M and UNV < (V).
Sowe have «(V /(U NV)) = =«(V)/(U N'V) by properties of a radical. We also
have ©(V) # V since M is t-reduced, and so «(V)/(UNV) #V/(UNV).
Therefore, using the fact that M /U = (U +V)/U = V /(U N V) we obtain

M/U)2(V/UNV))=t(V)/(UnV)£V/UNV),

or equivalently, «(M/U) # M /U, that is, M is t-coatomic. By Proposition
3.5, 1(M) <« M and hence (M) < RadM. By [1, 2.2(3)], M /(M) is semi-
simple since M is t-supplemented. Then Rad(M/t(M))=0 and so
RadM < t(M). Thus RadM = t(M). Since RadM = t(M) < M and M is a
semilocal module (that is M /RadM = M /«(M) is semisimple), we obtain
that M is weakly supplemented by [19, Theorem 2.7]. O

THEOREM 4.7. If M is a t-supplemented module, then RadM < (M),
and
RadM/P(M)) = 1(M/P.(M)) = «(M)/P-(M).
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Proor. By[1,2.2(3)], M /(M) is semisimple and so Rad(M /=(M)) = 0
which gives RadM < t©(M). The module M /P, (M) is t-supplemented as a
factor module of the t-supplemented module M. Since M /P.(M) is t-re-
duced, Rad(M /P.(M)) = ©(M /P.(M)) by Theorem 4.6. By properties of a
radical, (M /P.(M)) = «(M)/P.(M). O

PropoSITION 4.8.  The following are equivalent for a module M and a
submodule K < P,(M):

(1) M 1is t-supplemented,
(il)) M/K s t-supplemented;
(i) M/P.(M) is t-supplemented.

ProoF. Since every factor module of a r-supplemented module is
7-supplemented, (i) = (i) = (iii) are clear. To prove (ii1) = (1), take U < M.
By hypothesis, there is a submodule V' < M such that P.(M) <V,

(U + P.(M))/P.(M)] + [V /P(M)] = M /P(M)
and
U NV +P.M)/P.(M)=[(U + P.(M))/P.(M)I N[V /P.(M)]
<t(V/P(M)) = «(V)/P(M).

Note that the last equality holds by Theorem 3.1-(iv). Sowe have U+ V =M
and U NV < (V). That is V is a t-supplement of U in M. O

COROLLARY 4.9. The following are equivalent for a ring R:

(i) every R-module is t-supplemented;
(i) every free R-module is tT-supplemented;
(iii) every t-reduced R-module is t-supplemented.

Proor. (i) = (ii) and (i) = (iii) are clear. (ii) = (i) follows since every
module is an epimorphic image of a free R-module and being z-supple-
mented is preserved under passage factor modules. To prove (iii) = ()
take an R-module M. Since M/P.(M) is t-reduced, we obtain that
M /P.(M) is t-supplemented by the hypothesis. So M is t-supplemented
by Proposition 4.8. O

ProposITION 4.10.  If V is a t-supplement in a module M and V is
t-coatomic, then V is a supplement in M.
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Proor. Since V is a t-supplement in M, there exists U < M such that
U+V=Mand UNV < 2(V). Since V is 7-coatomic, we have by Propo-
sition 3.5 that «(V) <« V.Then U NV < (V) <« V and so V is a supplement
inM. O

ProrosiTiON 4.11. If M is a t-reduced module that is totally
T-supplemented, then M 1s totally supplemented.

Proor. Since being t-reduced is inherited by submodules, it is enough
to prove that M is supplemented. Let U < M and V be a t-supplement of U
in M. Then U+V =M and UNV < (V). By hypothesis, V is t-supple-
mented and t-reduced. So by Theorem 4.6, V is 7-coatomic. Then t(V) < V
by Proposition 3.5. Therefore U NV <« V and so V is a supplement of U in
M. Hence M is supplemented. O

Clearly supplemented modules are Rad-supplemented and so we obtain
the following:

COROLLARY 4.12. If M 1is a reduced module, then M 1is totally Rad-
supplemented if and only if M is totally supplemented.

5. When are all left R-modules z-supplemented?

In this section, we shall characterize the rings all of whose (left) mod-
ules are r-supplemented for some particular radicals 7 including Rad.

An epimorphism f : P — M is said to be a projective cover if P is pro-
jective and Ker f < P. A property that we shall use is that if P is projective
and P/U has a projective cover, then U has a supplement V in P such that
V is a direct summand of P and hence projective (see [30, 42.1]). A ring R is
called left perfect if every left R-module has a projective cover. Recall that,
a subset [ of a ring R is said to be left T-nilpotent in case for every se-
quence {a;},— in I there is a positive integer n such that a; ---a, = 0. A
ring R is said to be a left max ring if every left R-module has a maximal
submodule, equivalently Rad(M) < M for every left R-module M. A ring
R is said to be a semilocal ring if R/J(R) is a semisimple ring (that is a left
(and right) semisimple R-module), see [18, § 20]. Semilocal rings are also
referred to as rings semisimple modulo their radical (see [4, § 15, pp. 170-
172]). For a semilocal ring R, RadM = JM for every left R-module M
where J = J(R) (see for example [4, Corollary 15.18]). By a characteriza-
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tion of left perfect rings by Bass, as in for example [4, Theorem 28.4], a ring
R is left perfect if and only if R is a semilocal ring and J(R) is left T-nil-
potent if and only if R is a semilocal left max ring. A ring R is called left
semiperfect if every finitely generated left B-module has a projective
cover. A ring R is (left or right) semiperfect if and only if the left (or right)
R-module R is supplemented (see [30, 42.6]).

An epimorphism f : N — M is said to be a t-cover if Ker f <t(N). If
moreover N is projective, then f is called a projective t-cover. A ring R is
called left t-perfect if every left R-module has a projective t-cover. These
rings are studied in [5] and [31] for the radical t = Rad, and in [23] for a
larger class of preradicals. A ring R is called left t-semiperfect if every
finitely generated left R-module has a projective 7-cover. The relation
between t-cover and t-supplements is the following:

ProPOSITION 5.1 [1, 2.14]. For an R-module L and U < L, the following
are equivalent:
@ L/U has a projective t-cover;
(ii)) U has a t-supplement V which has a projective t-cover.

It is clear from the definitions and Proposition 5.1 that, if R is a left -
(semi)perfect ring then every (finitely generated) left R-module is z-sup-
plemented. But the converse need not be true, for example when r = Rad,
see Example 6.2.

LemMa 5.2. If R is a ring that is a t-reduced left R-module and if the
free left R-module F = R™ is t-supplemented, then t(R) is left T-nilpotent.

PrOOF. Since P.(R) =0 and P.(F) = (P.(R)™ =0, F is r-reduced.
Then F' is 7-coatomic by Theorem 4.6, and so by Proposition 3.5
(R)F = c(R)™ = o(F) < F.
Therefore t(R) is left T-nilpotent by [4, Lemma 28.3]. O
THEOREM 5.3. If R is aring that is a t-reduced left R-module, then the

free left R-module F = R™ is t-supplemented if and only if R is left perfect
and 1(R) = J(R).

PrOOF. Suppose F = R™ is r-supplemented. Then R is z-supple-
mented as a direct summand of F'. Since R is also t-reduced by hypothesis,
we obtain t(R) = J(R) by Theorem 4.6. By Lemma 5.2, J(R) = t©(R) is left



170 Engin Biiyiikagik - Engin Mermut - Salahattin Ozdemir

T-nilpotent. Since R is t-supplemented, R /J(R) = R /t(R) is semisimple by
[1,2.2(3)]. Hence R is left perfect by [4, Theorem 28.4]. Conversely suppose R
is left perfect and 7(R) = J(R). Let U < F = R™). Since R is left perfect,
every left R-module, and in particular, F'/U has a projective cover. Then by
[30,42.1]), U has a supplement V in the free module F' such that V is a direct
summand of F. Since F' is free, its direct summand V is projective. So
(V) = 1(R)V by properties of radicals. Since V is a supplement of U in M,
U+V=Mand UNV <« V.So UNV < Rad(V). Since R is a left perfect
ring, it is a semilocal ring and so Rad(V) = J(R)V. Thus U NV < Rad(V)
=J(R)V = t(R)V = (V). Hence V is a t-supplement of U in M. O

Note that the above proof for the converse implication works for every
free left R-module F, not necessarily countably generated. Moreover, since
every factor module of a r-supplemented module is z-supplemented and
every module is isomorphic to a factor module of a free module, we have:

COROLLARY 5.4. If R is a ring that is a t-reduced left R-module, then
every (free) left R-module is t-supplemented if and only if R is left perfect
and t(R) = J(R).

It is easy to see that a radical  on R-modules is also a radical on
R/P.(R)-modules since every R/P.(R)-module can be considered as an R-
module (with annihilator containing P.(R)). We shall use this fact in the
proof of the following theorem:

THEOREM 5.5. For a ring R with P.(R) < J(R) , the following are
equivalent.

(i) every left R-module is t-supplemented;
(ii) every free left R-module is t-supplemented;
(iii) the free left R-module F = R™) is t-supplemented;
@iv) the quotient ring R/P.(R) is left perfect and t1(R) = J(R).

Proor. (i) < (i) follows by Corollary 4.9. (ii) = (iii) is clear.

(iii) = (iv): Since F is t-supplemented, so is its factor module F = F JP.(F)
~ (R /PT(R))<N). The R-module F can be considered as an R /P.(R)-module
and 7 can be considered also as a radical on B /P .(R)-modules. By Theorem
5.3, since R/P.(R) is t-reduced, we obtain that the quotient ring B/P.(R) is
left perfect and

(R/P.(R)) = J(R/P.(R)).
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Then by properties of radicals, ©(R/P.(R)) = ©(R)/P.(R) and J(R/P.(R))
= J(R)/P.(R) since P.(R) < J(R) by hypothesis. Hence 1(R) = J(R).

(iv) = (ii): By properties of radicals, since P.(R) < ©(R) =J(R) by
hypothesis, we obtain for the left perfect quotient ring S = R/P,(R) that:

©(S) = ©t(R/P(R)) = ©«(R)/P(R) = J(R)/P.(R) = J(R/P.(R)) = J(S).

By Corollary 5.4, every free S-module is z-supplemented, where we con-
sider 7 also as a radical on S-modules. Let F' be a free R-module. Then
F =~ R for some index set I. By Proposition 4.8, it is enough to prove that
F =F/P.(F)~ S" is t-supplemented. But this holds since F can be con-
sidered as a free S-module. O

6. When are all left R-modules Rad-supplemented?

Using the results of the previous sections for 1 = Rad, we obtain the
following characterization of the rings R over which every R-module is
Rad-supplemented. Of course, more work still remains to understand P(R)
and the condition that B/P(R) is left perfect.

THEOREM 6.1.  For a ring R, the following are equivalent.

(i) every left R-module is Rad-supplemented;

(i) every reduced left R-module is Rad-supplemented;
(iii) every reduced left R-module is supplemented;
(iv) the free left R-module R™ is Rad-supplemented;
(v) R/P(R) is left perfect.

Proor. (i) < (iv) & (v) is obtained by Theorem 5.5 since P(R)
< Rad(R) = J(R). (i) < (i) follows by Corollary 4.9. (iii) = (ii) holds since
supplemented modules are Rad-supplemented. To prove (ii) = (iii) , take
any reduced left R-module M. Then every submodule of M is also reduced
and Rad-supplemented by hypothesis (ii). So M is a reduced module that is
totally Rad-supplemented. By Corollary 4.12, M is totally supplemented
and hence supplemented. O

The following is an example of a ring R that is not left perfect (and so
not left Rad-perfect by [23, Theorem 1.5]) but where all R-modules are
Rad-supplemented.
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ExamprLE 6.2. Let k be a field. In the polynomial ring k[x;,x2,...]
with countably many indeterminates wx,, m € Z", consider the ideal
I = (3,05 — ®1,45 — w,...) generated by #f and 2., —ux, for each
n € 7", In the quotient ring R = k[x1,%,...]1/], the maximal ideal
M = (®1,%3,...)/I of R generated by all @, =x,+1, n € 7", is the
unique maximal ideal of R. This is because, if K is any maximal ideal of
R, then %% =0€K and so x; € K since K is a prime ideal. Now
%% =2, € K and so ¥ € K. By induction, we obtain %721 =%,-1 € K and
so %, € K for all n € 7Z*. Therefore K = M, as desired. Since %, = ﬁ 41
for every m € 7", we obtain M = M2 So RadM =M and hence
P(R) = M. Since the ring R/P(R) = R/M is a field (and so perfect), every
R-module is Rad-supplemented (by Theorem 6.1). By [4, Lemma 28.3],
M = J(R) is not (left) T-nilpotent, and so R is not a (left) perfect ring.

In [9], it is proved that the class of rings that are Rad-supplemented lies
properly between the classes of semilocal rings and semiperfect rings.
Recall that a ring R is said to be a left duo ring if every left ideal of R is a
two-sided ideal. We shall characterize the left duo rings R that are Rad-
supplemented left R-modules. Firstly, we need the following lemma:

LeEmMA 6.3.  If R is a left duo ring and J, A, B are left ideals of R such
that A+B=RandANB=JANJB, then AnNB =JANB).

Proor. Clearly J(ANB) <ANB. Converselyletxc ANB=JANJB.
Since A+ B =R, we have a +b =1 for some a € A and b € B. Then

x=xa+xbandx = > s;a; = > t;b; wherel, I’ arefiniteindexsets,a; € A,
el el
b; € B and s;,t; € J. Now we have,

wb = siab € JAB) and xa =Y _tibia € J(BA).

el el

Since R is a left duo ring we have AB<ANB and BA<ANB. So
x=uxa-+xbeJBA) +JAB) <JANB). ThusAnNnB <JANB). O

THEOREM 6.4. If R is a left duo ring such that P(R) = 0, then R is a
Rad-supplemented left R-module if and only if R s semiperfect.

Proor. If R is semiperfect, then R is a supplemented, and so a
Rad-supplemented, left RE-module. Conversely, suppose R is a Rad-
supplemented left R-module. Then R is semilocal and R is an amply
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Rad-supplemented left R-module by [1, 2.2(3) and 2.6(2)]. Let A’ be
a left ideal of R. Since R is an amply Rad-supplemented left R-
module, A’ has a Rad-supplement B in R, and B has a Rad-sup-
plement A<A’'in R. So R=A'"+B=A+B, AnB<A'NnB < RadB
and A N B < RadA. Thus A N B = (RadA) N (RadB). Let J = J(R). Then
ANB=JANJB =J(ANB) by Lemma 6.3. Since R is a semilocal ring,
Rad(A N B) = J(A N B). Then AN B is a Rad-torsion submodule of R and
so ANB < P(R) = 0. This gives that R = A & B. Therefore JB <J < R
implies that Rad(B) = JB < B since B is a direct summand of E. Hence
B is a supplement of A’ in R. This shows that R is a supplemented left
R-module and so R is semiperfect (see [30, 42.6]). O

THEOREM 6.5. For a left duo ring R, the following are equivalent:
(i) R/P(R) is semiperfect;
(ii) the left R-module R is Rad-supplemented,;
(i) every finitely gemerated free left R-module is Rad-supple-
mented;
(iv) every finitely generated left R-module is Rad-supplemented.

Proor. (ii) = (iii) follows by [1, 2.3(2)]. (iii) = (iv) holds since every
finitely generated module is an epimorphic image of a finitely generated
free module and Rad-supplemented modules are closed under epimorphic
images. (iv) = (ii) is clear.

(i) = (ii): Since the quotient ring S = R/P(R) is semiperfect, B/P(R) is
a Rad-supplemented left S-module and so a Rad-supplemented left R-
module. Then the left R-module R is Rad-supplemented by Proposition 4.8.

(@ii) = (@0): The factor module R/P(R) is also a Rad-supplemented left R-
module. So the ring S = R/P(R) is a Rad-supplemented left S-module with
P(S) = 0 and so S = R/P(R) is semiperfect by Theorem 6.4. O

Note that all implications except (i) = (¢) of Theorem 6.5 hold for any
ring R, while the implication (i7) = (¢) raises the question whether a Rad-
supplemented ring R with P(R) = 0 is necessarily semiperfect.

7. Rad-supplemented Modules over Dedekind Domains.
Over Dedekind domains, divisible modules coincide with injective

modules as in abelian groups. Note that for a module M over a Dedekind
domain R, M is divisible if and only if RadM = M, and this holds if and only
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if M is injective; see for example [2, Lemma 4.4]. This is the motivation for
the definition of reduced modules in general. A module over a Dedekind
domain is reduced if it has no nonzero divisible submodules. As in abelian
groups (see for example [11, Theorem 21.3]), any module M over a Dede-
kind domain possesses a unique largest divisible submodule D and
M = D @ C for a reduced submodule C of M (see [16, Theorem 8]); this D is
called the divisible part of M. Following the terminology in abelian groups,
an R-module M over a Dedekind domain is said to be bounded if rM = 0 for
some nonzero r € R.

The structure of supplemented modules over Dedekind domains is
completely determined in [32]:

THEOREM 7.1 [32, Theorem 2.4. and Theorem 3.1]. Let R be a Dedekind
domain with quotient field K # R. Let M be an R-module.

(i) Suppose R is a local Dedekind domain, that is, a discrete va-
luation ring (DVR) with the unique prime element p. Then M is supple-
mented if and only if M =~ R* ® K® © (K/R)" @ B for some R-module B,
where a, b, c are nonnegative integers and p"B = 0 for some integer n > 0.

(ii) Suppose R is non local. Then M is supplemented if and only if
M 1is torsion and every primary component of M is a direct sum of an
artinian submodule and a bounded submodule.

Part (i) of the above theorem for Rad-supplemented modules is ob-
tained as follows:

THEOREM 7.2. Let R be a DVR with quotient field K # R, and p be
the unique prime element. Then M is Rad-supplemented if and only if
M =R s KD ¢ (K/R) & B for some R-module B, where a is a non-
negative integer, I, J are arbitrary index sets and p"B = 0 for some
integer no.

ProoF. (=): If M; is the divisible part of M, then there exists a re-
duced submodule My of M such that M = M7 @ Ms. Since M, is also Rad-
supplemented, it is coatomic by Theorem 4.6. Then by [32, Lemma 2.1],
My = R* ¢ B, for some nonnegative integer a and a bounded module B.
Since M is divisible, M; = K© & (K/R)" for some index sets I and J (see
[16, Theorem 77).

(«<): The module N = KO @ (K/R)"" is divisible, and so RadN = N.
Then N is Rad-supplemented by Proposition 4.5. By Theorem 7.1, the
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module R* & B is supplemented, and hence Rad-supplemented. Therefore
the direct sum R® & K? & (K/R)”’ @ B is Rad-supplemented. O

Over commutative Noetherian rings we have:

PROPOSITION 7.3.  Let R be a commutative noetherian ring and M be a
reduced R-module. Then M is Rad-supplemented if and only if M is
supplemented.

Proor. Suppose M is Rad-supplemented. Then M is coatomic by
Theorem 4.6, and so every submodule of M is coatomic by [33, Lemma 1.1]
since R is a commutative noetherian ring. Let U be a submodule of M and V
be a Rad-supplement of U in M. Then V is coatomic, and so UNV
<RadV <« V. Thus V is a supplement of U in M. The converse is clear. O

Since the structure of supplemented modules is known by Theorem 7.1,
it is enough to characterize Rad-supplemented modules in terms of sup-
plemented modules. Note that for an R-module M where R is a Dedekind
domain, P(M) equals the divisible part of M.

THEOREM 7.4. Let R be a Dedekind domain and M be an R-module.
Then M is Rad-supplemented if and only if M/P(M) is (Rad-)supple-
mented.

Proor. Since R is a Dedekind domain, M has a decomposition as
M = P(M) ® N for some reduced submodule N of M. If M is Rad-supple-
mented, then N = M /P(M) is also Rad-supplemented. Since N is reduced,
N is supplemented by Proposition 7.3. Conversely, suppose N = M /P(M) s
Rad-supplemented. By Proposition 4.5-(ii), the submodule P(M) is already
Rad-supplemented. Therefore M = P(M) & N is Rad-supplemented as a
sum of two Rad-supplemented modules. O

These characterizations can be used to give examples of Rad-supple-
mented modules which are not supplemented.

ExaMpPLE 7.5. Let R be a Dedekind domain with quotient field K # R.
The R-module M = K is Rad-supplemented for every index set I. If R is
a local Dedekind domain (i.e. a DVR), then M is supplemented only when /
is finite. If R is a non-local Dedekind domain, then M is not supplemented
for every index set I, since M is not torsion.
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