A Short Proof of the Hölder-Poincaré Duality for L_p -Cohomology

VLADIMIR GOL'DSHTEIN (*) - MARC TROYANOV (**)

Abstract - We give a short proof of the duality theorem for the reduced L_p -cohomology of a complete oriented Riemannian manifold.

Let (M,g) be an oriented Riemannian manifold. For any $1 \leq p < \infty$ we denote by $L^p(M, \Lambda^k)$ the space of p-integrable differential forms on M. An element of that space is a measurable differential k-form ω such that

$$\|\omega\|_p := \left(\int\limits_M |\omega|_x^p d\operatorname{vol}_g(x)\right)^{1/p} < \infty.$$

Recall that a differential form $\theta \in L^p(M, \Lambda^{k+1})$ is the *weak exterior differential* of the form $\phi \in L^p(M, \Lambda^k)$ if one has

$$\int\limits_{M}\theta\wedge\omega=(-1)^{k+1}\int\limits_{M}\phi\wedge d\omega$$

for any $\omega \in \mathcal{D}^{n-k}(M)$, where $\mathcal{D}^m(M)$ denotes the vector space of smooth differential m-forms with compact support in M.

One writes $d\phi = \theta$ if θ is the weak exterior differential of ϕ and $Z_p^k(M) = \ker d \cap L^p(M, \varLambda^k)$ denotes the set of weakly closed forms in $L^p(M, \varLambda^k)$. It is easy to check that $Z_p^k(M)$ is a closed linear subspace of

(*) Indirizzo dell'A.: Department of Mathematics, Ben Gurion University of the Negev, P.O.Box 653, Beer Sheva, Israel.

E-mail: vladimir@bgumail.bgu.ac.il

(**) Indirizzo dell'A.: Section de Mathematiques, École Polytechnique Féderale de Lausanne, 1015 Lausanne - Switzerland.

E-mail: marc.troyanov@epfl.ch

AMS Mathematics Subject Classification: 58A10, 58A12, 53c.

 $L^p(M, A^k)$, in particular it is a Banach space (see [5, Lemma 2.2]). We then introduce the space

$$B_n^k(M) = d(L^p(M, \Lambda^{k-1})) \cap L^p(M, \Lambda^k)$$

of exact L^p -forms and we shall denote by $\overline{B}_p^k(M)$ the closure of $B_p^k(M)$ in $L^p(M, \Lambda^k)$. Because $Z_p^k(M) \subseteq L^p(M, \Lambda^k)$ is a closed subspace and $d \circ d = 0$, we have $\overline{B}_p^k(M) \subseteq Z_p^k(M)$. The reduced L_p -cohomology of (M,g) (where $1 \le p < \infty$) is defined to be the quotient

$$\overline{H}_p^k(M) = Z_p^k(M)/\overline{B}_p^k(M).$$

This is a Banach space for the natural (quotient) norm and the goal of this paper is to prove the following Theorem (here and throughout the paper, p' = p/(p-1) is the conjugate number of p).

DUALITY THEOREM. Let (M,g) be a complete oriented Riemannian manifold of dimension n and $1 . Then <math>\overline{H}^k_p(M)$ is isometric to the dual of $\overline{H}^{n-k}_{p'}(M)$. The duality is given by the integration pairing:

$$\begin{array}{cccc} \overline{H}^k_p(M) \times \overline{H}^{n-k}_{p'}(M) & \to & \mathbb{R} \\ \\ ([\omega], [\theta]) & \mapsto & \int\limits_M \omega \wedge \theta. \end{array}$$

Remark. By "the dual space" X' of a Banach space X, we of course mean the topological dual, i.e. the vector space of continuous linear functionals together with its natural norm. The isomorphism between $\overline{H}_p^k(M)$ and the dual of $\overline{H}_{p'}^{n-k}(M)$ has first been proved in 1986 by V. M. Gol'dshtein, V.I. Kuz'minov and I.A. Shvedov, see [4]. In fact that paper also describes the dual space to the L_p -cohomology of non complete manifolds. The proof we present here is simpler and more direct than the proof in [4], although it doesn't seem to be extendable to the non complete case. Note that this duality theorem is useful to prove vanishing or non vanishing results in L_p -cohomology, see e.g. [5, 7, 8].

Let us also mention that Gromov deduced the above theorem from the simplicial version of the L_p -cohomology, see [7]. Gromov's argument works only for Riemannian manifolds with bounded geometry, while the proof we give here works for any complete manifold. Our proof can also be extended to the more general $L_{q,p}$ -cohomology, see [6].

The proof will rest on a few auxiliary facts. Recall first that a pairing between two Banach spaces X_0 and X_1 is simply a continuous bilinear map

 $I: X_0 \times X_1 \to \mathbb{R}$. Such a pairing defines two continuous linear maps $\lambda: X_0 \to X_1'$, and $\mu: X_1 \to X_0'$ defined by

$$\lambda_{\xi}(\eta) = \mu_{\eta}(\xi) = I(\xi, \eta),$$

for any $\xi \in X_0$ and $\eta \in X_1$.

DEFINITION 1. An *isometric duality* between two Banach spaces X_0 and X_1 is a pairing $I: X_0 \times X_1 \to \mathbb{R}$ such that the associated maps $\lambda: X_0 \to X_1'$, and $\mu: X_1 \to X_0'$ are bijective isometries.

Observe that if an isometric duality exists between two Banach spaces, then these spaces are reflexive. The classic $L^p-L^{p'}$ duality for function spaces extends to the case of differential forms, see [4]:

PROPOSITION 2. If $1 , then the pairing <math>L^p(M, \Lambda^k) \times L^{p'}(M, \Lambda^{n-k}) \to \mathbb{R}$ defined by

(1)
$$\langle \omega, \varphi \rangle = \int_{M} \omega \wedge \varphi$$

is an isometric duality. In particular, $L^p(M, \Lambda^k)$ is a reflexive Banach space.

We will also need the following density result whose proof is based on regularization methods, see e.g. [3, 5]:

PROPOSITION 3. Let $\theta \in L^p(M, \Lambda^{k-1})$ be a (k-1)-form whose weak exterior differential is p-integrable, $d\theta \in L^p(M, \Lambda^k)$. Then there exists a sequence $\theta_j \in C^{\infty}(M, \Lambda^{k-1})$ such that $\theta = \lim_{j \to \infty} \theta_j$ and $d\theta = \lim_{j \to \infty} d\theta_j$ in $L^p(M)$.

The next lemma is the place where the completeness hypothesis enters:

LEMMA 4. If (M, g) is complete, then $d\mathcal{D}^{k-1}(M)$ is dense in $B_n^k(M)$.

PROOF. Because M is complete, one can find a sequence of smooth functions with compact support $\{\eta_j\}\subseteq C_0^\infty(M)$ such that $0\leq \eta_j\leq 1$, $\limsup_{j\to\infty}|d\eta_j|=0$ and $\eta_j\to 1$ uniformly on every compact subset of M. Let $\omega\in B_p^k(M)$, then there exists $\theta\in L^p(M,\Lambda^{k-1})$ such that $d\theta=\omega$. Choose a sequence $\{\theta_i\}\subseteq C^\infty(M,\Lambda^{k-1})$ as in Proposition 3, i.e. $\theta_j\to\theta$ and $d\theta_j\to d\theta=0$

 $=\omega$ in $L^p(M)$ and set $\tilde{\theta}_j=\eta_j\theta_j\in\mathcal{D}^{k-1}(M)$. We first claim that $(\tilde{\theta}_j-\theta_j)\to 0$ in $L^p(M, A^{k-1})$. Indeed, fix $\varepsilon>0$ and choose a compact set Q such that $\|\theta\|_{L^p(M\setminus Q)}<\varepsilon$. Since $|\eta_j-1|<1$, we have

$$\begin{split} \|\tilde{\theta}_{j} - \theta_{j}\|_{L^{p}(M)} &\leq \|(\eta_{j} - 1)\theta_{j}\|_{L^{p}(Q)} + \|\theta_{j}\|_{L^{p}(M \setminus Q)} \\ &\leq \|(\eta_{j} - 1)\theta_{j}\|_{L^{p}(Q)} + \|\theta_{j} - \theta\|_{L^{p}(M \setminus Q)} + \|\theta\|_{L^{p}(M \setminus Q)}. \end{split}$$

The first term converges to zero because $\eta_j \to 1$ uniformly on Q and $\{\|\theta_j\|_{L^p}\}$ is bounded. The second term converges to zero because $\theta_j \to \theta$ in $L^p(M, A^{k-1})$ and the last term is bounded by ε , hence

$$\limsup_{j \to \infty} \|\tilde{\theta}_j - \theta_j\|_{L^p(M)} \le \varepsilon.$$

Since ε is arbitrary, the limit is zero and we obtain

$$\lim_{j o\infty}\| ilde{ heta}_j- heta\|_{L^p(M)}\leq \lim_{j o\infty}\| ilde{ heta}_j- heta_j\|_{L^p(M)}+\lim_{j o\infty}\| heta_j- heta\|_{L^p(M)}=0.$$

We similarly have

$$\begin{split} \|d\tilde{\theta}_j - d\theta_j\|_p &\leq \|(\eta_j - 1)d\theta_j\|_p + \|d\eta_j \wedge \theta_j\|_p \\ &\leq \|(\eta_j - 1)d\theta_j\|_p + \sup |d\eta_j| \cdot \|\theta_j\|_p \to 0. \end{split}$$

This implies that $\omega = \lim_{j \to \infty} d\tilde{\theta}_j$ in L^p .

DEFINITION 5. Given an isometric duality $I: X_0 \times X_1 \to \mathbb{R}$ and a nonempty subset B of X_0 , we define the *annihilator* $B^\perp \subseteq X_1$ of B to be the set of all elements $\eta \in X_1$ such that $I(\xi, \eta) = 0$ for all $\xi \in B$.

For any $B \subseteq X_0$ the annihilator B^{\perp} is a closed linear subspace of X_1 . The Hahn-Banach Theorem implies that if B is a linear subspace of X_0 then $(B^{\perp})^{\perp} = \overline{B}$.

For these and further facts on the notion of annihilator, we refer to the books [1, 2].

The proof of the duality Theorem is based on the following lemma about annihilators:

LEMMA 6. Let $I: X_0 \times X_1 \to \mathbb{R}$ be an isometric duality between two Banach spaces. Let B_0, A_0, B_1, A_1 be linear subspaces such that

$$B_0 \subseteq A_0 = B_1^{\perp} \subseteq X_0 \quad and \quad B_1 \subseteq A_1 = B_0^{\perp} \subseteq X_1.$$

Then the pairing $\overline{I}:\overline{H}_0\times\overline{H}_1\to\mathbb{R}$ of $\overline{H}_0:=A_0/\overline{B}_0$ and $\overline{H}_1:=A_1/\overline{B}_1$ is well defined and induces an isometric duality between \overline{H}_0 and \overline{H}_1 .

PROOF. Observe first that $A_i \subseteq X_i$ is a closed subspace since the annihilator of any subset of a Banach space is always a closed linear subspace.

The bounded bilinear map $I:A_0\times A_1\to\mathbb{R}$ is defined by restriction. It gives rise to a well defined bounded bilinear map $\overline{I}:A_0/\overline{B}_0\times A_1/\overline{B}_1\to\mathbb{R}$ because we have the inclusions $B_0\subseteq B_1^\perp$ and $B_1\subseteq B_0^\perp$.

We denote by $\lambda: X_0 \to X_1'$ the isometry induced by the pairing I, by $\overline{\lambda}: \overline{H}_0 \to \overline{H}_1'$ the map defined by the pairing \overline{I} and by $\pi_i: A_i \to \overline{H}_i$ (i=1,2), the canonical projections.

We first prove that $\|\overline{\lambda}_{\xi}\|_{\overline{H}_{1}'} \leq \|\xi\|_{\overline{H}_{0}}$ for any $\xi \in \overline{H}_{0}$. Indeed, let us choose $\hat{\xi} \in A_{0}$ such that $\pi_{0}(\hat{\xi}) = \xi$, we have

$$\begin{split} \|\overline{\lambda}_{\xi}\|_{\overline{H}_{1}'} &= \sup\{\overline{I}(\xi,\eta) \, \big| \, \eta \in \overline{H}_{1}, \|\eta\|_{\overline{H}_{1}} \leq 1\} \\ &\leq \sup\{I(\hat{\xi},\hat{\eta}) \, \big| \, \hat{\eta} \in A_{1}, \|\hat{\eta}\|_{A_{1}} \leq 1\} \\ &\leq \sup\{I(\hat{\xi},\hat{\eta}) \, \big| \, \hat{\eta} \in X_{1}, \|\hat{\eta}\|_{X_{1}} \leq 1\} = \|\lambda_{\hat{\xi}}\|_{X_{1}'}. \end{split}$$

By hypothesis, we have $\|\lambda_{\hat{\xi}}\|_{X_1'} = \|\hat{\xi}\|_{X_0}$, therefore

$$\|\xi\|_{\overline{H}_0} = \inf_{\hat{\xi} \in \pi_0^{-1}(\xi)} \|\hat{\xi}\|_{X_0} = \inf_{\hat{\xi} \in \pi_0^{-1}(\xi)} \|\lambda_{\hat{\xi}}\|_{X_1'} \geq \|\overline{\lambda}_{\xi}\|_{\overline{H}_1'}.$$

We then prove that for any $\theta \in \overline{H}_1'$, there exists an element $\xi \in \overline{H}_0$ such that $\theta = \overline{\lambda}_{\xi}$ and $\|\theta\|_{\overline{H}_1'} \geq \|\xi\|_{\overline{H}_0}$. This implies that $\overline{\lambda}$ is surjective and $\|\overline{\lambda}_{\xi}\|_{\overline{H}_1'} \geq \|\xi\|_{\overline{H}_0}$.

Indeed, for any $\theta \in \overline{H}_1'$, the linear form $\hat{\theta} = \theta \circ \pi_1 : A_1 \to \mathbb{R}$ satisfies $\hat{\theta}(b) = 0$ for any $b \in B_1$ and $\|\hat{\theta}\|_{A_1'} = \|\theta\|_{\overline{H}_1'}$. By the Hahn-Banach Theorem, there exists a continuous extension $\hat{\varphi} : X_1 \to \mathbb{R}$ of $\hat{\theta}$ such that $\|\hat{\varphi}\|_{X_1'} = \|\hat{\theta}\|_{A_1'}$. Since $\lambda : X_0 \to X_1'$ is an isometry, one can find $\hat{\xi} \in X_0$ such that $\lambda_{\hat{\xi}} = \hat{\varphi}$ and

$$\|\hat{\xi}\|_{X_0} = \|\hat{\varphi}\|_{X_1'} = \|\hat{\theta}\|_{A_1'} = \|\theta\|_{\overline{H}_1'}.$$

For any $b \in B_1$, we have $I(\hat{\xi}, b) = \lambda_{\hat{\xi}}(b) = \hat{\theta}(b) = 0$, thus $\hat{\xi} \in B_1^{\perp} = A_0$. Let us set $\xi = \pi_0(\hat{\xi})$, we have

$$\overline{I}(\xi,\eta) = I(\hat{\xi},\hat{\eta}) = \hat{\theta}(\hat{\eta}) = \theta(\eta)$$

for any $\eta \in \overline{H}_1$ and $\hat{\eta} \in A_1$, that is $\theta = \overline{\lambda}_{\xi}$. We also have

$$\|\xi\|_{\overline{H}_0} \leq \|\hat{\xi}\|_{X_0} = \|\theta\|_{\overline{H}_1'} = \|\overline{\lambda}_{\xi}\|_{\overline{H}_1'}.$$

In conclusion, we have have proved that $\overline{\lambda}:\overline{H}_0\to\overline{H}'_1$ is norm preserving and surjective: it is an isometry. The proof that $\overline{\mu}:\overline{H}_1\to\overline{H}'_0$ is also an isometry is the same.

PROOF OF THE DUALITY THEOREM. Let $\phi \in L^p(M, \varLambda^k)$, then $d\phi = 0$ in the weak sense if and only if $\int\limits_M \phi \wedge d\omega = 0$ for any $\omega \in \mathcal{D}^{n-k-1}(M)$. This precisely means that $Z_p^k(M) \subseteq L^p(M, \varLambda^k)$ is the annihilator of $d\mathcal{D}^{n-k-1}(M) \subseteq L^{p'}(M, \varLambda^{n-k})$ for the pairing (1):

$$Z_p^k(M) = (d\mathcal{D}^{n-k-1})^{\perp}(M).$$

By lemma 1, $d\mathcal{D}^{n-k-1}(M)$ and $B^{n-k}_{p'}$ have the same annihilator, thus

$$B_p^k \subseteq Z_p^k = (B_{p'}^{n-k})^{\perp} \subseteq L^p(M, \Lambda^k).$$

Similarly, we also have

$$B^{n-k}_{p'}\subseteq Z^{n-k}_{p'}=(B^k_p)^\perp\subseteq L^{p'}(M, A^{n-k}),$$

and Lemma 1 says that the duality (1) induces an isometric duality between $Z_{p'}^{n-k}/\overline{B}_{p'}^{n-k}$ and Z_p^k/\overline{B}_p^k .

Acknowledgments. We thank the anonymous referee for helpful comments and for pointing out that the duality in our main theorem is an isometric duality.

REFERENCES

- [1] H. Brezis, Analyse fonctionnelle, Théorie et applications. Dunod, Paris 1999.
- [2] J. Conway, A course in functional analysis. Second edition. Graduate Texts in Mathematics, 96. Springer-Verlag, New York, 1990.
- [3] V. M. GOL'DSHTEIN V. I. KUZ'MINOV I. A. SHVEDOV, A Property of de Rham Regularization Operators, Siberian Math. Journal, 25, No 2 (1984).
- [4] V. M. Gol'dshtein V. I. Kuz'minov I. A. Shvedov, *Dual spaces of Spaces of Differential Forms*, Siberian Math. Journal, 54, No 1 (1986).
- [5] V. GOL'DSHTEIN M. TROYANOV, Sobolev Inequality for Differential forms and L_p -cohomology. Journal of Geom. Anal., 16, No 4 (2006), pp. 597–631.
- [6] V. Gol'dshtein M. Troyanov, The Hölder-Poincaré Duality for $L_{q,p}$ cohomology Preprint.
- [7] M. GROMOV, Asymptotic invariants of infinite groups. In "Geometric Group Theory", ed. G. Niblo and M. Roller, Cambridge: Cambridge University Press, (1993).
- [8] P. Pansu, Cohomologie L_p et pincement. Comment. Math. Helv., 83 (2008), pp. 327–357.

Manoscritto pervenuto in redazione il 14 marzo 2010.