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A Short Proof of the Hélder-Poincaré Duality for
L,-Cohomology

VLADIMIR GOL'DSHTEIN (*) - MARC TROYANOV (¥%)

ABSTRACT - We give a short proof of the duality theorem for the reduced L,-coho-
mology of a complete oriented Riemannian manifold.

Let (M, g) be an oriented Riemannian manifold. For any 1 < p <oco we
denote by LP(M, A) the space of p-integrable differential forms on M. An
element of that space is a measurable differential k-form w such that

1/p
||a)||p = /\w\ﬁdvolg(w) < 00.
M

Recall that a differential form 0 € LP(M, A1) is the weak exterior
differential of the form ¢ € LP(M, A" if one has

/eAw:(—l)’““/gﬁAdw
M M

for any w € D" *(M), where D"(M) denotes the vector space of smooth
differential m-forms with compact support in M.

One writes d¢ =0 if 0 is the weak exterior differential of ¢ and
Zgg(M) =kerd N LP(M, A%) denotes the set of weakly closed forms in
LP(M, A9, Tt is easy to check that fo,(M) is a closed linear subspace of
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LP(M, A%, in particular it is a Banach space (see [5, Lemma 2.2]). We then
introduce the space

BYM) = d(LP(M, A1) n LP(M, )

of exact LP-forms and we shall denote by E’;(M ) the closure of B;j(M ) in
LP(M, A*). Because Z’;,(M) C LP(M, A*) is a closed subspace and d o d = 0,
we have BE(M) C ZE(M). The reduced Ly,-cohomology of (M,g) (where
1 < p<oo) is defined to be the quotient

HY(M) = Zy(M)/Bi(M).

This is a Banach space for the natural (quotient) norm and the goal of this
paper is to prove the following Theorem (here and throughout the paper,
p' =p/(p — 1) is the conjugate number of p).

DuaLiTY THEOREM. Let (M,g) be a complﬁe oriented Riemannian
mam'foli of dimension n and 1<p<oo. Then H ;;(M ) is 1sometric to the
dual of H ;‘,*k(M ). The duality is given by the integration pairing:

HyM) xHy ") — R

(], [0) — / oY)

M

REMARK. By “the dual space” X’ of a Banach space X, we of course
mean the topological dual, i.e. the vector space of continuous linear func-
tionals together with its natural norm. The isomorphism between ﬁ;;(M )
and the dual of H, ;},*’“(M ) has first been proved in 1986 by V. M. Gol’dshtein,
V.I. Kuz’'minov and I.A. Shvedov, see [4]. In fact that paper also describes
the dual space to the L,-cohomology of non complete manifolds. The proof
we present here is simpler and more direct than the proof in [4], although it
doesn’t seem to be extendable to the non complete case. Note that this
duality theorem is useful to prove vanishing or non vanishing results in L,,-
cohomology, see e.g. [5, 7, 8].

Let us also mention that Gromov deduced the above theorem from the
simplicial version of the L;,-cohomology, see [7]. Gromov’s argument works
only for Riemannian manifolds with bounded geometry, while the proof we
give here works for any complete manifold. Our proof can also be extended
to the more general L, ,-cohomology, see [6].

The proof will rest on a few auxiliary facts. Recall first that a pairing
between two Banach spaces X and X; is simply a continuous bilinear map
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I:XyxX; — R. Such a pairing defines two continuous linear maps
A: Xy — X{, and u : X; — X{; defined by

Ae(n) = w1, () = I(C, ),
for any ¢ € X and # € Xj.

DEFINITION 1. Anisometric duality between two Banach spaces X, and
X is a pairing I : Xy x X; — R such that the associated maps 1 : Xy — X],
and x : X; — X are bijective isometries.

Observe that if an isometric duality exists between two Banach spaces,
then these spaces are reflexive. The classic LP—LP" duality for function
spaces extends to the case of differential forms, see [4]:

PROPOSITION 2. If 1<p<oo, then the pairing LP(M,A") x
x LV (M, A"™%) — R defined by

(1) wo)= [wne

M

is an isometric duality. In particular, L(M, A*) is a reflexive Banach
space.

We will also need the following density result whose proof is based on
regularization methods, see e.g. [3, 5]:

PropPOSITION 3. Let 0 € LP(M, AN be a (k- 1)-form whose weak
exterior differential is p-integrable, dO € LP(M, A¥). Then there exists a
sequence 0; € C°(M, A") such that 0 = lim 0; and dO = lim d0; in
LP(M). I I

The next lemma is the place where the completeness hypothesis enters:
LEmMa 4. If (M, g) is complete, then dD*(M) is dense in BII;(M ).

Proor. Because M is complete, one can find a sequence of smooth
functions with compact support {7;} C Cg°(M) such that 0 <#; <1,
lim sup |d#;| = 0 and 7; — 1 uniformly on every compact subset of M. Let

Jj—o0
w e Bf,(M ), then there exists 0 € LP(M, A1) such that df = . Choose a
sequence {0;} C C*(M, A1 asin Proposition 3,i.e. 0; — 0 and dt; — df =
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= win LP(M) and set 0; = n;0; € D"~'(M). We first claim that (; — 0;) — 0
in LP(M, A*71). Indeed, fix ¢ > 0 and choose a compact set @ such that
101 ) <& Since [n; — 1| <1, we have

10; = Oill Loy < 1105 = Dbjll gy + 1105l rang)
<@ — Dbl 1oy + 110 — Olleangy + 1101l oan -
The first term converges to zero because 7; — 1 uniformly on @ and

{1|0;]/z» } is bounded. The second term converges to zero because ; — 0 in
LP(M, A1) and the last term is bounded by &, hence

lim sup [|60; = Ojl| oany < &

J—00

Since ¢ is arbitrary, the limit is zero and we obtain

lim [|6; — 0| 1pp) < Hm [|6; — O;| oary + 1im (165 — 0| 1o ap) = 0.
j—oo Jj—o0 j—oo

We similarly have

1d6; — oy, < [|Gg; — DGy, + lldn; A i,
< ||Gp; = Ddb;l,, + sup [dn;] - [|0;]],, — 0.

This implies that @ = lim df; in L”. O
J—oo
DEFINITION 5. Given an isometric duality 7: Xy, xX; — R and a
nonempty subset B of X, we define the annihilator B+ C X; of B to be
the set of all elements # € Xj such that I(¢,7) =0 for all £ € B.

For any B C X, the annihilator B~ is a closed linear subspace of X;. The
Hahn-Banach Theorem implies that if B is a linear subspace of X then
(BH)" =B.

For these and further facts on the notion of annihilator, we refer to the
books [1, 2].

The proof of the duality Theorem is based on the following lemma about
annihilators:

LEmMA 6. Let I: Xy x X1 — R be an isometric duality between two
Banach spaces. Let By, Ay, B1,A1 be linear subspaces such that
BogA():Bf'gXO and BlgAlzB(J)'gXl.

Then the pairing I : Hy x H — R of Hy := Ay/By cmd_lTll = A_I/E is
well defined and induces an isometric duality between Hy and Hi.
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Proor. Observe first that A; C X; is a closed subspace since the an-
nihilator of any subset of a Banach space is always a closed linear subspace.

The bounded bilinear map I : Ay x A; — R is defined by restriction. It
gives rise to a well defined bounded bilinear map I : Ay/By x A1/B; — R
because we have the inclusions By C B and B; C By

We denote by 4: Xy — X] the isometry 1nduced by the pairing I, by
7 :Hy — H the map deflned by the pairing I and by =;: A; — H;
(1=1,2), the canonical projections.

We first prove that || Z¢|| 7 < €|z, forany ¢ € H,. Indeed, let us choose
é € Ay such that no(«f) g, we have

1717z, = sup{I(&,m) | n € Hy, |Inll, <1}

177lla, <1}
<1} = |MCHX;

< sup{I(&,7

By hypothesis, we have [|2:|| x = 1] x,» therefore

\mm—meM—IMHMxHWM-
ce

We then prove that for any 0 € H 1» there exists an element & € H, such
that 0 = 7: and ||0||; 7, > |€ll5 7, This implies that 4 is surjective and
”’15”11/ > ”é“]—]o .

Indeed for any 0 € HY, the linear form 0 = 0om : A; — R satisfies
0(b) = 0 for any b € B, and H9||A/ = H9||H,. By the Hahn-Banach Theorem,
there exists a continuous extension ¢ #: X1 — R of Osuch that ||| X = = 1|9 A
Since 4 : Xy — X] is an isometry, one can find & € X, such that )» =¢ and

IEllx, = 12llx; = 110]Ly, = 10117

Forany b € By, we have I(é b) = Af(b) O(b) =0, thus% € B+ = Ay. Letus
seté = ng(é) we have

1&,m) = I, i) = 0G) = 0(y)
for any # € H; and 7 € Ay, that is 6 = J:. We also have

€11, < lI<lx, = 1011z, = 127,

In conclusion, we have have proved that 4 : Hy — H} is norm preser-
ving and surjective: it is an isometry. The proof that 7z : H; — Hj, is also an
isometry is the same. O
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PROOF OF THE DUALITY THEOREM. Let ¢ € LP(M, A*), then d¢ = 0 in
the weak sense if and only if [ ¢ Adw =0 for any w € D" k=1(M). This

M
precisely means that Zf;(M )C LP(M, A" is the annihilator of D" *1(M) C
C LP (M, A"*) for the pairing (1):

Zy(M) = (D" ().
By lemma 1, dD"*1(M) and BZT’“ have the same annihilator, thus
B C ZF = B C LPM, 4.
Similarly, we also have
Byt C ZyF = B C LV (M, A",

and Le_mma 1 says t}Lat the duality (1) induces an isometric duality between
Z%* | Bi* and ZF | BE. O
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ments and for pointing out that the duality in our main theorem is an
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