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Lasry-Lions Regularization and a Lemma of Ilmanen

PATRICK BERNARD (¥)

Let H be a Hilbert space. We define the following inf (sup) convolution
operators acting on bounded functions u : H — RR:

. 1 2
Toute) = inf () +; ly - @I)
and

. 1 9
Tou(x) = ) — =y — .
yu(e Sl;p (u?/ tlly | )

We have the relation
Ti(—u) = —Tt(u)~

Recall that these operators form semi-groups, in the sense that
TioTs=Tys and TyoTy =T
forallt = 0 and s = 0, as can be checked by direct calculation. Note also that
infu < Tyulr) < ux) < Taux) < sup u

for each £ = 0 and each x € H. A function u : H — R is called k-semi-
concave, k > 0, if the function @ — u(x) — ||x||*/k is concave. We will
occasionally consider semi-concave functions which take values in
[ — 00, + 00). The function u is called k-semi-convex if —u is k-semi-concave.
A function u is t-semi-concave and upper semi-continous if and only if it
belongs to the image of the operator T}, this follows from Lemma 1 and
Lemma 3 below. A function is called semi-concave if it is k-semi-concave for
some k > 0. A function u is said C'! if it is Frechet differentiable and if the
gradient of % is Lipschitz. Note that a continuous functionu : H — R is C*!
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if and only if it is semi-concave and semi-convex, see Lemma 5. Let us recall
two important results in that language:

THEOREM 1 (Lasry-Lions, [6]). Let u be a bounded function. For
0<s<t, the function T o Tyu is C*' and, if u is uniformly continuous, then
1t converges uniformly to w when t — 0.

THEOREM 2 (Ilmanen, [5]). Let u = v be two bounded functions on H
such that w and —v are semi-concave. Then theve exists a CY! function w
such that u = w = v.

Our goal in the present paper is to “generalize” simultaneously both of
these results as follows:

THEOREM 3. The operator Ry := T; o T o Ty has the following prop-
erties:

e Regularization : For each function f : H— R and each t > 0, the
function Ry(f) is C! provided it is locally bounded. This holds for allt > 0
if f 1is bounded.

o Approximation : If f : H — R is uniformly continuous, then R(f)
is CV! and converges uniformly to f as t — 0.

o Pinching: If there exists a k-semi-concave continuous function u
and a k-semi-convex continuous function v such that v < f < u, then, for
all t € 10,k], we have u = Ry(f) = v, and Ry(f) is CHL.

Theorem 3 does not, properly speaking, generalize Theorem 5. How-
ever, it offers a new (although similar) answer to the same problem: ap-
proximating uniformly continuous functions on Hilbert spaces by C!!
functions with a simple explicit formula.

Because of its symmetric form, the regularizing operator R; enjoys
some nicer properties than the Lasry-Lions operators. For example, if f is
C%1, then it follows from the pinching property that R;f = f for ¢ small
enough.

Theorem 2, can be proved using Theorem 3 by taking w = Ryu, for ¢
small enough. Note, in view of Lemma 3 bellow, that R;u = T, o Ty when t
is small enough.

Theorem 3 can be somehow extended to the case of finite dimensional
open sets or manifolds via partition of unity, at the price of loosing the
simplicity of explicit expressions. Let M be a paracompact manifold of
dimension %, equipped once and for all with an atlas (¢,,¢ € J) composed of
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charts ¢, : B" — M, where B" is the open unit ball of radius one centered
at the origin in R"”. We assume in addition that the image ¢,(B") is a re-
latively compact open set, and that the sets ¢;(B"),i € I form a locally
finite open covering of the manifold M. Let us fix, once and for all, a
partition of the unity g; subordinated to the open covering (¢,(B"),1 € 3J).
It means that the function g; is non-negative with support inside ¢,(B"),
and that > g; = 1 (note that this sum is finite at each point). Let us define

the opera‘éor

Giw) =Y [Ru (i) 0 §;)] 0 47,

1
where a;,7 € J are positive real numbers. In this expression, we consider
each of the terms [Ry, ((9/u) 0 ¢;)] o ¢; ' as defined on the whole manifold
M with the value 0 outside of ¢,(5"). The sum is then locally finite hence
well-defined. We say that a function » : M — R is locally semi-concave
if, for each 7 € 3, there exists a constant b; such that the function
uo@; — II.II#/b; is concave on B".

THEOREM 4. Let u = v be two continuous functions on M such that u
and —v are locally semi-concave. Then, the real numbers a; can be chosen
such that, for each t € 10,1] and each function f satisfying u = f = v, we
have:

o The function Gy(f) is locally C1.

o If f is continuous, then Gi(f) converges locally uniformly to f as
t—0.

o u=Gy(f) =

We will give some properties, most of which are well-known, of the
operators T; and T} in Section 1, and derive the proof of the main results in
Section 2.

Notes and Acknowledgements. Theorem 2 appears in Ilmanen’s paper
[5] as Lemma 4G. Several proofs are sketch there but none is detailed. The
proof we detail here follows lines similar to one of the sketches of Ilmanen.
This statement also has a more geometric counterpart, Lemma 4E in [5]. A
detailed proof of this geometric version is given in [2], Appendix. My at-
tention was attracted to these statements and their relations with recent
progresses on sub-solutions of the Hamilton-Jacobi equation (see [4, 1, 7])
by Pierre Cardialaguet, Albert Fathi and Maxime Zavidovique. Albert
Fathi and Maxime Zavidovique also recently wrote a detailed proof of
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Theorem 1, see [3]. This paper also proves how the geometric version
follows from Theorem 2. There are many similarities between the tools
used in the present paper and those used in [1]. Moreover, Maxime Zavi-
dovique observed in [7] that the existence of C'! subsolutions of the Ha-
milton-Jacobi equation in the discrete case can be deduced from Theorem
2. However, is seems that the main result of [1] (the existence of C'!
subsolutions in the continuous case) can’t be deduced easily from Theo-
rem 2. Neither can Theorem 2 be deduced from it.

1. The operators T; and T; on Hilbert spaces.

The proofs of the theorems follow from standard properties of the op-
erators T; and T; that we now recall in details.

LEmMA 1. Foreach functionu : H — R, the function Tyu (which takes
values in [ — oo, +00)), is t-semi-concave and upper semai-continous. The
Junction Tou (which takes values in (— 00, +00]), s t-semi-convex and
lower semi-continuous. Moreover, if u is k-semi-concave, then for eacht <k
the function Ty is (k — t)-semi-concave. Similarly, if u is k-semi-convex,
then for each t <k the function Ty is (k — t)-semi-convex.

Proor. We shall prove the statements concerning 7. We have

Tou() — [l /¢ = inf (w() + |1y — |/t = |lo]*/) =

= inf (u) + ly|I*/t - 20 y/1),

this function is concave and upper semi-continuous as an infimum of con-
tinuous linear functions. On the other hand, we have

o) + 1 = inf () + ly — o/t + o]/,

Setting f(w,y) := u(y) + ||y — @|*/t + [|=[|* /I, the function inf, f(x,y) is a
convex funection of x if f is a convex function of (x, ). This is true if u is k-
semi-convex, t<k, and [ = k — t because we have the expression
2
2 2 2 l k
f@,y) =ul) +lly =27/t + ll2l7/0 = @) + IyI/R + [0 o =V || -

O
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Given a uniformly continuous function u: H— R, we define its
modulus of continuity p(r) : [0,00) —[0,00) by the expression p(r) =
sup,, , u(x + re) — u(w), where the supremum is taken on all x € H and all e
in the unit ball of H. The function p is non-decreasing, it satisfies
pir +7") < p(r) + p(+'), and it converges to zero in zero (this last fact is
equivalent to the uniform continuity of u). We say that a function
p:[0,00) — [0, 00) is a modulus of continuity if it satisfies these proper-
ties. Given a modulus of continuity p(r), we say that a function u is p-
continuous if |u(y) — u(x)| < p(|ly — «||) for all x and y in H.

Lemma 2. Ifu : H— R is uniformly continuous, then the functions
Ty and Tyu converge uniformly to w when t— 0. Moreover, given a
modulus of continuity p, there exists a mon-decreasing function
&) : [0,00) — [0, 00) satisfying tEnO &) = 0 and such that, for each p-

continuous bounded function u, we have:

o Ty and Ty are p-continuous for each t = 0.
o u—¢&t) < Tw(x) <uandu < Tw < u—+elt) for each t = 0.

Proor. Let us fix y€ H, and set v(x)=u(x+y). We have
w(@) — p(||y|) < v(x) < u@) + p(||ly|). Applying the operator T; gives
Tou(x) — p(y) < Tyw(x) < Tyu(x) + p(y). On the other hand, we have

Tw(w) = inf (uz + o) + ]z — )|%/t) = inf (@ + |z — @+ ylF/t) =

Ttu(x + y),
so that

Tru) — p(ly|D) < Trule +4) < Tou@) + p([yl)).

We have proved that Tyu is p continuous if u is, the proof for T is the same.
In order to study the convergence, let us set &(t) = sup (p(r) — 72 /t). We
have >0

a(t) = sup (p(rv't) — %) < sup ((r + Dp(Vt) — %) = p(VD) + pP*(V) /4.

>0 >0

We conclude that lim &) = 0. We now come back to the operator 7}, and
observe that -

uly) — ly — l*/t = u@) — plly — @l + ly - =|*/t = u@) - &)

for each x and y, so that
u—et) < Tw < u.
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LEmma 3. For each function u:H-—(—oo,+0o0) we have
T, o Ty(w) < u and the equality Ty o Ty(uw) = u holds if and only if w is
t-semi-convex and lower semi-continuous. Similarly, given a function
v:H—[ — 00,4 00), we have T; o Ty(v) = v, with equality if and only
if v 1s t-semi-concave and upper semi-continuous.

Proor. Let us write explicitly

Ty o Tyu(x) = sup inf (u(2) + [z — yI?/t = lly —«l* /t).
Y

Taking z = x, we obtain the estimate Ty o Tou(x) < sup, u(2) = u(z). Let us
now write

Ty o Tou() + |||/t = supinf (u(@) + 2]/t + Qy/b) - (x — 2))
Y

which by an obvious change of variable leads to

Ty o Tou(x) + ||x||? /t = supinf (u(z) + 2l®/t+y - (2 — 2)).
Y V4

We recognize here that the function 7} o Tyu(x) + ||%|/%/t is the Legendre
bidual of the function u(x) + ||x|/?/t. It is well-know that a function is
equal to its Legendre bidual if and only if it is convex and lower semi-
continuous. O

2. Proof of the main results.

Proor or THEOREM 3. For each function f and each ¢ > 0, the function
T; o To; o T} f is both t-semi-concave and t-semi-convex. It is t-semi-convex
by Lemma 1, and it is semi-concave because To(T; ) is 2t-semi-concave by
Lemma 1, which implies, still by Lemma 1, that TyoToyoT, f is t-semi-
concave. As a consequence, Lemma 5 below implies that the function R, f is
C™! provided it is locally bounded. The function R;(f) is bounded if f is
bounded, hence its is C'! in this case.

In the case where f is uniformly continuous, Lemma 2 implies that

[ —e@t) < R(f) < f + 26Q).

As a consequence, R;(f) is converging uniformly to f, and it is locally
bounded hence C'1.

We now consider two continuous functions # and v such that » and —v
are k semi-concave, and such that v < u. We claim that

uzfzv=uz=Tolifzvandu=Tio T, f=v
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for ¢t < k. This claim implies thatu = T} o T o T f = vwhenu = f = vand
t < k. Let us now prove the claim concerning 7T} o T}, the other part being
similar. Since v is k-semi-convex and continuous, we have T, o Tyv = v for
t < k, by Lemma 3. Then,

’Z/LBfBTtOthBTtOTt’U:v

where the second inequality follows from Lemma 3, and the third from the
obvious fact that the operators T; and T; are order-preserving.

We have proved that v < Ry(f) < wifv <f <wandt < k.Fort € 10, k],
the function R;(f) is thus locally bounded hence C'!. O

Proor or THEOREM 4. Let a; be chosen such that the functions
(giu) o ¢; and —(g;v) o ¢; are a;-semi-concave on R"™ (when extended by 0
outside of B"). The existence of real numbers a; with this property follows
from Lemma 4 below. Given u = f = v, we can apply Theorem 3 for each ¢
to the functions

(giw) o ¢; = (gif) o ¢; = (giv) 0 @;

extended by zero outside of B”. We conclude that, for ¢ € ]0, 1], the function
Ria,((g:f) 0 ¢;) is C*! and satisfies

(gzu) S ¢7j = Rtai((gif) o ¢1) = (gi?)) o ¢z
As a consequence, the function
[Ria, (@if) 0 ¢;)] 0 67

extended as a function on M equal to 0 outside of ¢,(B"),is C L1 The function
Gi(f) is thus locally a finite sum of C'! functions hence it is locally C1.
Moreover, we have

u:ZgiuzGt(f)B Zgiv:v.
1 1

We have used:

LEMMA 4.  Let u : B" — R be a bounded function such that u — |.||*/a
is concave, for some a. > 0. For each compactly supported non-negative C*
function g : B" — R, the product gu (extended by zero outside of B") is
semi-concave on R".

ProoF. Since u is bounded, we can assume that 4 = 0 on B". Let
K C B" be a compact subset of the open ball B” which contains the support
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of g in its interior. Since the function u — ||.||*/a is concave on B; it admits
super-differentials at each point. As a consequence, for each x € B", there
exists a linear form [, such that

0<uly) <u@)+1 - (y—x+|ly— /e

for each y € B'. Moreover, the linear form I, is bounded independently of
x € K. We also have

0 < g(y) < g) +dg, - (g — ) + Clly — z||*

for some C > 0, for all ¢, % in R”. Taking the product, we get, for x € K and
y € B",

w9y < u(x)glx) + (@), +ulx)dg,) -
(y — )+ Clly — 2|* + Clly — |* + Clly — ||

where C > 0 is a constant independent of « € K and y € B", which may
change from line to line. As a consequence, setting L, = g(x)l, + u(x)dg,,
we obtain the inequality

(L) (@) < (Gu)@) + Ly - (g — ) + Clly — ||

foreachx € Kandy € B". If weset L, = 0 for x € R" — K, the relation (L)
holds for each x € R"” and y € R". For x € K and y € B", we have already
proved it. Since the linear forms L,, x € K are uniformly bounded, we can
assume that L, - (y — x) + Clly — 2||* = 0 for all z € K and y € R" — B" by
taking C large enough. Then, (L) holds for all x € K and y € R". For
x € R" — K and y outside of the support g, the relation (L) holds in an
obvious way, because gu(x) = gu(y) = 0,and L, = 0. Forx € R" — Kand y
in the support of g, the relation holds provided that C = max (gu)/d?, where
dis the distance between the complement of K and the support of g. Thisis a
positive number since K is a compact set containing the support of g in its
interior. We conclude that the function (gu) is semi-concave on R". O

For completeness, we also prove, following Fathi:

LEmMMA 5.  Let u : H— R be a locally bounded function which is both
k-semi-concave and k-semi-convex. Then the function u is C1, and 6/k
1s a Lipschitz constant for the gradient of u.

Proor. It is well known that a locally bounded convex function is
continuous. We conclude that u is continuous. Let % be a continuous func-
tion which is both k-semi-concave and k-semi-convex. Then, for each x € H,
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there exists a unique [, € H such that
e + ) — ul@) = L - y| < |ly|* /.
We conclude that [, is the gradient of  at x, and we have to prove that the
map «+—— [, is Lipschitz. We have, for each x, ¥ and z in H:
L +2) = |ly+2P/k <u@+y+2) —u@ < L@ +2)+|ly+2|/k
lasgy - (=) = Iyl /b < @) = w@ + ) < by - (=) + Iyl /R
Loy - (—2) = 2l*/k < u@ + ) — u@ +y +2) < lpyy - (—2) + 2] /k.

Taking the sum, we obtain
Loy = L) - +2)| < ly + 217k + /% + 2] /K.
By a change of variables, we get
|Gy = 1) - @ < 2l /e + 1y [P/l + 12 = Il /.
Taking ||z|| = |ly||, we obtain
vy — 1) - @] < 6|elllyll /%
for each z such that ||z|| = |||, we conclude that

1oy — Lell < 6llyl| /.
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