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Global Weak Solutions of the Navier-Stokes Equations
with Nonhomogeneous Boundary Data and Divergence

R. FARwIG (*) - H. KozoNo (**) - H. SOHR (***)

ABSTRACT - Consider a smooth bounded domain 2 C R? with boundary 02, a time
interval [0, T), 0<T < oo, and the Navier-Stokes system in [0, T) x ©, with in-
itial value uy € L4(Q) and external force f = divF, F € L*(0, T; L*(Q)). Our aim
is to extend the well-known class of Leray-Hopf weak solutions w satisfying
Uy, = 0, divu = 0 to the more general class of Leray-Hopf type weak solutions
u with general data ul,, =9 divu = k satisfying a certain energy inequality.
Our method rests on a perturbation argument writing v in the formu =v + E
with some vector field E in [0, T') x Q satisfying the (linear) Stokes system with
J =0 and nonhomogeneous data. This reduces the general system to a per-
turbed Navier-Stokes system with homogeneous data, containing an additional
perturbation term. Using arguments as for the usual Navier-Stokes system we
get the existence of global weak solutions for the more general system.

1. Introduction and main results.

Let Q C R? be a bounded domain with boundary 9Q of class C2!, and let
[0,7), 0<T < oo, be a time interval. We consider in [0,T) x 2, together

with an associated pressure p, the following general Navier-Stokes system
1) w—Adu+u-Vu+Vp = f, divu==~k
. = 9 U=

oo

with given data f, k, g, uo.
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First we have to give a precise characterization of this general system.
To this aim, we shortly discuss our arguments to solve this system in the
weak sense (without any smallness assumption on the data). Using a
perturbation argument we write % in the form

1.2) u=v+E,

and the initial value u( at time ¢ = 0 in the form
1.3) uy = vy + K.

Here E is the solution of the (linear) Stokes system

E,—AE+Vh=0, divE =k

1.4)
E,,=9, E|_,=Eo

with some associated pressure %, and v has the properties

w5 v e Lig (10, 7); LAQ) N L3, (10, T); Wy (@),

v:[0,T) HL%(Q) is weakly continuous, V|, = Vo

Inserting (1.2), (1.3) into the system (1.1) we obtain the modified system

w—MW+@W+E) - Vo+E)+Vp'=f, divv=20

(1.6)
=0, v't:O =

Y0ae

with associated pressure p* = p — h and homogeneous conditions for v.
Thus (1.6) can be called a perturbed Navier-Stokes system in [0,T) x Q.
This system reduces the general system (1.1) to a certain homogeneous
system which contains an additional perturbation term in the form

W+E) - Vo+E) =v-Vo+v-VE+E-V+ E).

Therefore, the perturbed system (1.6) can be treated similarly as the usual
Navier-Stokes system obtained from (1.6) with £ = 0.

In order to give a precise definition of the general system (1.1) we need
the following steps:

First we develop the theory for the perturbed system (1.6) for data f, vy
and a given vector field ¥, as general as possible. In the second step we
consider the system (1.4) for general given data k, g, E to obtain a vector
field £ in such a way that 4 = v + E with v from (1.6) yields a well-defined
solution of the general system (1.1) in the (Leray-Hopf type) weak sense.

Thus we start with the definition of a weak solution v of (1.6) under
rather weak assumptions on £ needed for the existence of such solutions.
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DEFINITION 1.1. (Perturbed system). Suppose
f=divF with F=(F;},_,€L*0,T;L*Q)),
1 vy € LA(Q),
E € L*(0,T;LUQ)), divE = k € L*(0, T; L*(Q)),

) 2 3
mth4§s<oo,4§q<oo,g+5:1.

Then a vector field v is called a weak solution of the perturbed system
(1.6) n [0, T) x Q with data f, vy if the following conditions are satisfied:

a) For each finite T*,0<T* < T,
1.8) v e L¥(0, T LAQ) N LA (0, T*; W, *(Q))
b) for each test function w € C°([0,T); C3o. (L)),
— (. wi)gr + (VV, Vo) p — (0 + E)v + E), Vw),, 1

1.9
E ks By, = (0w @), — (F, V),

c) for 0 <t<T,
¢

t
1 1
oo + / Vol de < Gl ~ [, Vo), dr

0

1.10) . .
+/ (w+ E)E,Vv) dr+%/<k(v+2E’),v>er
0 0
d) and
1.11) v:[0,T) — Li(.Q) 1s weakly continuous and v(0) = vy.

In the classical case £ = 0 we obtain with (1.8)-(1.11) the usual (Leray-
Hopf) weak solution v. As in this case the condition (1.11) already follows
from the other conditions (1.8)-(1.10), after possibly a modification on a null
set of [0, T), see, e.g., [16, V, 1.6]. Here (1.11) is included for simplicity. The
relation (1.9) and the energy inequality (1.10) are based on formal calcu-
lations as for £ = 0. The existence of an associated pressure p* such that

(1.12) w—M+@W+E)-Vo+E) +Vp =f
in the sense of distributions in (0, 7) x Q2 follows in the same way as for
E=0.

In the next step we consider the linear system (1.4). A very general
solution class for this system, sufficient for our purpose, has been devel-
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oped by the theory of so-called very weak solutions, see [1], [3, Sect. 4]. In
particular, the boundary values g are given in a general sense of dis-
tributions on 0Q.

LemmA 1.2 (Linear system for £, [3]). Suppose
keL(0,T;L7(Q), gelL*0,T;W70Q)), Ey € LUK),

(1.13) 2 3 1 1 1
4<s<oo,4<qg<0, —+-=1,—=———,
s q q ¢ 3
satisfying the compatibility condition
(1.14) / k() dx = / N -gt)dS for almost all t € [0,T),
Q o)

where N = N(x) means the exterior normal vector at x € 0Q, and f ...dS
90
the surface integral (in a generalized sense of distributions on 08).
Then there exists a uniquely determined (very) weak solution

(1.15) E € L*(0,T; LY(Q))

of the system (1.4) in [0, T) x Qwith data k, g, Ey defined by the conditions:
a) For each w € C}([0,T); Cgﬁg(f))),

(1.16) —(E,w)qr — (B, 4w)gp + (9, N - Vw) g r = (Eo,w(0)),,,
b) for almost all t € [0, T),

1.17) divE =k, N-E|,,=N-g.

Moreover, E satisfies the estimate

(118) ”A;quE’t”q,s;Q,T + ”E”q,s;QT < C(”EOHq + Hk||q*,s;Q,T+ ||g‘|—%;q,s;BQ,T)

with constant C = C(Q,T,q) > 0.

The trace E| 00 =Y 1s well-defined at 02 for almost all t € [0,T), and
the initial value condition E liso = Ey is well-defined (modulo gradients)
1 the sense that PyE : [0,T) — Li(Q) is weakly continuous satisfying

(1.19) PyE| _ = Py
Finally, there exists an associated pressure h such that
(1.20) Ei—AE +Vh=0

holds in the sense of distributions in (0,T) x Q.
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To obtain a precise definition for the general system (1.1) we have to
combine Definition 1.1 and Lemma 1.2 as follows:

DEFINITION 1.3. (General system). Letke L*(0,T; LY (2)) NL*(0, T; L*(2))
with s, ¢* as in (1.13) and suppose that

E is a very weak solution of the linear system (1.4) in

1.21
(1.21) [0, T) x Q with data k,g, Ey in the sense of Lemma 1.2,

and

v 18 a weak solution of the perturbed system 1.6 in
(1.22) [0,T) x Q in the sense of Definition 1.1 with data f, vy
as in 1.7.

Then the vector field uw = v + E s called a weak solution of the general
system (1.1) in [0, T) x Q with data f, k, g and initial value uy = vy + Eo.
Thus it holds

1.23) U —M+u-Vu+Vp=f, divu =k
m the semse of distributions i (0,T) x Q with associated pressure
p=p*+h p* asin (1.12), h as mn (1.20). Further,

(1.24) Uoo = V0oo TElyg =9
1s well-defined by K loo =9 and the condition

(1.25) ul,_, =v|t:0+E|t:0 = +FEo=1up

1s well-defined in the generalized sense modulo gradients by (1.19).

Therefore the general system (1.1) has a well-defined meaning for weak
solutions % in a generalized sense.

However, if we suppose in Definition 1.3 additionally the regularity
properties

ke L (0,T; WH(Q), ki € L*(0,T; LX),
(1.26) g € L2 (0.T;W*V/1(0Q), g1 € L* (0,75 W 7(09)).
Ey € W29(Q),

and the compatibility conditions uy| 00 =90’ divug = k| -0 then the so-
lution £ in Lemma 1.2 satisfies the regularity properties

E € L*(0,T;W2(Q)), E; € L*(0, T; L), E € C([0,T); LYQ)),
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and K oo =9 E limo = Ey are well-defined in the usual sense, see [3,
Corollary 5]. Further it holds Vi € L*(0,T; L%()) for the associated
pressure h in (1.20). Therefore, w = v + E satisfies in this case the
boundary condition Ul =9 and the initial condition U,y ="+ Ejin the
usual (strong) sense.

The most difficult problem is the existence of a weak solution v of the
perturbed system (1.6). For this purpose we have to introduce, see (2.12) in
Sect. 2, an approximate system of (1.6) for each m € N which yields such a
weak solution when passing to the limit m — oo. Then the existence of a
weak solution # = v + F of the general system (1.6) is an easy consequence.

This yields the following main result.

THEOREM 1.4 (Existence of general weak solutions).
a) Suppose
f=divF, F € L*(0,T; L*(Q)), vy € LX(Q),
1.27) E € L*(0,T;LYRQ)), divE =k € L*(0,T; LA(Q)),
4 <s<o0,4<g<oo, %—i—g: 1.

Then there exists at least one weak solution v of the perturbed system (1.6)
m [0, T) x Q with data f, vy in the sense of Definition 1.1. The solution v
satisfies with some constant C = C(Q) > 0 the energy estimate

t t t
@I + / ||w|§drgc<||vo||§+ / \F|2dz + / k] de
(1.28) 0 0 0

t
AL dr) exp (CIkI1 40 + CILEIL o0)
0

foreach 0 <t<T.
b) Suppose additionally

ke LS(O, T;LQ*(.Q)), gelL? (O,T; W‘%W&Q)% Ey € LYQ),

(1.29) /kd% _ / N -gdS for a.a. t € [0,7),
Q 0Q

and let E be the very weak solution of the linear system (1.4) in [0,T) x Q
with data k, g, Ey as in Lemma 1.2. Then u = v + E is a weak solution of



Global Weak Solutions of the Navier-Stokes Equations ete. 57

the general system (1.1) with data f, k, g and initial value uy = vy + Eo in
the sense of Definition 1.3.

There are some partial results with nonhomogeneous smooth boundary
conditions Uy =9 # 0 based on an independent approach by Raymond
[15]. For the case of weak solutions with constant in time nonzero boundary
conditions ¢ see [4]. Further there are several independent results for
smooth boundary values Uy =9 = 0 in the context of strong solutions u if
g or (equivalently) the time interval [0, T) satisfy certain smallness con-
ditions, see [1], [3], [6], [10]. Our existence result for weak solutions in
Theorem 1.4 does not need any smallness condition, like for usual Leray-
Hopf weak solutions. But, on the other hand, there is no uniqueness result
as for local strong solutions.

A first result on global weak solutions with time-dependent boundary
data (and k¥ = divu = 0) can be found in [5]. In that paper, the authors

. .2 3 .
consider general s > 2, ¢ > 3 with — + — = 1; however, in that case, £ has to
satisfy the assumptions 54

E € L*(0,T; L(Q)) N L*(0,T; LY(Q)),

which is automatically fulfilled in the present article, see Theorem 1.4.
Moreover, in simply connected domains or under a further assumption on
the boundary data g, the energy estimate (1.28) can be improved con-
siderably.

2. Preliminaries.

First we recall some standard notations. Let COO;(.Q) = {w € C3°(Q);
divw = 0} be the space of smooth, solenoidal and compactly supported
vector fields. Then let LI(Q) = Cgfg(.Q)H‘”", 1< g < oo, where in general || - || q
denotes the norm of the Lebesgue space L4(£2), 1 < g < co. Sobolev spaces
are denoted by W"4(Q) with norm || - [[yyus = || - [|,,,4, M € N, 1 < ¢ < 00,
and W;"(Q) = Cgo(Q)lHl""", 1 < g<oo. The trace space to Whi(Q) is
WY14(9Q), 1<q<oo, with norm |- [|,_,/,,- Then the dual space to
W-1/4.4 (9Q), where l/ —&—1 =1, is W-1/99(9Q); the corresponding pairing
is denoted by (-, ) 50- 7

As spaces of test functions we need in the context of very weak solutions
the space Cg,a(ﬁ) = {w € C*(Q); w,, =0, dive = 0}; for weak insta-
tionary solutions let the space C§°([0, T);Cgf;(.Q)) denote vector fields
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w € C3°([0,T) x 2) such that div,w = 0 for all ¢ € [0, T") taking the diver-
gence div, with respect to x = (1,22, 23) € Q. The pairing of functions on
Qand (0,7) x Q is denoted by (-,-)q and (-, -)q 7, respectively.
For 1 <¢q, s < o the usual Bochner space L*(0,T;L(£2)) is equip-
T

ped with the norm || - ||, .r = ([ - Il do)"/* when s<oo and || - oo =

ess supp || - [, when s = occ.

Let P, : L1(£2) — L1(2), 1 < g <00, be the Helmholtz projection, and let
A, = —Py4 with domain D(4,) = W29(Q) N Wé’q(Q) NLI(2) and range
R(A,) = Li(Q) denote the Stokes operator. We write P = P, and A = 4, if
there is no misunderstanding. For —1 <o <1 the fractional powers
A; : D(Ag) — L1(Q) are well-defined closed operators with (A;)_1 = Aq’“.
For 0 < o <1 we have D(4,) C D(Ag) C LY() and R(A;) = Li(£2). Then
there holds the embedding estimate

@.1) Ioll, < CllAZv],, 0<a<1, 2 43
’ q

~= | W

, 1<y <q,

for all v € D(A;). Further, we need the Stokes semigroup e : Li(Q2) —
Li(Q), t > 0, satisfying the estimate

o,—tA, —a,—pt
2.2) |Aze ||, < Ct e o], 0 <o <1, £>0,

for v € L1(22) with constants C = C(Q,q,«) > 0, f = (2, q) > 0; for details
see[2,7,8,9,11].

In order to solve the perturbed system (1.6) we use an approximation
procedure based on Yosida’s smoothing operators

-1
@3) Ju=(I +%A”2)‘1 and  J, = <I+%(—A)l/2> , meN,

where I denotes the identity and —4 the Dirichlet Laplacian on Q. In
particular, we need the properties

- [Ty < Cllvlly, 14200l < mCloll,, m € N,
' lim J,v=v for all v e LLQ);
and analogous results for 7,,v, v € LY(Q); see [8§, 9, 16].
To solve the instationary Stokes systemin [0, T') x 2, ¢f. [1, 13,16, 17, 18],
let us recall some properties for the special system
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Vi—AV+VH = fy+divF,, divV = 0

2.5)
1% 0 on 0Q, Vo) = V,

with data
fo € LY(0,T; LA(Q)), Fy € L*(0, T; LA(Q)), Vo € LA(Q);

3 3
here Fy = (FO“Z-]-)? qand divFy = ( Y iFojj) . The linear system (2.5)
. . ) . — 0x; j=1
admits a unique weak solution

2.6) V € L>®(0,T; LA(Q)) N L*(0, T; Wy *(Q)),
satisfying the variational formulation
2.7 _<Va wt>.Q,T + <VV7 v7/0>Q.,T = <V07 w(0)>.Q + <ﬁ)a w>.Q,T - <F07 v7/0>.Q,T

for all w € C°([0, T); Cgfg(Q)), and the energy equality
¢ ¢

t
1 1
@8 IVOIE+ [ IVVIEdr = IVall + [ (Vg e~ [ (P 9V} o
0 0 0

for 0 < t<T. As a consequence of (2.8) we get the energy estimate
1
@9 S IVIBar + IVVIBar < SVOlE + Wol3sr + I1Fol32r),

and seethat V :[0,T) — LE(Q) is continuous with V(0) = V;. Moreover, it
holds the well-defined representation formula
¢ ¢
(2.10) V(@) =e V) + / e OAPS dr + / A2e==0AQ-12P Qiv F dr,
0 0

0 <t<T; see [16, Theorems IV.2.3.1 and 2.4.1, Lemma IV.2.4.2], and,
concerning the operator A~'/2P div, [16, Ch. I11.2.6].

Consider the perturbed system (1.6) with f = div F’, vy, k and E as in
Definition 1.1, here written in the form

(2.11) vw—MW+diviv+ EYv+E)—klv+ E)+ Vp* =f, dive =0

together with the initial-boundary conditions v = 0 on 922 and v(0) = vy.

In order to obtain the following approximate system, see [16, V, 2.2] for
the known case K = 0, we insert the Yosida operators (2.3) into (2.11) as
follows:
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v — A + div (v + B)Yw + E) — (T k) v+ E)+Vp* =f, dive=0

(2.12)

Vo =0, Y],y =
with v = v,,, m € \N. Setting
(2.13) Fp() = v+ E)0+E), fn®) = (Tnk)v+ E)

we write the approximate system (2.12) in the form

@2.14) v — M+ Vp* = fr,() + div (F — F),(v)), dive =0,

Voo =0, V| g =0,

as a linear system, see (2.5), with right-hand side depending on v. In this
form we use the properties (2.6)-(2.10) of the linear system (2.5).
The following definition for (2.12) is obtained similarly as Definition 1.1.

DEFINITION 2.1. (Approximate system). Suppose

f=divF, F e L*(0,T;LA(Q)), v € LX),

2.15) E e L)(0,T;LYQ)), divE = k € L*(0, T; LA®)),

4 <s<o0, 4 < qg<o0, §+2:1.

Then a vector field v = vy, m € N, is called a weak solution of the
approximate system (2.12) in [0,T) x Q with data f, vy if the following
conditions are satisfied:

a)

(2.16) v e L (10, T); LA(Q) N LE ([0, T); Wy (),
b) for each w € C([0, T); C5o(Q)),

— (v, W) p + (VV, Vo) o 1 —((Jnv + E)v + B), Vw>

2.17
@10 —<<szc><v+E>,w>Q,T (00,100))g — (F. V)

c) for0 <t<T,
¢

t
1 1
é||v(z:)||§+/||W||§ dr<—||v0|\§—/<F—(va+E)E,w>Q de
2.18)

t
+ / (T mk — k)v V), dT+ / {(Tnk)E ), dr,
0 0

d) v:[0,T) — LZU(Q) 1is continuous satisfying v(0) = vy.
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3. The approximate system.

The following existence result yields a weak solution v = vy, of (2.12) first
of all only in an interval [0, T7") where 7" = T'(m) > 0 is sufficiently small.

LemmA 3.1.  Letf, k, E, vy be as in Definition 2.1 and let m € N. Then
there exists some T' = T'(f , k,E, vy, m), 0<T’ <min(1,T), such that the
approximate system (2.12) has a unique weak solution v = v, m [0, T") x Q
with data f, vy in the sense of Definition 2.1 with T replaced by T'.

Proor. First we consider a given weak solution v = v,, of (2.12) in
[0,7") x Q with any 0<T" < 1. Hence it holds

v e Xp :=L*(0,T; L2(Q)) N L*(0, T"; W, *())
with
3.1 Iollx,, = l[0lly i + 1420 5,00 < 00

Using Hoélder’s inequality and several embedding estimates, see
[16, Ch. V.1.2], we obtain with some constant C = C(Q) > 0 the estimates

[ Tmo)llg g < CllTmvllg g 1015 470
(3.2) < ClAYA T uolly 4 [0l
< Om|vllg g < Cm(TY|0]1%,,

and
B3)  [[UnVE |2 < CllIn|gar||Bllaar < CllTmvllsar 1By ar
< Cm(T)"*||olly,, IIE]

441
3.4) 1BVl 270 < CllElg s 10l g11 g1 < CllEN g llVlix, s
of course, ||[EE||y9.p < C||E||42L4;T,. Moreover,

(3.5) ”(jmk)sz,l;T’ < C”Jmk”&z;T’||v||6,2;T’ <C|(— A)%jmkHZ,Z;T’”v”XT,

1
< Cm”k”Z,Z;T’”v”XW < Cm(T/)4||k||2,4;T’”?)HXTn

B.6) [(TnkE||y1.0 < ClTmk|lyor|Elg2.0 < ClIC— D2Tmkllg 0.0 | Ellg a1
< Om|kllg g || Elly g < CrT ViR 2 g 1B g .-
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Using (2.14) and the energy estimate (2.9) with fj, F\y replaced by f,,(v),
F — F,,(v) we get from (3.2)-(3.5) the estimate

2 1o
[vllx,, < C(llvolly + 1F a0 + B3 a7 +m(T ) [0]x,, +
1
G + (T [0l B g + [0l 1E g5+
1
+m(T Y\ kllg g (1Bl g g + H”HXT,))

with C = C(Q) > 0.
Applying (2.10) to (2.14) we obtain the equation

3.8) v=FpW)

where

t
(Fr@)® = e v+ / ¢~ tAPfE () dr

0
t
+ /A%g_(t_r)AA_%P div (F - Fm(v)) dr.
0

Let
a = Cm(T", b= C||E||, 1 + ClTV|E| g g0 + Crn(T V|l 4.7,
d = C([volly + ||} s + |1 Fllgzep + TV el g | By o)

with C as in (3.7). Then (3.7) may be rewritten in the form
(3.10) IFr @y, <alol, +blvl, +d.

Up to now v = v, was a given solution as desired in Lemma 3.1. In the
next step we treat (3.8) as a fixed point equation in X7 and show with
Banach’s fixed point principle that (3.8) has a solution v = v,, if 7" > 0 is
sufficiently small.

Thus let v € X and choose 0<7” < min (1, T) such that the smallness
condition

(3.11) 4ad +2b<1

is satisfied. Then the quadratic equation ¥ = ay? + by + d has a minimal
positive root given by

-1
0<yy = Zd(l b+ V21— (dad +2b)) <2d
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and, since y; = ay’ + by +d > d, we conclude that Fp maps the closed
ball By = {v € Xp : [0y, < ¥1} into itself.

Further let vy, vo € Bp. Then we obtain similarly as in (3.10) the esti-
mate

[Fr@) = Fr@)ly, < Cn(T"Yi||vy — vellx,, (Ilv1llx,, + Ilv2llx,, )
1 1
(3.12) + Cllor = vellx, (1Bl 5.0 + mT Y|l g0 + 1TV E |y 4.70)
< |lor = vellx,, (a(lvilly,, + llv2llx,) +b)
where

(3.13) a(llvilly, + l[vzllx,,) +b < 2ay1 + b<4ad +2b<1.

This means that F7- is a strict contraction on By. Now Banach’s fixed point
principle yields a solution v = v,, € By of (3.8) which is unique in Byp.

Using (2.6)-(2.10) with fy + div Fy replaced by f,,(v) + div(F — F,,(v))
we conclude from (3.8) that v = v,, is a solution of the approximate system
(2.12) in the sense of Definition 2.1.

Finally we show that v is unique not only in By, but even in the whole
space X7 .. Indeed, consider any solution v € X of (2.12). Then there exists
some 0<T* <min(1,7") such that ”@”XT* <1, and using (3.12), (3.13)
with vy, v replaced by v, ¥ we conclude that v = v on [0, T*]. When T* < T"
we repeat this step finitely many times and obtain that v = v on [0, 7"). This
completes the proof of Lemma 3.1. O

The next preliminary result yields an energy estimate for the approx-
imate solution v = v,, of (2.12). It is important that the right-hand side of
this estimate does not depend on m € IN. This will enable us to treat the
limit 7 — oo and to get the desired solution in Theorem 1.4, a).

Lemma 3.2. Consider any weak solution v =v,, m € N, of the ap-

proximate system (2.12) in the sense of Definition 2.1. Then there is a
constant C = C(Q) > 0 such that the energy estimate

t
v(t) 2+/ Vo2 de
3.14) [v®]]3 J [Volls

<C([lwoll3+ | F|

2 4 4 4 .
204t klloqs + ||EH4,4;t) exp (C||k||24;t+C||E||Z,s;t)

holds for 0 <t<T.
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Proor. The proof of (3.14) is based on the energy inequality (2.18).
Using similar arguments as in (3.2)-(3.6) we obtain the following estimates
of the right-hand side terms in (2.18); here ¢ > 0 means an absolute con-
stamé, Co=Cy(Q) >0 and C=C(g,2) >0 do not depend on m, and

oc:le—i First of all
s q
t t
| [0, 9o)g de| < Co [ 1l g 181, IVl de
0 0
t
<Co [ Iollg y 1 1EN, I 7ol dz
(3.15) g
<G [ IolhE, I vol} " dr
0
t
<ol Vola, + C [ IEN 0l
0
and

t t
| [ (88,90, dr| < Co [ WEIEITol, dr < ol Tol, + CIBIL o0
0

0
t

| [ 7900 de] < &lV0lRs, + CIFIGs,.
0

Moreover, since ||v||, < Cg||Vv||;/4||Vv||g/4,

t t
| [(Fuikov)g de < el ol +C [ il de.
0 0
t

t
| [t de| < 0 [ 1Tl dr
0

0
t
< Co [ I EL] 9ol de
0

2 4 4
<& Vollzas + C(I1klIzas + 1Bl as)-
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¢ t
A similar estimate as for [(7,kv,v), dt also holds for [(kv,v), dz.

0 0
Choosing ¢ > 0 sufficiently small we apply these inequalities to (2.18)
and obtain that

2 2 2 2 4 4
[v®llz + [Vollz2, < C(llwollz + 1F224 + 1B ga + ”kHZA;t)

t

L / (I + 1B o] de
0

for 0 < t<T. Then Gronwall’s lemma implies that

t
516 o) + / IV0]13 dr < C(llvoll3 + IF 1354 + 1B g4 + 15l5.4¢)
’ 0

x exp (C|kllz; + ClIEl; )
for 0 <t<T. This yields the estimate (3.14). O

The next result proves the existence of a unique approximate solution
v = vy, for the given interval [0, T').

Lemma 3.3.  Let f, k, E, v be given as in Definition 2.1 and let m € IN.
Then there exists a unique weak solution v = v, of the approximate system
(2.12) 1 [0, T) x Q with data f, vo.

Proor. Lemma 3.1 yields such a solution if 0<7 < 1 is sufficiently
small. Let [0,7%) C [0,T), T* > 0, be the largest interval of existence of
such a solution v = v,, in [0, T™) x Q, and assume that 7% <T. Further we
choose some finite 7 > T* with 7" < T, and some 7, satisfying
0<To<T*. Then we apply Lemma 3.1 with [0, 7") replaced by [Ty, Ty + J)
where 6 > 0, Ty + 6 < T"*, and find a unique weak solution v* = v}, of the
system (2.12) in [Ty, Ty + ) x Q with initial value v*|t:T0 = v(Ty). The
length ¢ of the existence interval [T, Ty + J), see the proof of Lemma 3.1,
only depends on [[v(To)[|y < [[v[ly 0 <00 and on [|Flyope, [|Ell;sp
lk||5 4.7, and can be chosen independently of 7. Therefore, we can choose
T close to T* in such a way that 7% < Ty + 6 < T**. Then v* yields a unique
extension of v from [0, 7*) to [0, Ty + J) which is a contradiction. This proves
the lemma. O
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In the next step, see §4 below, we are able to let m — oo similarly as in
the classical case £ = 0. This will yield a solution of the perturbed system
(1.6).

4. Proof of Theorem 1.4.

It is sufficient to prove Theorem 1.4, a). For this purpose we start
with the sequence (v,,) of solutions of the approximate system (2.12)
constructed in Lemma 3.3. Then, using Lemma 3.2, we find for each
finite T*, 0<T* < T, some constant Cp« > 0 not depending on m such
that

1) [omll3 ooz + IVOm I3 5.7 < Cr- .
Hence there exists a vector field
4.2) v e L0, T LAQ) N LA (0, T*; W, *(@)),

and a subsequence of (vy,), for simplicity again denoted by (v,,), with the
following properties, see, e.g. [16, Ch. V.3.3]:

vy — vin L2(0, T Wy*(Q))  (weakly)
4.3) vy — v in L*(0, 7% L*(Q)) (strongly)
() — v(@) in L(Q) for a.a. t € [0, T%).

Moreover, for all t € [0, 7*) we obtain that

2 . 2
[Vollzey < 1££1£f|\vv712|\2,2;t7

@.4) , " ,
[v®lF < liminf o).

Further, using Hélder’s inequality and (4.2)-(4.4) we get with some further
subsequence, again denoted by (v,,), that

v in L9(0,75L0@), 2+ 2 =3 2 <y q<oo,
st 2
. ) 2 3
@4.5) vy, —vv in L2(0,T% L%(Q)), S—+q— =3, 1< s, ga<o00,
2 G2

2 3
vm'vaAQWV?} in L63(07T*’L(I3(Q))7 8_+q_:47 1§S37 g3 <00,
3 3
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and that with some constant C = Cp- > 0:
(4.6) Vil gy sy < CllvmlZ, gy

@D NI Bl 1 g < Clomllg s 1B -

(48) HEvm|‘(é+$>71‘(%+%)71;T* < Cll/l)m”ql‘sl;T* ”E”q,s;T*
(49) ’<(vam)E> vvm>Q.T* | < C||”m||q1‘sl;T* ”E”q,s;T* ”V’UMHZ,&T*
as well as

|<kvmﬂ)m)g,T*’ < C||k||2,4;T*va”;,sl;T*
(410) |<(-.7mk)7)1%7 v7lt>97T* | < C”k”ZA;T* HUW‘”;‘SNT*
’<(jmk)E, v7n>_(27T* ’ § C||k||2‘4;T* HEHq,s;T* va”ql,sl;T* .

The theorem is proved when we show that (2.16)-(2.18) imply letting
m — oo the properties (1.8)-(1.10) and the estimate (1.28). This proof rests
on the above arguments (4.1)-(4.10).

Obviously, (1.8) follows from (4.1), letting m — oo. Further, the relation
(1.9) follows from (2.17) and (2.4) using that

{ ,
(4.11) (Tnm + BYvw + B), Vo) . — {0+ B)Yw+E), Vi), .
{

(Tnk)0r + E)w) g = (kW + E),0) .

To prove the energy inequality (1.10) we need in (2.18), letting m — oo,
the following arguments.

The left-hand side of (1.10) follows obviously from (4.4). To prove the
right-hand side limit m — oo in (2.18) we first show that

(4.12) <(Jm7)m)E7 VUW’L>Q~T* — (vE, v7)>Q,T*'

It is sufficient to prove (4.12) with E replaced by some smooth vector
field £ such that || E — E||, .. is sufficiently small. This follows using (4.9)
with E replaced by £ — E. Thus we may assume in the following that £ in
(4.12) is a smooth function £ € C3°([0, T%); Ci°(2)). Using (4.1)-(4.4) and
(2.4), we conclude that
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|<(vam)E’ - 'an vvm>97Tx ‘

S ||(J7)7vm)E - vEHZ,Z;T* va|

2,2;T*
< CEI mvm — UHZ,Z;T*
< C(E)(”JWL(vWL - v)||2,2;T* + [T — I)v||2,2;T‘)
< C(E)(va - ”Hz.z;T* + [T — D”Hz.z:T*) —0
as m — oo where C(E) > 0 is a constant. This yields (4.12).
Similarly, approximating k by a smooth function k € C3°([0, T™); C3°()),
we obtain the convergence properties
(kvm, vm) o p — (K0, 0)g 1oy
<(\.777Lk),v7ﬂ7v7n>QST* - <kv7v>Q‘T*’
<(\7mk)E’7 ,Um>Q,T* - <kE’7 v>.Q,T* N
Since K € L*(0, T*; L*(2)), the convergence (EE, Vv,,) or = (EE, V) or
is obvious.
This proves that v is a weak solution in the sense of Definition 1.1.

To prove the energy estimate (1.28) we apply (4.4) to (3.14). This com-
pletes the proof. O

5. More general weak solutions.

The existence of a weak solution v for the perturbed system (1.6) under
the general assumption on ¥ in Theorem 1.4 a) enables us to extend the
solution class of the Navier-Stokes system (1.1) using certain generalized
data. For simplicity we only consider the case k = 0.

THEOREM 5.1 (More general weak solutions). Consider

(5.1) f=divF, F e L*(0,T;L*(Q)), vy € LX),
2
(5.2) E e L*(0,T;LUQ)), 4 < s<oo, 4 < g<o0, g+§=1,

satisfying
(5.3) Ei—AE+Vh=0,divE=0

m (0, T) x Q1in the sense of distributions with an associated pressure h.
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Let v be a weak solution of the perturbed system (1.6) in [0,T) x Q in
the sense of Definition 1.1 with E f, vy from (5.1)-(56.3).

Then the vector field w =v+ E is a solution of the Navier-Stokes
system

(5.4) u—Au+u-Vu+Vp=f, divu =0

(5.5) Ulpo =95 Uly_g = Uo
m [0, T) x Qwith external force f and (formally) given data
(5.6) 9=k, ww=vw+E_,
wn the generalized (well-defined) sense that
(u—E),, =0, w-E)_, =uv,

and (5.4) is satisfied in the sense of distributions with an associated
pressure p.

REMARK 5.2. (Regularity properties)

a) Let E in (5.2) be regular in the sense that g and Ky = K lizo m (5.6)
have the properties in Lemma 1.2. Then the solution uw = v + E has the
properties in Theorem 1.4, b).

b) Let E in (5.2) be reqular in the sense that g and Ey = E lizo n (5.6)
have the properties in (1.26). Then the solution w = v + E is correspond-
ngly regular and (5.5) is well-defined in the usual strong sense.
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