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Examples of Threefolds with Kodaira Dimension 1 or 2

ALBERTO CALABRI (¥) - MASAAKI MURAKAMI(¥**) - EZ10 STAGNARO (**%)

ABSTRACT - We construct three nonsingular threefolds X, X’ and X” with vanishing
irregularities. X has Kodaira dimension = x(X) = 1 and its m-canonical trans-
formation ¢y, x| has the following property: the minimum integer number m,,
such that the dimension of the image dim ‘P\mKX\(X ) = k(X) = 1 for m > my, is
given by my = 32. X’ and X" have Kodaira dimension x(X’) = x(X") =2 and
their m-canonical transformations have the properties: dimg, . X') =
=r(X") =2 if and only if m > 12, dim (ﬂ\menl(XH) = k(X") =2 if and only if
m =9,10 or m > 12.

Introduction.

One of the problems regarding the projective, algebraic, nonsingular
variety X, of dimension dim X = d and of general type, is to establish
the finiteness and also the birationality of the m-canonical transfor-
mation (improperly called a map) ¢k, : X-—-PP71 where Ky is a
canonical divisor on X and P,, is the m-genus of X. In other words, the
problem is to establish when the dimension of the image of X under
Pmky 18 d and, in addition, when X is birationally equivalent to its
image ¢}, |(X).

We want to generalize the above problem to any variety X with Kodaira
dimension = k(X) > 0. Since “of general type” is equivalent to “k(X) = d =
dim X”, the new problem is to establish when dim ¢‘7,,LKX|(X ) = k(X).

We indeed consider the following two problems:

(1) what is the minimum integer 1, such that dim ¢,z (X) = x(X) for
each m > y, and for each threefold X with Kodaira dimension x(X)?
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(2) what is the maximum integer M such that there exists a threefold X
with Kodaira dimension x(X) and dim (ﬂ|mKX|(X ) <k(X) for each m <M;,?

In particular, we are interested in these problems when X moreover
has vanishing irregularities.

First we recall the known answers to the analogous problems for sur-
faces.

When X is a surface of general type, one has yy = My = 5 (cf. F. Enriques
[E], Cap. VIII, § 21; E. Bombieri [B]).

When X is a surface with «(S) = 1, it is known that M, = 8, as recently
communicated by I. Dolgachev and proved by F. Catanese via email, and
that 1y = 14 (cf. F. Enriques [E], pp. 410-412, T. Katsura - K. Ueno [KU],
F. Catanese - 1. Bauer [CB]).

Consider now varieties of dimension d > 3.

C.Hacon-J. McKernan [HM], S. Takayama [Ta] and H. Tsuji[Ts] proved
the existence of 1, (depending only on d) for varieties of general type, but the
value of 1 is still unknown, even for d = 3. M. Chen [Che;, Ches, Ches]
obtained upper bounds of , for threefolds X of general type, under some
hypotheses on the geometric genus p, = Py, or on the m-genus P,,, m > 1, of
X. In some cases, such limitations are optimal, thanks to examples due to
Chen himself [Chey], S. Chiaruttini - R. Gattazzo [CG], S. Chiaruttini [Chi]
and C. Hacon considering an example of Reid (cf. [Ches, Re]).

For threefolds X with x(X) = 1, it is known that there exists an effec-
tively computable integer m; such that the mj-canonical linear system
|m1Kx| induces the Iitaka fibration for every threefold X (cf. [FM], Cor-
ollary 6.2).

When x(X) =2, J. Kollar conjectures the existence of an integer msg,
independent of X, such that the m-canonical transformation ¢, x| gives the
Titaka fibration for m > mg [K, Remark 3.4]; concerning this conjecture cf.
[P]. Moreover, Kollar conjectures that the m-genus of X is P,,(X) > 0 for
some m < 24492 and for every X [K, Corollary-Conjecture 3.3].

In the present paper we give three examples of threefolds, X in Chapter
1, X’ and X” in Chapter 2, with vanishing irregularities. X has Kodaira
dimension 1 and its m-canonical transformation ¢, x| has the following
property: the minimum integer m,, such that dim go‘mK)d(X ) =xr(X) =1 for
m > my, is given by my = 32. This implies that yx, > 32 in problem (1) for
threefolds with x = 1 and vanishing irregularities.

The properties of X (cf. Section 1.8) imply also that My > 20 in problem
(2) for threefolds with x = 1 and vanishing irregularities.

X' and X" have Kodaira dimension 2 and their m-canonical transfor-
mations have the properties: dim (o‘mKX,‘(X N =kX') =2 if and only if
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m > 12; dim go‘mKX,,‘(X”) = k(X") =2if and only if m = 9,10 or m > 12. It
follows that 1, > My > 12 in problems (1) and (2) for threefolds with x = 2
and vanishing irregularities.

The irregularities and the first plurigenera of X, X', X" are as follows:

TABLE 1. Irregularities and the first plurigenera of X, X’ and X".

|| @ @ pg P P Pp P5 B P B Py P Pu P Pz Pu

XxX{yo o o o0 o0 1 1 o0 o0 1 1 1 O 1 1 1
xXyfo o o o 1 1 1 1 1 2 2 2 2 3 3 3
xXfo o o0 o 1 2 1 1 2 3 3 3 3 5 5 5

In our constructions, the ground field k is an algebraically closed field
of characteristic 0, which we may assume to be the field of complex num-
bers C.

1. Construction of X.
1.1 — Imposing singularities on a degree six hypersurface V in P,

Let us indicate as f5(Xo, X1,X2,X3,X4) a form (a homogeneous poly-
nomial) defining a hypersurface of degree six V c P* with a triple
point at each of the five vertices Ay = (1,0,0,0,0), A; =(0,1,0,0,0),
Az =(0,0,1,0,0), A3=1(0,0,0,1,0), A4 =(0,0,0,0,1) of the funda-
mental pentahedron.

Vv :.]%(X07X17X27X37X4) =

X3(ass000X3+ -+ )+ X3 (a3100X2 X2 + ) + X5 )+ X3(-- )+ X5(-- )+
+ 22200 X3 X2 X5 + A92110X5 X2 X0 X5 + -+ - + oo X2 X2 X3,

where a;, € k denotes the coefficient of the monomial X;X? X¥X2 X!,

We want to impose an infinitely near double surface S; at the point A;,
1=20,1,2,3,4, in the first neighbourhood. The surface S; is locally iso-
morphic to a plane, according to our hypothesis on the singularities in [S;],
Introduction and section 1.

We impose here a double surface Sy infinitely near A4 and after this, by
means of a permutation of indices and variables, we impose the same
singularity at the other A;, j <4.



18 Alberto Calabri - Masaaki Murakami - Ezio Stagnaro

The permutations of the indices ijkhl of the coefficient a;,; and of
variables Xy, . . ., X4, which appear in a;;, XX, XEX2 X!, passing from A4 to
As, from Az to Ag, from Ay to A1 and from A; to Ay, are as follows.

Permutations of indices and variables
Ay — Ag — Ay — A1 — Ay
ykhl — jiklh — jhlki — klhji — lkhij
Let us consider Ay4.

Let 7; : P; — IP* be the blow-up of P* at Ay. Let Uy be the affine open

. . X X1 X X3

h = - = — = - = Th
set {Xy # 0} with coordinates x X4,y X4,z X, and ¢ X, e
polynomial defining V N U is

VN Uy fi(,y,2,t,1) = asso000®y® + - - - + aooeeed®t.

Locally the blow-up 7 is given by the formulas:

x=x €T = X2Y2 X = X373 X = X4ty

) y=0yr, Y=y . L) Y=1ysrs. L)Y =Yals

By, : Z2=x121 By, : 2= P )z=2z23 By, : 2 = 24ty
t= 901t1 t= 2/2)52 t= thg t= t4

and we consider, for example, B,,. The strict (or proper) transform V;, of
V N Uy with respect to B,, is given by

1
) _ 3,3 2.2
Ve, . Jo(@1, 2191, 2121, X1t1) = Qs30007Y] + - - - + Qoogee®1R1t].
1

We impose on V,, the double surface, better the double plane,
{21 = y1 = 0} (i.e. we impose that such a plane is a locus of double points on
V). Since the coefficients a;jy, are arbitrary, according to Bertini, this
means that the plane is (at least) double on every monomial aijklhxfl"yz‘zf tZ.
It is consequently very easy to compute the conditions on the coefficients, in
order that V,, has the double plane {x; = y; = 0}.

Let us denote by V7 the strict transform of V' with respect to the blow-
up 7;. The above conditions on the coefficients impose on Vi the double
surface we called Sy, i.e. Sy is a double surface on Vi infinitely near
Ay =1(0,0,0,0,1) in its first neighbourhood.

Now, we impose a double surface S; infinitely near A;, for ¢ =0,1,2,3
by means of the above permutations without repeating the above calcula-
tions.
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By imposing all the conditions, we obtain for V an equation de-
pending on 26 free coefficients (also called parameters) because some
conditions are a duplicate of previous ones. Several of the 26 parameters
can be chosen as equal to zero, because they are inessential in the
computation of the birational invariants of a desingularization
g, : X —V of V, as well as in the computation of the dimensions of the
images under pluricanonical transformations. The shortest form with
the essential coefficients and defining our hypersurface with the above-
said singularities is given by

I = 31002 X5 X1X5 + 013020 X0 X3 X5 + 20301 Xo X5 X4 + 20031 X5 X5 X4
+ 02013 X7 X3 X3 + 12210 X0 XEXE X3 + (19120 X0 X7 X X5
+ a11220X0 X1 X5XE + 111200 X0 X1 X5X5 + 10001 X0 X5 X5 X4

The hypersurface V, obtained for a generic choice of the parameters a1,
will be called a generic V. In the sequel, when we shall consider our V, it is
understood our generic V.

1.2 — Imposed and unimposed singularities on V.

We consider the hypersurface V at the end of section 1.1.

Close to the singularities imposed on V (the triple point A; having an
infinitely near double surface S;, 1 = 0,1,2, 3,4), new singularities appear
on the generic V, either actual or infinitely near. We call actual singula-
rities the singularities on V' that are not infinitely near. Let us find the
unimposed actual singularities on V in the present section.

According to Bertini’s theorem (characteristic zero), the actual singu-
larities on the generic V belong to the base points of the linear system
defining V. It is not difficult to find that the unimposed actual singularities
are given by the following five double (straight) lines

{X0:X1:Xi:0},?::2,3,4; {)Q:X3:X4:0},j:0,2;
and a double plane cubic
{Xo = a13020X7X3 + A12210X1 X5 + a12120X1 X2 X3 + 11220 X5 X3 = X4 = 0}.

In the following picture the five double lines are drawn in bold type.
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As
Ay

As Ay
Ao

In particular the unimposed actual singularities have codimension 2,
therefore V it is reduced, irreducible and normal.

REMARK 1.1. We note that the double singular curves, actual or in-
finitely near, do not give conditions of adjointness, that is, they do not give
conditions to the hypersurfaces for them to be (any kind of) adjoints (cf.
[S1], Remark 17, section 11). In particular, such curves do not affect the
birational invariant of a desingularization X such as q1, g2, py, P, as well as
the computation of dim ¢, (X). Moreover, we note explicitly that the
singularity given by the double plane cubic can be resolved blowing up the
plane containing it.

RESOLUTION OF SINGULARITIES OF V

The main purpose of this resolution of singularities of V is to find the
infinitely near unimposed singularities and to check that they do not give
conditions to any kind of adjoints to V. More precisely we find that the
infinitely near unimposed singularities are given by double singular lines
and isolated double singular points.

1.3 — Blowing up the triple point Ay € Uy.

According to section 1.1, we consider the affine open set Uy = {Xy # 0}
of affine coordinates (x, ¥y, 2,t). The actual singularities on V belonging to
U, are given by the two double lines

AsAs N Uy, AsA;NUy.
The equation of V' N Uy is given by

f(;(ac, y,2,t,1) = a31002x3y + -+ a102219622t2 =0.
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By using the notations of section 1.1, and denoting by V., V,,, V.., V4,
the strict (or proper) transform of V N U, with respect to By, , By,, Bz, By,
respectively, we obtain the following results

e V,, is given by

1
Ve, = fo(@r, w1y, 2121, X1t1) = Gg100221Y1 + - - - + Aoz ¥i5tE = 0.
1
On V,, there is a unique singularity given by the double plane
{x1 = y1 = 0}; this means that the double plane is infinitely near A4 in the
first neighbourhood.

e V,, is nonsingular.

e On V,, there are two singularities: the double plane {ys = z3 = 0} on
the exceptional divisor z3 = 0 and the double line {x3 = y3 = 3 = 0} out-
side the exceptional divisor; it is the strict transform of the actual double
line AsA, N Uy.

e On V;, there are again two singularities: the double plane
{ys =t4 =0} on the exceptional divisor ¢, =0 and the double line
{x4 = y4 = 24 = 0} outside the exceptional divisor; it is the strict trans-
form of the actual double line 4344 N Uy.

1.4 — The blow-up my : Po — Py of Py along the surface Sy

1.4.1 Letus consider V,,. OnV,, the surface S, is given by the double plane

{x1 =y =0}
Locally the blow-up along this plane is given by the formulas

r1 = %11 L1 = %12Y12
) Y1 =ruyn . ) Y1 = Y12
B%n . _ ’ Bylz . _
21 =21 21 =212
tl = t11 tl = t12

Let us denote by V,,,, the strict transform of V,,, with respect to B,,, and by
V., the strict transform of V,, with respect to B,,,.

e o V,  is nonsingular; its equation is given by

1
. 2 _ 2 .2
Vg . Se(w11, 271911, 011211, Tt 1) = agrooeyn + - - - + Gioz1z13t5; = 0.
11

e o V, . is nonsingular.
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1.4.2 Let us consider V,. On V, the surface Sy is given by the double
plane {y3 = z3 = 0}. Blowing up this plane, we find that there are no sin-
gularities infinitely near it.

1.4.3 Let us consider V;,. On V;, the surface Sy is given by the double
plane {y4 = t4 = 0}. Blowing up this plane, again we find that there are no
singularities infinitely near it.

1.5 — The blow-ups along the double lines that are strict transforms of the
double lines AsAy N Uy and AsAs N Uy,

Blowing up the strict transforms of AsA4 N Uy and A3A4 N Uy, it is not
difficult to see that infinitely near each of these double lines there is another
double line and infinitely near the last double line there are no singularities.

The tree of the blow-ups resolving the singularities on V N Uy is de-
scribed below.

Where the nonsingular threefolds are drawn in bold type.

Vu,
V""' 1 V.Y 2 VEJ 1/.[:1
Vxn V}’m V}’al V'z:sz V.Y41 1/5:12

/N /I

ViVyVi ViVyV.

A

V.V, V, VxVyV,

In the above sections 1.3-1.5, we gave, as an example, the blow-ups
resolving the singularities of V N Uy and we wrote the equations of the
strict transforms that we need in the sequel. We calculated also the other
similar desingularizations but we do not reproduce them here: we consider
them as being achieved, as well as the complete desingularization of V.
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1.6 — The m-canonical adjoints to V- P*.

Let
P, LN Py N Py N Py = P*
be a sequence of blow-ups resolving the singularities of V.
Ifwe call V; C P; the strict transform of V;_; with respect to 7;, then we
obtain from the above sequence

i A

Ve s B v S V=,
where 7, = myy, : Vi— Vi1 and 0, : X —V, 6 =m.0---0m, is a de-
singularization of V c P4,

Let us assume that =; is a blow-up along a subvariety Y;_; of ?;_, of
dimension j;_;, which can be either a singular or a nonsingular subvariety
of V;_1 € P;_1 (i.e. Y;_1 is a locus of singular or simple points of V;_1). Let
m;_1 be the multiplicity of the variety Y;_{ on V;_;.

Letus set n;_y = -3 +7j;_1 +m;_1,for i = 1,...,r and deg(V) = d.

A hypersurface @,,4-5 of degree m(d —5) in P* is an m-canonical
adjoint to V (with respect to the sequence of blow-ups =y, ...,n,.) if the
restriction to X of the divisor

Dy, =m{m_ [ 1] (Puya—s) — mnoEy - - -1 — mn,_oE,._1} —mn, 1 E,

is effective, i.e. Dy, |, > 0, where E; = 7 1(Y;_1) is the exceptional divisor of
m; and 77 : Diw(P;_1) — Div(P;) is the homomorphism of the Cartier (or
locally principal) divisor groups (cf. [S;], sections 1,2).

An m-canonical adjoint @,,_5 is a global m-canonical adjoint to V
(with respect to ny, ..., n,) if the divisor D,, is effective on P,, i.e. D,, > 0
(loc. cit.).

Note that, if @45 is an m-canonical adjoint to V, then Dy, = mK,
where ‘=" denotes linear equivalence and K denotes a canonical divisor on X.

In our above example, an order can be established in the sequence of
blow-ups, e.g. let us assume that the blow-up 7; is the blow-up at the 3-ple
point A4, 7 is the blow-up along the double surface S, infinitely near A4
(see also section 1.1, 1.3 and 1.4), x3 is the blow-up at the triple point As, 74
is the blow-up along the double surface S infinitely near As, 75 is the blow-
up at the triple point Ay, 7g is the blow-up along the double surface Ss
infinitely near Ay, 77 is the blow-up at the triple point A;, 7g is the blow-up
along the double surface S, infinitely near A;, and rg is the blow-up at the
triple point Ay, 719 is the blow-up along the double surface Sy infinitely
near A,.
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The hypersurface V has degree d = 6 and D,, is given by:
) Dp=n'.. {mlni(®,,) —mEz]—mEs} —mEs—mEg —mEy+ Y. mE,

where E; is the exceptional divisor of the blow-up 7; and, to be more specific,
E is the exceptional divisor of the blow-up 7g along Sy, ..., Eq is the ex-
ceptional divisor of the blow-up 7y along Sy.

No other exceptional divisors are subtracted in D,, because, as we said,
the unimposed singularities are either actual or infinitely near double
singular curves or isolated double points on our (generic) V. We note that
the exceptional divisors of the blow-ups at double isolated points appear
with coefficient n;, = —1, we have indicated these divisors as > mE. From
here on, we omit writing > mk, because they are not essential in the
computation of the birational invariants, as well as in the computation of
dim ¢, ¢, (X), that we shall consider.

1.7 - The global and non-global m-canonical adjoints to V c P

PRrROPOSITION 1.  Ifwe consider a non-global m-canonical adjoint to V

Dy, 2 Fy(Xo, X1, X2, X3,Xy) = Z b Xe X XEXAX] = 0,
i+j+k+h+l=m

where by €k, then a form A = A(Xo,X1,Xz,X3,Xy) exists such that
&y, Fy — Afs = 01s a global m-canonical adjoint to V. In other words, the
following equality holds

:Q*

mly

Py,

v

Proposition 1 holds for the three constructions in the present paper
(see Proposition 2 in the Appendix). The three proofs are similar, so, to
avoid unnecessary repetitions, we produce only one proof in the Appen-
dix. There are two ways to prove these Propositions: the first way is
contained in [Sg], cf. the proof of Lemma 5, section 18, p. 1177; the second
way is due to Maria Cristina Ronconi. We reproduce in the Appendix the
proof of Mrs. Ronconi.

LemMA 1. The global m-canonical adjoints to V are given by

i vI vk yvhyl
Vi Y Cum XX X5X4X) =0,
i+j+k+h+1=m
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where cipy € k and where | >1>h>j>1, 1>k ie l=i=h=jand
1 > k (for all monomials).

Prooror LEMMA 1. Let us consider a global m-canonical adjoint to V

. v Ykyhyl _
Y : Z Cijkth(l)X;Xngle =0.
i+j+k+h+-l=m

The total transform ¥* of ¥, N Uy with respect to B,, (section 1.1) is
given by

V' =B, #nNUy: Z Cijkhl(xl)i(xlyl)j(ﬂclzl)k(gﬂ'ltl)h =0,

1+j+k+h+l=m

The double surface Sy infinitely near A4 in affine coordinates (x1, %1, 21,%1)
is given by {x; = y; = 0} and the blow-up 7z along S, is given locally by the
formulas B, and B,,, (see section 1.4.1).

The total transform ¥** of ¥* = B;l (¥, N Uy) with respect to B,,, is
given by

] 2 j k h
=B ) Y e @y @nzn) @ntn)” =
i+j+k+h+l=m

SRR E SRS 2 R Y S
Z Cijkni®1q ?/nzlltll =0.
i-+jHk+h+l=m

Since ¥,, is a global m-canonical adjoint to V, by definition in (¢), section
1.6, we have D,, > 0.

We note that B,,, o B;, coincides, up to isomorphisms, with the de-
singularization |, on the affine open set V. In fact, V,,, is nonsingular
(see the tree of blow-ups, section 1.5) and then it is isomorphic to a Zariski
open set on the desingularization X of V. The above coincidence and the
inequality D,, > 0 imply the inequality 7nj[nj(®,,) —mE2] >0 and the

following inequality between divisors (of rational functions) on the affine
open set U,,, of (affine) coordinates (11, ¥11,211,%11)

UZ 1 oy .

: _ o iA%kth,j kb

( xm ) - ('%.m ) ( Z Cijkhi¥11 .7/11z11t11 = 0) > 0.
1 11 i+j+k+h+l=m

Since, on the affine open set U,,,, 11 = 0 is the local equation, of the ex-
ceptional divisor Ky of the blow-up 72, this last inequality is equivalent to

i+2+k+h-—m>0, ie.j> 1.

We have proved the above inequality for a particular sequence of open sets
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appearing in the blow-ups. If we consider all the other sequences of open
sets, we find the same inequality.

This proves the last inequality in the sequence of inequalities
l>1>h>j>lin the statement of Lemma 1.

If we consider the singular points A3, A2, A; and Ay and we go on with
the blow-ups 73, ..., 79, then all the other inequalities follow in a similar
way. More precisely, if we consider the point As, then we obtain ¢ > h;
considering Ay we obtain ¢ > k; Ay leads to h > j and Ay to [ > 1.

We note that, up to isomorphisms, we can start by blowing up A; first,
with 7 # 4, and in this case, we repeat for A; what we did for A4 obtaining in
the same way all the inequalities.

So, Lemma 1 is proved.

1.8 — Computing the plurigenera of X.

Now, we consider [S1], Corollary 8, section 3: if V is normal, there is an
isomorphism of projective spaces for any m > 1

linear system of
) . — |mKx]|
m — canonical adjoints to V "

®m|v — Dm|X-

D,, is defined in (¢), section 1.6.

Bearing in mind that our purpose is to compute the m-canonical genus P,,
= dim |mKx| + 1 = dim (linear system of m — canonical adjoints)lv +1,
we can substitute @,, with @/, if ;"\v = Dy,

Next, the Proposition 1 in section 1.7 tells us that in order to compute
the m-genus P,,, we can restrict ourselves to consider global m-canonical
adjoints to V and Lemma 1 in the same section tells us that the global m-

canonical adjoints are given by

. SYSYVVSVYS __
Pt > Casn XgXiX3X5X5 = 0,
4s+v=m

where ¢4 €k and v <s, s > 0.
By doing the easy calculations, we obtain

pg = P1 =Pz = P3 =0
P, =1, the global 4-canonical adjoint is defined by X,X;X35X4;
P5 =1, the global 5-canonical adjoint is defined by XoX;XoX3Xy;
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P6 = P7 = 0;

Pg = 1, the global 8-canonical adjoint is defined by X2X?X2X%;

Py = 1, the global 9-canonical adjoint is defined by XZX2X,X5XZ;

Py = 1, the global 10-canonical adjoint is defined by Xz X?X5X2X?;

Py =0;

Py =P3=Py=Ps=Pg=Pr=Pg=Pp=1

Py = 2 the global 20-canonical adjoints are defined by 4 XJX7X5X3 +
IoXAXAXAXAXY = XAXAXIXH (0 Xo X0 Xs X + /nXD), 1 € k; and s0 on.

REMARK 1.2. 1) We have seen that the first integer m such that
P,, =2 is m =20 and the 20-canonical adjoints are given, up to fixed
components, by the peneil 21X + 22X X1 X3X, = 0.

Continuing the above list, we obtain

2) the minimum integer m such that P,, > 2 for m > my is given by
my = 32;

3) the first integer m such that P,, =3 is m =40 and the global
40-canonical adjoints are defined by 1 XSXSXSXEXE + 1, XJX)X3X9X] +
s XOXIOXIOX 10 = XSXPXEXE (1 X5 + 1o X0 X1 X3 X3 X + 15 X2 X2 XEXE), 1, € ks

1.9 — The m-canonical transformation g,g.,-

Let us consider the following triangle

where ol - X —V,with ¢ = 7, o - - - 0 711, denotes our desingularization of
V,where L,, denotes the (incomplete) linear system of m-canonical adjoints
to V restricted to V and ¢, the rational transformation defined by the
linear system L, .

The above triangle is commutative. This follows from the fact that the
divisors of the linear system |mKy| on X are the divisors D, , where
Dy, = 75;{75:_1[ ce n;(@m) —mnoky -] — mnr—ZEr—l} — mn,_1 K, with @,
varying in the linear system of m-canonical adjoints to V.
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In the present section, we want to find the minimum integer m, such
that the m-canonical transformation ¢,  enjoys the property: dim
goWKX‘(X) =1, for m > my. The values of m such that dim go|mKX|(X) =1lare
exactly given by the values for which P,, > 2. This is a consequence of the
following facts:

a) restricting the global m-canonical adjoints to V there is no identifi-
cations;

b) the commutativity of the above triangle;

¢) 4), 5) in Remark 3.

So, thanks to 2) in Remark 3, the above value of my is given by my = 32.

Therefore, the Kodaira dimension of X is k(X) = 1 and the minimum
nteger my such that dim (p‘mKX‘(X) =1, for m > my, is given by my = 32.

Moreover, we note that the generic fiber of the rational transformation
Pmky 18 irreducible (by Bézout theorem) for those values of m for which
P,, = 2, whereas such generic fiber is reducible for those values of m for
which P, > 3.

1.10 — Computing the irregularities of X.

It remains to prove that ¢; = dim, H'(X, Ox) = 0, for i = 1,2. We know
that ¢; = dimH'(X, Ox) = ¢(S,) = dimH'(S,, Og,), where S, C X is the
strict transform of a generic hyperplane section S of V' (cf. [S;], section 4,
for instance). S has several isolated (actual or infinitely near) double points
and no other singularities. This follows from the fact that the hypersurface
V, outside the points Ay, A;,A2, A3 and Ay, only has actual or infinitely
near double curves or isolated double points. So, g; = 0.

To prove that g2 = 0, we use the formula (36), section 4 in [S;], which
states that

q2 = pg(X) + pg(sr) - dimk(W2)7

where W is the vector space of the degree 2 forms defining global adjoints
&, to V, i.e. defining hyperquadrics @, such that

77,': R n§[ni(¢2)] — Ez — E4 — E6 - ES _EIO > 07

(cf. the expression of D,, in (©), section 1.6). So the above hyperquadrics
@, are those passing through the points Ay, A1,A2,As and A4. Thus, we
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have dimy(Ws) = 15 — 5 = 10. It follows from p,(S,) = 10 and py(X) =0
(cf. section 1.8), that g2 = 0.

2. Construction of X’ and of X”.

In this chapter we construct two threefolds X’ and X”, with the prop-
erties described in the Introduction, as desingularizations of two hy-
persurfaces V' and V" of degree six in P*. Using the same method of
Chapter 1, we impose sextic hypersurfaces to have triple points at the
coordinate points A;, 1 =0,...4, each one with infinitely near a double
plane, namely a double surface whose local equations are linear, obtained
with slight modifications of the permutations described in Chapter 1, § 1.1.

Indeed, the singularities of V', V" are of the same type as the singu-
larities of V in Chapter 1. The difference with V (and between V' and V") is
mainly given by the position of the double surface infinitely near to Ay,
which will imply the difference in the birational equivalence classes of V, V'
and V",

The explicit equation of V' is

fi = 030102 X X2 X2 + 13020X0 X X2 + 20301 X5 X5 X 4
+ A20031 X2 X5 Xy + a10203X0 X5 X5 + 12210 X0 X2 X5 X3
+ a11220X0 X1 X5 X2 + ao2112 X1 X X3X5 = 0,

while the equation of V” is

Ji = a30012 X5 X5 X7 + 13020 X0X; X5 + 00301 Xe X5 X4 + 20031 X X5 X4
+ 10028 X0 X5X5 + a22011 Xe X2 X3 X1 + a12210X0 X7 X5 X3
+ 12012 X0 X5 X3 X2 + 011220 X0 X1 X5 X5 + 10991 X0 X2 X2 X4
+ 10212 X0 X5 X3 X2 + 02112 X7 X2 X3 X5 = 0,
where the coefficients ;. € k are sufficiently general. (Actually, one can
construct such a threefold X” from a hypersurface V” depending on 28 —
instead of 12 — parameters, but we used only 12 of them for brevity.)
Reasoning like in Chapter 1, one sees that V', V" are normal, they have

triple points at A;, 0 < A < 4, they are double along the lines A¢A;, A;As,
A1A4, AsAs and along the rational cubic plane curve:

Xo = Xy = a13020X:X3 + 12210X1. X5 + a11220X5X3 = 0.
The further actual singularity of V' is the double line A3A4, while the



30 Alberto Calabri - Masaaki Murakami - Ezio Stagnaro

further actual singularities of V" are the double line A3A,4 and two double
rational cubic plane curves:

Xo = X1 = 10221 X5X3 + 10212 XXy + 10023 X3X2 = 0,
Xo = X3 = a30012X5 X4 + 22011 X0X7 + a12012X5 Xy = 0.

Setting Py = P, we perform the blow-ups 7; : P; — P;_1,i=1,...,9,
where 79,11, A =0,...,4, is the blow-up at A; € U, = {X, # 0} and 7,9,
A=0,...,8,is the blow-up along the double surface S, infinitely near to
A;, which is the same for V, V' and V".

With the usual affine coordinates «,y,z,tin U,, 1 =0,...,4, each blow
up 7,41 is given locally by the formulas B,,, By,, B.,, By, written in § 1.1.
With respect to B,,, we see that the local equation of the double surface Sy,
infinitely near to Ay, is y2 = t2 = 0; the local equation of S is y2 = 22 = 0;
those of Se and of S3 are 22 = y2 = 0.

Finally, for V', let @i}, : P}, — Py be the blow up along the surface S
infinitely near to A4, with local equation y» = 2z = 0 with respect to B,,.
For V”, let nf, : ]y — Py be the blow up along the surface Sj infinitely
near to A4, with local equation ¥ = t2 = 0 with respect to 53,,.

We then checked that the strict transforms of V' in P}, and of V" in P}
are singular along double curves only, and that no further essential sin-
gularity appears in the resolution process. In other words, the double
surfaces infinitely near to the coordinate triple points are the only essential
singularities of V' and of V”. Therefore we may compute global m-cano-
nical adjoints to V' and to V" in the same way we did in Chapter 1.

LeMMA2. LetF = Y by XX, X5X2 XL, be a homogeneous polynomial
of degree m, i.e with t+j+k+h+l=m and by €k. Then
@, = {F = 0} c P is a global m-canonical adjoint to V' [resp. to V"] if
and only if ) <h <i=k=1/[resp. ) <1=h=12>k] for each monomaial
n F.

Proor. Following the proof of Lemma 1 in Chapter 1, we compute the
conditions imposed by the double surfaces infinitely near to Ay [Ay, Az, A3,
resp.] and we find out that I > ¢ [k > j, 1 > k, 1 > h, resp.]. Concerning Ay,
we find that &k > [ for V' and that & > [for V”. It follows thati =k = [ for V'
and that ¢ = h = [ for V", which conclude the proof.

By Proposition 2 in the Appendix, global m-canonical adjoints to V' and
to V" are enough to compute the plurigenera P,,(X’), P,,(X") of X' and X",
and their pluricanonical transformations, which we study now.
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2.1 — Canonical adjoints to V', pluricanonical transformations of X'.

By Lemma 2, the global m-canonical adjoints to V' are given by

. |y +u j+u+v
Dy, : g bjqu{ng (X0X2X4)7 - 07
5j-+4u+3v=m,j>0,u>j,v>k

where bj,, € k. Denote by A, the k-vector space of the polynomials de-
fining global m-canonical adjoints to V. Setting ¥ = X X»Xy, it follows that

Ay = A; = {0}, Ay = (Y), Ay = (X3Y),
A; = (X1 X3Y), A = (Y?), «47 = (X3Y?),
Ag = <X1,X3>X3Y2, Ay = (XlXZ,Y>Y2, 0= <X X3, Y>X3Y27
A’n = (X1, X3)X3Y°, A’lz = (X1 X2, X3,Y)Y?,
= (X2X3, X, X2, V)XY, L= (XX XY, X3 Y) X, VP,

and so on, which give the P,,(X’)’s written in Table 1 in the Introduction.

We now study the m-canonical transformations ¢, = ¢,,x | of X'. We
will show that X" has Kodaira dimension 2 and that ¢/, (X’) has dimension 2
if and only if m > 12. Clearly, dim ¢/, (X") <2 if m <12.

Then, it is easy to check that ¢ (X') = P? for m = 12,13, 14. Since
P3(X') = 1, it follows that dim ¢}, (X") > 2 also for each m > 15.

An upper bound to P,,(X’) is given by the function v: N — I\

vm) = 8{(j,u,v) € N® | 5j + 4u + 3v = m} > P,,(X"),
where N is the set of non-negative integers. We then see that
m m
N < < (= —
P, (X') < vim) < (5 +1)(F+1),

thus the Kodaira dimension of X’ is 2 and hence dim ¢/, (X') = 2 for m > 12.

2.2 — Canonical adjoints to V", pluricanonical transformations of X".

By Lemma 2, the global m-canonical adjoints to V" are given by

Dy, : > by X{ X5 (XoX3Xy)' = 0,
Bitj+k=m,i>0,1>j,i>k

where b;, € k. Denote by A, the k-vector space of the polynomials de-
fining global m-canonical adjoints of X”. Setting ¥ = X(X3X}, it follows
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that
Al = A5 = {0}, Ay =(1), = (X1,X5)Y,
A5 = (X1XzY), Af=(Y?), Al = (X, Xp)Y?
Ag = <X12,X1X2,X2>Y2 Ag = <X2X27X1X22, Y)YZ,

Ty = (X2X2 XY, XoY)Y?, 1= (X2, X1 X, X2)Y?,
m—@%ﬁ&&ﬁdimw

Ty = (X3X,, X2X2 X, X3, X1V, XoY) Y3,

1, = (X3X2 XEX3, X2Y, X1 XY, X2Y) Y3,

and so on, which give the P,,(X")’s written in Table 1 in the Introduction.

We next describe the m-canonical transformations ¢;, = ¢),x,,| of X".
We claim that X" has Kodaira dimension 2 and that ¢/;,(X") has dimension 2
if and only if m = 9,10, or m > 12. Clearly, dim ¢! (X") <2 if m <8.

Setting Wy = X? Y2 Wi = X1 X2Y? and W, = X372, we see that pf(X")
is the plane conic W WoWs in P? with coordlnates Wy, W1, Ws. One sees
that ¢;(X") is a plane conic too, hence dim ¢”(X”) = dim ¢f;(X") = 1.

Moreover we easily see that ¢g(X") = ¢ (X") = % and that ¢1,(X") is
a surface scroll in *, namely a cone over a ratlonal normal curve in P%. In
coordinates Z, = X?Yg, Zy = X?XoY3, Zo = X0 X2Y3, Z3 = X3Y3, Z, = Y4,
the equations of ¢{,(X") are indeed

" . Zo Zy Zz\ _
gz)lz(X).I'.alrlk(Z1 Zs Z3>_1.

One similarly sees that ¢{;(X") and ¢{,(X") are surface scrolls in P*, hence
dim¢! (X") =2 if m =9,10, 12,13, or 14. Since Ps =1, it follows that
dim ¢ (X") > 2 for each m > 15.

An upper bound to P,,(X") is given by the function ;: N — N,

um) = ${(i,4,k) € N? | Bi +j+ k = m} > P, (X"),

and, setting m = 3n + ¢, with ¢ € {0,1,2}, we see that
n
P, X" < u(m) = 2(3(n—i)+1+s) (n+1)< n+1+s>
i—0
Thus the Kodaira dimension of X” is 2 and dim ¢/, (X") = 2 for m > 12.
Finally, the same proof as in the case of the threefold X, cf. § 1.10, shows
that the irregularities of X’ and that of X" are ¢; = ¢z = 0. This concludes
the proof that X’ and X" have the properties described in the Introduction.
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Appendix. Non-global canonical adjoints can be made global.

In this appendix we show that, in order to compute m-canonical adjoints
to V, V' and V", it suffices to compute global m-canonical adjoints.

We point out that the key ideas of these proofs are due to Maria
Cristina Ronconi (cf. her approach in [Ro], § 4).

PROPOSITION 2. Let F = S b X X]XEXI X! be @ homoge-
i+j+k+ht-l=m

neous polynomial of degree m, with by € k, defining a non-global m-

canonical adjoint to V [V', V", resp.]. Then there is a homogeneous

polynomial A(Xy,...,Xy) of degree m — 6 such that F — Afs [F — Afi,

F — Aff, resp.] defines a global m-canonical adjoint to V [V', V", resp.].

We first write the proof of Proposition 2 for V. We will then show what
to change for V' and V. We begin with some definitions and a lemma.

Let us define 5 functions o,: N> — N (where N is the set of non-
negative integers), 0 < 1 <4, as follows: for each o = (1,j,k,h,1) € NGO
we set

oo =o| +1—1%, o=t +h—j, o2(@)=]a]+iP—k,
o3(0) = || +1—h, o4(0) = |af+7—1,

where |z| = i +j + k + h + L. For brevity, we write X% = XiX] X; X} XJ.

The function ¢, will help to understand what happens to a monomial X*
appearing in the equation of a canonical adjoint when blowing up the point
A, and the surface S, infinitely near to A;. Roughly speaking, in our si-
tuation the equation of an exceptional divisor corresponding to S, is given
by just a coordinate variable and o; counts how many times that variable
appears in a monomial (cf. the proof of Lemma 1 in Chapter 1).

Fix 4, 0 <A < 4. For any homogeneous polynomial G = > ¢, X* €

lof=m
K[X] = K[Xy,...,X4] of degree m > 0, we define the integer
TA(G) = min{ai(g) 2 Cy 7& O}v

and the polynomial

- Y exe
o:0,()=7;(G)

which is the part of G with monomials X* such that ¢;() = 7;(G). The de-
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finition implies that, if G¥ # G, then
7(G — GP) > r,(() + 1.

Roughly speaking, r,(G) counts how many times the variable defining the
exceptional divisor corresponding to S, factorizes all monomials of G.
For each 0 < 4 < 4, we see that r,(fs) = 5 and we set p;, = é’), ie.

Po = 31002 X5 X1X5 + a13020X0X; X5 + 20301 Xg X5 X4 + @20031 X5 X5 X4
+ a12210X0 X5 X5 X3 + 012120 X0 X1 X0 X5 + 11220 X0 X1 X5 X5,

P1 = 0531002X3)X1Xf + (113020X0X§X§
+ (02013 X2 X3X5 + a12210X0 X7 X5 X3,

P2 = a20301 X5 X5 Xy + 12010 X0 X2 X2 X3
+ 11220 X0 X1 X5 X5 + 10991 X0 X2 X2 X,

P3 = a13020X0 X5 X5 + 20031 X5 X5 X4 + a02013X: X X5 + 12120 X0 X7 X2 X5
+ 011220 X0 X1 X5 X5 + 011200 X0 X1 X5X5 + 10221 X0 X5 X5 X4,

Pa = 031002 X5 X1 X5 + 20301 X5 X5 Xy + A0031 X5 X5 X4
+ 02013 X7 X3 X5 + 11200 X0 X1 X2 X5 + 10201 X0 X5 X5X 4.

LEmma 3. Fix 4, 0<A<4 Assume that the homogeneous poly-

nomial G = 3 ¢, X* of degree m defines an m-canonical adjoint to V.
|o|=m

If v)(G)<m, then there exists a homogeneous polynomial B, of degree
m —6 such that GY =B;p, and BY =B,. Moreover, we have
7:(B;) = 1(G) =5 and (G — B, fo) > r,(G) + 1.

Proor. We show in detail the case /. = 4, namely we see what happens
when we blow up A4 € Uy = {X4 # 0} and the double surface S, infinitely
near to A4. We leave the other similar cases 0 < 4 < 3 to the reader.

On U, with coordinates x,y, 2, ¢, we consider the composition B,,, o By,
(cf. the proof of Lemma 1 in Chapter 1). We set & = (211, %11, 211, t11) and
v = (11, 2% Y11, L1211, C11tar, 1).

Since G = ) c,X* defines an m-canonical adjoint to V, there exists a

‘,
nonzero polynomial A'(¢) € K[&] = K[x11, 411,211, t11] such that

fG(U)

11

(1) Gv) — A'(O)—%= € (1) C K<
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On the other hand, we have

o i+2j+k+h
Gv) = Z Cl]khxn ?/711%115117
i+j+k+h<m

where ¢y, = cypm With [ =m — (i +j +k + h). Setting B}(¢) the part of
A’(¢) with the lowest degree in 17, the assumption 74(G) <m, the definition
of GW(X) given in the previous pages and formula (1) above imply

104(0)

(2) GY) = Z Czjkﬂ112]+k+h?f711 ahthy =B'(©)

i+2j+k+h=r4(G) 11

since o4(2) =i+ 2j +k + h. Going back to Uy via x11 =, y11 = y/2%,
Z11 = 2/, t11 = t/x, and then to the original coordinates X, formula (2)
becomes

By(X)ps(X)
for some 7 > 0 and a polynomial B4(X). Since G¥(X) is a homogeneous
polynomial and X, does not factorize ps(X), we see that X has to fac-
torize B4(X), thus we may assume that » = 0 and By is the homogeneous
polynomial of degree m — 6 we were looking for. The final assertions of
the lemma follow from the fact that r4(ps) = 5, pff) = p4 and the definition
of B'(¢).

Proor or ProOPOSITION 2. By Lemma 1 in Chapter 1, a homogeneous
polynomial G of degree m defines a global m-canonical adjoint to V if and
only if 7r;(G) > m for each 0 < A < 4. Therefore there is A such that
r,(F)<m.

If r9(F) <m, Lemma 4 implies that there is a homogeneous polynomial
Bj(X) of degree m — 6 such that F©' = B{p, and 7o(F — B}, fg) > ro(F) + 1.
Repeatmg the same argument for the value of 7y on the polynomial
F — B{ fs, by induction it follows that there exists a homogeneous poly-
nomial By(X) of degree m — 6 such that r((F' — By fs) > m, and we set
Fo=F —Byfs.

If instead ry(F) > m, we set Fy = F and By = 0.

If »(Fy)<m, Lemma 4 again implies that there is a homogeneous
polynomial B} of degree m —6 such that F(()D =Bip1 and
mFo — B fe) > (o) + 1. If instead r(Fo) > m, we set F; =F, and
B; =0.
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We claim that we still have 7(Fy — B} fs) > m. Since Ff)l) = Bjpy is part
of Fy, we have ry(B}p1) > m. Recall that 7o(p1) = 5 and note that py and p;
share monomials X* with oo(2) = 01(2) =5, e.g. XoX?X2X3;. Hence
ro(B}) > m — 5 and ro(B] f¢) > m, which implies our claim.

Repeating the same arguments for the value of 71, by induction it fol-
lows that there is a homogeneous polynomial B; of degree m — 6 such that
mFo— Bifs) >m, 2 =0,1,andwe set F; = Fy — B1fs = F — (By + B1) fs.

If ro(F'1) < m, we follow the same steps. Since pe share with both pg, p; the
monomial XoX?X5X;3 (which has 7,(2) = 5, 1 = 0,1,2), we see that there is a
homogeneous polynomial By of degree m — 6 such that r;(F; — Be f5) > m,
A=0,1,2, and we set Fo = Fy — Bofs = F — (By + By + Bo) f.

If instead r(F1) > m, we set F's = F; and By = 0.

The same arguments apply for 1 = 3 and then for 1 = 4, noting that ps
and py share with py the monomial X2X3X,, with p; the monomial X?X3X3,
and with p, the monomial XoX2X2X,. Therefore, by following the same
steps, we find out homogeneous polyomials Bs,B; such that, setting
A =By+ By + -+ By, we have r,(F — Afs) > m, 0 < /1 < 4, which is the
assertion of Proposition 2 for V.

In case of V', we just replace f; by fi and o4 by the function
a—a| + k — I, hence py, . .., ps become

Po = 30102 X Xo X5 + 13020 X0 X2 X2 + 120301 X5 X5 Xy
+ 20031 Xe X5 Xy + 012210 X0 X7 X5 X3 + 11220 X0 X1 X2 XE,

P1 = a13020X0 X5 X5 + 12210 X0 X2 X2 X3 + o112 X2 X2 X3 X2,

P2 = 20301 X5 X5 Xy + 10203 X0 X3 X + @12210X0 X7 X2 X3
+ 011220 X0 X1 XEX2 + 02112 X 2 X2 X3 X5,

D3 = 13020 X0 X5 X5 + 0031 X5 X5 X4
+ a11220X0 X1 X2 X2 + o112 X2 X2 X3 X3,

Pa = 030100 X5 Xo X5 + 20031 X5 X5 X4+
+ a10203X0X5X5 + 2112 X2 X X3 X%,

and we note that py, ..., ps share the monomial XfXngXf; Do, P1, p2 share
the monomial XoX?X3X; and finally py, ps, ps share the monomial X;X3X,.

In case of V", we replace f; by fi' and o4 by the function o+ |o| + 2 —
thus po, . . . , p4 noW become
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Po = 030012 X X3.X5 + 13020X0 X5 X2 + 00301 X2 X5 X4 + 20031 X5 X5 X4

+ (2201 Xe X2 X3Xy + 119210 X0X2X2X3 + 11220 X0 X1 X5XZ,

P1 = 013020X0X; X5 + A2011 Xg X2 X3 Xy + 12010 X0 X7 X2 X3

+ a12012X0 X7 X3 X2 + ao2112 X X X3 X5,

P2 = a20301 X2 X5 Xy + 12210 X0 X2 X5 X3 + 11220 X0 X1 X2 X2

+ a10221 X0 X5 X5 X1 + 10212 X0 X5 X3 X2 + ao2112X 1 X X3 X5,

P3 = a13020X0 X3 X5 + 20031 X2 X5 Xy + 10023 X0 X2 X5 + 11920 X0 X1 X5X5

+ (10221 X0 X5X5Xy + 02112 X7 X2 X3 X3,

Pa = a30012Xe X3 X5 + 20301 X2 X5 Xy + 12012 X0 X2 X3 X5

+ 010028 X0 X5X5 + 10212 X0 X5 X3 X% + 2112 X2 X2 X3 X2

and we note that py, ..., p4 share the monomial X12X2X3X§; Do, P1, P2 share
the monomial XoX2X2X3; po, ps share XoX3X3 and po, ps share X3X5X7.
This concludes the proof of Proposition 2 in all cases.
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