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On the Rarity of Quasinormal Subgroups

JOHN COSSEY (*) - STEWART STONEHEWER (%)

ABSTRACT - For each prime p and positive integer n, Berger and Gross have defined
a finite p-group G = HX, where H is a core-free quasinormal subgroup of ex-
ponent p™~! and X is a eyelic subgroup of order p”. These groups are universal in
the sense that any other finite p-group, with a similar factorisation into sub-
groups with the same properties, embeds in G. In our search for quasinormal
subgroups of finite p-groups, we have discovered that these groups G have re-
markably few of them. Indeed when p is odd, those lying in H can have exponent
only p, p"~2 or p"~. Those of exponent p are nested and they all lie in each of
those of exponent p"~2 and p"~1.

1. Introduction.

A subgroup @ of a group G, such that QH = HQ for all subgroups H of
G, is said to be quasinormal (sometimes permutable) in G and we write
Q qn G. The concept was introduced by Ore in 1937 (see[6]) and in [7] he
proved that, in finite groups, quasinormal subgroups are always subnormal.
He also proved that quasinormal subgroups are modular. Recall that a
subgroup M of a group G is modular if, for all subgroups X and Y of G,

(X, M)nY = (X,MnY) ifX<Y

and
X, MynY=XnY M) it M<Y.

Indeed a subgroup Q of a finite group G is quasinormal in G if and only if
Q is modular and subnormal in G. Thus the concepts of modularity and

(*) Indirizzo dell’A.: Mathematics Department, School of Mathematical Sciences,
Australian National University, Canberra, ACT 0200.

E-mail: John.Cossey@anu.edu.au

(**) Indirizzo dell’A.: Mathematics Institute, University of Warwick, Coventry
CV4 7TAL, England.

E-mail: S.E.Stonehewer@warwick.ac.uk



82 John Cossey - Stewart Stonehewer

quasinormality coincide in finite p-groups. In 1973 Maier and Schmid
proved in [5] that if G is a finite group and @ gn G with @ core-free, i.e.
Q¢ = 1, then Q lies in the hypercentre of G. It follows fairly easily from this
that the complexities of the embedding of ) in G reduce to the case where G
is a p-group, i.e. where @ is a modular subgroup. Bearing in mind that
modularity is a property invariant under subgroup lattice isomorphisms,
the quasinormal subgroups of a finite p-group G are surely relevant when
the structure of G is approached via its lattice of subgroups.

It was shown in [10] that given @ gn G and Q abelian, then Q" qn G,
provided » is odd or divisible by 4 (even when G is infinite). Apart from
this, very little appears to be known about which subgroups of @ are also
quasinormal in G.

Clearly @ gqn G if and only if QX is a subgroup for each cyclic subgroup
X of G. Thus the situation G = QX is an obvious starting point for in-
vestigations. The case when G here is a finite p-group (for p an odd
prime), and @ is an abelian quasinormal subgroup of G (with X cyclic), is
studied in [2]. It is shown that there are two composition series of G
passing through @, all the members of which are quasinormal in G. The
attempt to remove the hypothesis that @ is abelian has produced the
present work. We have discovered a situation very far removed from the
abelian case. In fact there is a family of finite p-groups G (for each odd
prime p) with @ gn G such that

(i) there are subgroups L <IM <@, with L, M qn G;
(ii) G has no quasinormal subgroup strictly between L and M;
(iii) L has exponent p and M has exponent p™; and
(iv) m and the nilpotency class (even derived length) of M /L can be
greater than any given positive integer.

These groups G were constructed by Berger and Gross in [1] and they
are defined as follows. Let % be a positive integer and p be an odd prime.
We define I',, to be the additive group 7 of integers modulo p"Z. Let x,, be
the permutation of I",, given by

Ty P+ L p" 7+ L+ 1.

Then #, belongs to the symmetric group of degree p”. For 0<m<n,
define
Lpm = xﬁnﬁn, of order p™.

Let X, = (xy), a cyclic group of order p”; and let X,,,, = (%)), the
subgroup of order p™. Define 4, ,, to be the set of elements in the additive



On the Rarity of Quasinormal Subgroups 83

group I, of order p™. So

Ay = {AP"0<S<ALSP™ — 1, pii}for I<m<n

and 4,90 = {0}. Then |4,,,| = p" 1(p — 1) for 1<m <n. The permutation
%y shifts by p"~™ and fixes the set 4,1, i.e. the set of 2p" "1 (p}1)
between 0 and p" — 1, for 0<m <n — 1. Thus x,,,, acting on the set 4,, 11
(of cardinality p™(p — 1)) is the product of p — 1 disjoint cycles x,,,,; of
length p™, 1<i<p — 1, each cycle adding p"~". So

Tomi = (ipn—m—l’ ipn—m—l _i_pn—m, o ipn—m—l + (pm _ l)pn—M).

Now for 0<m <n — 1, define

p—1 p—1
Apm = { iD= 0}.

i=1 i=1
Each permutation in this set is a product of disjoint cycles, each containing
an integer of the form /p"~"~! (p{4) and shifting by a multiple of p"~". In
fact A, s an abelian group isomorphic to the direct product of p — 2
cyclic groups of order p™. (See [1], Lemma 3.1 (1).) Its elements fix every
integer not in 4, y,11.

Berger and Gross define the group

Gy = <xn7An,m|0<m<% — 1>,
and H,, to be the stabiliser of 0 in G,,. So
Gn - Han,

a finite p-group. Also H,, has exponent p"~!. The main result of [1] is:-

THEOREM. The subgroup H, is core-free and quasinormal in Gy,
Moreover, if H* is a core-free quasinormal subgroup of a finite p-group
G* = H*(x*), where (x*) is a cyclic group of order p", then there is a unique
embedding v of G* in G, such that y(x*) = x, and w(H*)<H,.

Our main results concern the quasinormal subgroups of G, that lie in
H,. In the Berger-Gross Theorem above, the prime p is arbitrary. How-
ever, the case p = 2 requires much additional analysis. Accordingly in all
our work here we assume that

the prime p 1s odd.
We shall prove
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THEOREM 1. Let n=2 and let @ be a non-trivial quasinormal sub-
group of Gy, lying in H, of exponent p*. Then one of the following holds:-

A k=1,
() n=dandk=n—2;
(iii) n=3 and k=n— 1.

Moreover for n >4, the quasinormal subgroups of exponent p are
nested and are contained in all those of exponent p” 2 and exponent p" 1.
Thus there is a maximal quasinormal subgroup L of exponent p and a
quasinormal subgroup M of exponent p”~2 such that L <M and

there are no quasinormal subgroups of Gy, in the interval [M /L].

Clearly L <I M. Also M /L has exponent p"~3 and there is no bound to its
derived length as n increases. (See [9].)

In Theorem 2, we find all the quasinormal subgroups of G, lying in H,,
and of exponent p. Theorem 3 gives first some necessary conditions for
subgroups of G, lying in H,, and of exponent p"~?, to be quasinormal in G,;
then necessary and sufficient conditions for certain subgroups of exponent
p" ! to be quasinormal in G,,. Theorem 4 is similar, dealing with subgroups
of exponent p”~2. Finally in Theorem 5 we show that there are no quasi-
normal subgroups of G, (n>5), lying in H, and of exponent p*, for
2<k<mn — 3. Theorem 1 follows from these results.

We use standard notation for familiar concepts, together with that
above introduced by Berger and Gross. Also we switch from multiplicative
to additive notation for computation with modules over groups. In this
connection there is a considerable amount of calculation involved and the
following list should be helpful.

(@)g,,: the cyclic permutation containing «, shifting by f8, of length y. Here o is
a non-negative integer and f and 7y are positive integers such that
py=np".

{b; k|7 =1>1}: a basis (modulo Q;,_1(H,,)) of the elementary abelian group
Qk(Hn)/Qk—l(Hn)-

By, : the subgroup (b; ;|0 =>1>1).

Bj;: the subgroup B, j.

Cy: the centraliser in G,, of the element x,, i.e. Cg, (,), chiefly when
k=2

7,: the rank of the elementary abelian group Q(H,)/Q_1(H,), for
1<k<sn -1

X,,: the cyclic group (x,) of order p”.
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%yt the element 2, 0<m<n.

X,m: the cyclic subgroup (x,,,,) of order p™.

{w;|r1=1>1}: a basis of the elementary abelian group ©(H,), and
w; = bl,i-

W;: the subgroup (w;|j>i>1) (=B;)).

Zyn: a cyclic group of order p™.

Q;,(G): the subgroup of the finite p-group G generated by the elements of
order at most p*.

2. Description of the groups G,.

It is shown in [1], Lemma 3.14, that
(1) Qu(Gy) = (0, Ay el [1>0) 211 (G,
for 1<k<mn —1. Also
(2) Qi(Gr)/Qrk_1(Gy) 1s elementary abelian of rank P p —1).

We see this as follows. By [1], Lemma 3.3, if % >2, then there is an epi-
morphism t,: G, — Gy_1, viz. g — 1,(g9) Where

(3) 7,(¢) : amod p" 17 — bmodp" 1 Z
if
g : amodp”Z — bmodp"7Z,

for all integers a, b and g € G,,. In particular t,, maps H,, onto H,,_; and «,, to
2y_1. The kernel of 7, is elementary abelian, by [1], Lemma 3.3 (9), and it is
precisely 21(G,), by [1], Lemma 3.10. Also |G,,| = p”"", by [1], Corollary
3.15. Thus

Q1(G,) is elementary abelian of rank p"* —p" 2 = p"2(p — 1).
Applying 7, repeatedly for decreasing values of n, we see that
(4) Gu/1(Gy) = Gypy1,
for 2<k<m; and
(5) QG /2k-1(G) = k(G [ 21(G) = Q1(Gy 11,

this last subgroup being elementary abelian of rank p"*~1(p — 1), proving
(2). We shall use (4) and (5) repeatedly throughout our work.
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By [1], Lemma 3.10,
1(Gy) = 21(H )X, 1.
Also, by (1),
Q1(Gy) = (1, 'Ay 12 [i >0,

an elementary abelian group of rank p”~2(p — 1), by (2). By [1], Lemma 3.2 (4),
X1 lies in the centre of G,.
Let
(6) r=p" 2(p —1) — 1 = rank of Q1(H,,),

for n>2. Recall that H, is core-free in G, and so 2:(G,) is an in-
decomposable X,,-module. We find a canonical basis for Q;(G,) as follows.
Define

»1—2_1 1 _ »1—2_1
(7) Wy, = 902 (nn,171ﬂ7¢,1.2)9071(p ) e Q1(Gy).

We introduce the following shorthand notation for cyclic permutations of
integers modulo p"Z which just add a fixed integer:-

(8) @y = @ a+ . a+2B,..., o0+ (= Dp),
where fy = p". Then
Tohaaz = @00 ,@p" D), € Ay

Note that the two cycles here are disjoint, coming from different orbits of
¥p1. Also

wy, = (D, (L4 p" )iy,

where again the two cycles are disjoint. Therefore w,, fixes 0 and so
wrl S Ql(Hn)-
For v, —1>1>0, define

9) w; = [Wiy1,2,]

inductively. Then dropping the suffixes in (8) for the moment and writing
r =1y and & = x,, we have

w1 = DA +p" )7 @7'C+p" D) =M@ A +p DR+ p" D),
wez =17 @PB) A+ p" D@+ p" A EB + p ),
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we =@ G+ 1+ pr2),

w =07 ... (- 1),
wo = (@) ... (p" ).

Any 2 cycles above are either the same or disjoint. Hence they commute.
Also wj, for 1 (=7r)=i>=1, fixes 0 and so belongs to Q;(H,). Clearly
Wy, Wy —1,..., Wy are linearly independent as elements of the module
021(G,), since each contains a cycle that does not occur in its predecessors.
The rank of Q;(G,) is 1 + 1, by (2). Therefore

(10) {w;|ry =1>1} is a basis for Q;(H,)
and
(11) {w;|r1 =i>0} is a basis for Q1(G,).

Clearly Qi(H,) is an indecomposable X,-module. For if not, then the
centraliser of X,, in G, is not cyclic and therefore intersects Q;(H,)
non-trivially. Then the normal closure of this intersection in G,, would
lie in H,, giving a contradiction. Also we must have wy € (x,1) and
x,1 = (1)@). .., (p"1), with cycles of length p, shifting by p"~1. Thus
(12) Wo = Xpy = a8

Note. For any 4, j, using additive module notation, we have
(13) [?/Uz,ﬁ(/'g] = @Uz(%'g —1) = w;(e, — 1)}07 = Wi—pi-

Here w;, for 1 <0, is taken to be 1.

Next, for 2<k<n —1, we find a basis for Qu(G,)/2;_1(G,) as in-
decomposable X,,-module of rank
(14) P p -1 =+ 1,

say (see (2)). Notation will necessarily becomes more complicated. By [1],
Corollary 3.11,

(15) Qk(Gn) = -Qk(Hn)Xn,k~
Thus by analogy with (7), define

n—k—1 ~1 7( n,—k—lil)
b”’ksk - x%?b (nnk,lﬂn,k,Z)xn P
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for 1<k<mn — 1. Then using the notation (8), we have
T kane2 = @ e @p ) i € A
and
(16) b = Wi (14" s e
Since b, , fixes 0 € Iy, it belongs to Q,(H,,). When k = 1, we have
by 1 = wy,.
Under the isomorphism (5), b,  modulo €;,_;(G,) corresponds to
(17) Ople, @ +p" ),

in Q1(G,,_j+1), since in the set Z/p" %17 on which G,_j., acts, p" 1 = 0.
Also (17) is by, 1 in Gy—g11; and under the homomorphism (3), xy, — ®y_1.
Therefore defining

(18) big = [biv1k,%n]
for r, —1>=1>0, we see from (10) and (11) that
{bik|rr =1>1} is a basis for Q;(H,) modulo Q;_;(G»),
even modulo ©;,_;(H,), since (as for k = 1) b;;, € H, if k # 0. Also
(19) {b; x|rr =1>=0} is a basis for Q4(G,) modulo Q;_1(G,,).
Note that b;; = w;, for all 7. Also
(20) 7, maps b;2 in Gy, to b;; (=w;) in Gy,

for all . We shall use the ‘w’ -notation when we wish to emphasise the fact
that we are considering 2;(G,) as X,,- (or G,,-)module.
By [1], Lemma 3.1 (4),

(21) bi ) commutes with x,, ,
forallm —1>k>1and r,>1>0. Let
B, = (big|re=1>1),

1<k<mn — 1. Then By, has exponent p* and

n—1
(22) ( HBk)Xn = Gn-
k=1
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LEMMA 1. Let1<k<n — 1. Then

(A (Br, X)) & Zge X oo X Ly (with 1y, + 1 factors); and

(i) [w;, BXysl =1, for p"* —1>i>1, 2<k<n—1.
Proor. () By (21), [Bkan,k] =1. Let C, = CGn(acn’k). SO, Writing
X = X, (By,X) <Cj and Cy, = (H,, N Cy,)X. Then by (15),
Qe (Cy) = (H, N Cp) Xy i = Dy,

say. Since Dy, is a characteristic subgroup of Cy, it follows that the derived
subgroup Dj, is normalised by X. But D), <H, and so (D;C)G” <H,. There-
fore since H,, is core-free in G, we must have D) =1, i.e.

(23) Dy, is abelian.

However, (B, X, ) <Dy and so (B, X,, ) is abelian of exponent p*. Thus (i)
follows from (19). Observe that

B = (by i) % (br—1) % - x (big),

which is homogeneous of exponent p*.
(ii) Let £>2. By (13),

[w’ia x%k] = wifp”*k = 17

for 1<i<p"* — 1. Therefore w; € D and (ii) follows from (23). O

We have bases (19) for the Q-layers of G, (as X,-modules) and the
homomorphism t,: G,, — G,_1 maps these bases to those of G,,_; (see
(20)). In fact the bases that we have chosen have another very useful
property within G,, itself. We claim first that

(24) bfzz =by,1 (=wy,).
For, from (16) with k = 2, where the two cycles are disjoint,

p—1
(25) oo = [ +p" 2,0, A+ 0" +ip" Py
1=0

The cycles in (25) are disjoint and hence commute. By (11) and (19) (with
k= 2)7
2:(G,) = B1B2 X, 2.

Therefore by Lemma 1 (i), and using the notation of that Lemma,

Dy = (D2 N B1)B2X,,2
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and Dy is abelian, by (23), and is normalised by X,,. Thus again by Lemma1 (i),
Db = BYX,, 1 is elementary abelian

of rank 7 +1 and is an X,-submodule of Q;(G,). Hence, setting
W; = (w;|j=1i>1) for r >j >0, we must have

(26) bfz_z eDiNH, =W,.
Now from the equations following (9) and a simple calculation, we have
(27) brz,l = (1)1;}717p(2);a771_p LA+ pn_g + (p — l)pn_z)pn—y’p.

Observe that the last cycle here is the same as the last cycle in (25). But
from (26),

ro—1
P %
sz~2 - H sz—ial’
=0

for integers ;. Therefore, again by the equations following (9), we must

have
Olpy—1 = Oy = -+ =01 =0

and so )
b?,z’2 € (by,1).

Thus (24) follows by comparing the exponents of (1)1, in (25) and (27).
From (18) we deduce that

W 1o = bz, el = [0 5],
since B," <Dy, which is abelian. Therefore, by (24) and (9),
bfrlz = [byy 1, %] = bpy—11.
Continuing in this way, we see that
(28) by =bix (=wy),
re=12>=1. Also, by (18),
(29) bos = [b12,%,] = 2,2 mod 2,(Gy),
using (12) and (20). Moreover (bgz2,xy2) <Cs and
QG NCo =Wz 1 X1
(by (13)). Therefore
(30) by = 1 (= boy).
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Combining the above results, we can now obtain useful information
about adjacent Q-layers in G,. For 2<k<n — 1, we have from (4)

(31) (G k1) = (G /2 1(Gr)) = 1(Gr)/ Lk 1(G).
Thus we deduce from (28) and (30) that
(32) O} 1 = bix mod Q 1(Hy),
for ;1 =1>1; and
bgk 1 = g = boj mod Q_1(G).

More information about adjacent Q-layers of G, will follow from our
next key result.

LemMA 2. Let 2<k<n — 1 and for 0<i<p"2(p — 1), let
Vi=Wipi_y.
Then By, centralises the series
(33) NH) =W, =Vyrppy>- - - >Vi>Vig>- - - >Vy=1

of length p*~2(p — 1).

Proor. By Lemma 1 (ii), By, centralises V;. We argue by induction on %
increasing and suppose that [V; 1, B;]<V; for some ¢>0. Then by (13)
[Viio, Xosl = Vi X,
and so

[(Vii2, Xo e, Be1< V.

Since [X,, x, Bx] = 1, by Lemma 1 (i), the Three Subgroup Lemma (see for
example [8], Lemma 2.13) implies

[Bkv Vi+27 Xn,k] < Van,l (<] Gn)
Therefore [By, Vii2]<Vi;1X,1, again by (13). Thus
[Bka Vi+2] < Vi+1Xn,1 N Hn = T/Hl

and the Lemma follows. O

COROLLARY 1. For 0<i<n — 2, the factor group Q;,»(G,)/Q:i(G,) is
nilpotent of class p — 1 and hence regular.
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Proor. By (31) we may assume that + = 0. Take k = 2 in Lemma 2.
Then B; centralises the series (33) of length p — 1. Also, modulo X, 1, X, 2
centralises this series (by (13)). Therefore, sinceB2X, 2 is abelian (by
Lemma 1 (i)), the subgroup

92(Gn) = BIBZXn,Q

is nilpotent of class at most p — 1. In fact the class is exactly p — 1, because
of the action of X, » on 2,(G,) = W,X,, ;. The regularity follows, for ex-
ample, from [3], Corollary 12.3.1. O

3. Subgroups of G,.

We can now describe all the quasinormal subgroups of G, lying in H,
and of exponent p.

THEOREM 2. Let n=2. Then a quasinormal subgroup of G, of ex-
ponent p, lying in H,, has the form W;, for some i. Moreover W; qn Gy, if
and only 1if 1<i<p® — 1.

ProOF. Observe from (6) that when n = 2, i<p — 2; and when n = 3,
1<p(p —1) — 1. Therefore in both these cases we are saying that
W; qn G = G,, for all i for which W; is defined.

Let Q qn G with @ of exponent p and lying in H = H,. Then
Q<W, = 2(H). Also QX, is a subgroup and ©;(QX,) = QX, ;. Thus
QX1 is an X,,-submodule of ©2;(G) and so, since indecomposable modules
are uniserial (see [4], Theorem VII, 5.3), QX1 = WX, 1, for some ¢. Hence
Q=W,

We establish first the sufficiency of the condition on 7. Therefore sup-
pose that i <p* — 1 and let g = hy, where h € H and y € X = X,,, and put
K = {g). We show that W;K is a subgroup by considering 3 possibilities.

(i) Suppose that y € X" = Xy.n—2. Then y centralises W;, by (13). Since
W; <\H, it follows that g normalises Q.

(i) Suppose that (y) = X. Then by [1], Lemma 3.12 (ii), 21(K) = X, 1.
Therefore W;K = W;X,,1K is a subgroup, since W;X,,; <G.

(iii) Finally suppose that (y) = XP. Clearly we may assume that n>3.
By Corollary 1, Q,_1(G)/2,,-3(G) is regular with elementary abelian de-
rived subgroup. Therefore

9" = h’y” mod Q, _3(G).
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Also
hP e <bj,n—2|1 <]<p — 2> mod Qn73(H)7

by (32) and (14). Continuing taking p-th powers in this way, we obtain

n—2

(34) " e Wy oXy1.

Moreover |HK : H| = |H(y) : H| = |(y)| = p"~!. Therefore g”" ¢ H.

Now consider W;K. If i<p — 1, then y centralises W; (by (13)) and so
again ¢ normalises W;, i.e. W;K is a subgroup. On the other hand if
p<i(<p® —1), then by (34)

WK = WX, 1K
and this is a subgroup as in (ii).
Conversely, suppose, for a contradiction, that W; gn G where i>p?.

Then by (6), n=4. Let ¢g=biy_12yn—2 and K = (g). We have
[bl,n—laxn,n—l] = ]-: by (21) So

n—2 n—2

(35) gp = bzl),’ﬂfl = bl,l = w1,

using the argument of (iii) above. Consider the subgroup W;K. Since Q;(G)
is elementary abelian, an element of order p in W;K must have the form
wg1, where we W; and ¢; € Q1(K) =Wy (by (85). Thus ;(W,K) =
W; IW;K. Since W; < H, it follows that x,,_2 also normalises W;. But
[w0y2, @0 2] = ®y1 (by (13)), a contradiction. This completes the proof of
Theorem 2. O

For the next theorems we need to be able to identify certain subgroups

of G,. Let n>=2,n —1>k>1 and r, > ¢, > 1. Define
By i = (bjil1<j<ty),

which is isomorphic to Zige X o X L (¢, copies), by Lemma 1 ().
Note that B/jhl = W/ﬁ'

LEMMA 3. Let n>2 7.=0,=p" 1 -1 for 1<k<n—3, r, o>
byo=ly 1 and vy_1 =ly_1=1. Then
(36) L =B 1Bz ... By, n1Xnu-1
1s a subgroup of Gy; and
(37) By 1By2...By, ,n-1=LNH,

18 a subgroup of H,,.
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Proor. Ifn= 2, then L = Wlan.l < Gz. Ifn= 3, then L = ng sz.,ZX%,Z
with 1 =p(p —1) —1>/1=0; and 1 =p —2=¢,>1. By Lemma 1 (i),
By, 2X,,2 is a subgroup. Also W, X,,; <\ Gjs. Since L is the product of these
two subgroups, again L is a subgroup.

Now suppose that the Lemma is true for n — 1, some n >4, and argue
by induction on %. Then from (4) we obtain

LQI (Gn) = WTIL

is a subgroup. Recall that C; = Cg, (x,,2). It follows from (13), (22) and
Lemma 1 (i), that
CQ = Wp"’271372.2 e Brn,l,n—an-

Then
erL NCy = erBZZﬁZ .. -BZ,,,,lA,n—an,n—l NGCe

=Wy21Bpo... By, n1Xun1

is a subgroup. Since ¢, >p" 2 — 1, forming the product of this subgroup
with the normal subgroup W, X,, 1, we obtain L. So L is a subgroup.
Equation (37) follows from Dedekind’s Intersection Lemma. O

The quasinormal subgroups of exponent p”~! that we shall exhibit in
Theorem 3 all have the form L N H,, given by (37); and those of exponent
"2 in Theorem 4 have the form Q, (L N H,,). As a consequence of the
next result,we see that these subgroups are actually normal in H,.

LEMMA 4. Letn=3, v, >0, =7, — p* for 1<k<n —3, v, 2>l 2>0,_1
and r,_1=4,_1=1. Define L as in (36). Then

@) L is a subgroup of G,; and
(i) for1<k<n-—1,

(38) (L) = By 1By, 2 . .. By 1 Xy e = L,
say; and Ly, <Gy, for 1<k<n — 2.

Moreover, if vzl =1, —p for 1<k<n —2and r,_1=4,_1>1, then
(iii) again L is a subgroup of G, and L <G,

Proor. (i) The hypotheses here imply those of Lemma 3. For, with
n=3and 1<k<n — 3,
e — pz _ (pnfkfl —-1) = pnfkfl(p -1 - }02 _ pnfkfl _ pnfkfl(p —2)— ]02
>p*(p —2) — p*=0.
Therefore L is a subgroup of G,,.



On the Rarity of Quasinormal Subgroups 95

(ii) It is easy to check that, for 1<k <n — 2, ¢}, > ¢, 1. We claim that, for
2<k<n -1,

(39) B kX))’ CBy1Brso ... By k-1 Xnk-1.

We do not know yet that the right side of (39) is a subgroup. In order to
prove (39), suppose that k = 2. Then By, ; Xy = Z2 X - - - X Zp (f; +1
copies), by Lemma 1 (i). Thus (39) follows from (28), since ¢; > f2. Therefore
(39) is true for n = 3. We suppose that (39) is true for G,_; (n>=4) and
2<k<n — 2 and argue by induction on %. Then for 3<k<n — 1, we have
from (20)

(40) By o X i CWrBpz ... By -1 Xnj-1-
However, the left side of (40) and all but the first factor on the right belong
to Cs (= Cg, (®y,2)). Thus intersecting (40) with Cs gives
By kX)) CWpia_11B, 2. .. By k-1Xn k-1
CBy1By2.. . By k-1Xnk-1,
since one checks easily that
(41) h=p" -1,

Therefore (39) is true.

Now we can prove (38). Clearly 2, (L) =L = L,_;. We proceed by
induction on k decreasing and suppose that (38) is true for some k<n — 1.
Certainly

(42) Q1(L) DBy By k-1 Xnk-1-

If the inclusion (42) is strict, then there is an element g € By, ;.X,,; with
lg| = p* ! and g¢ Ly_;. But by Lemma 1 (i), g € (B, xX,,)", contradicting
(39). Therefore (42) is an equality. Thus our induction argument goes
through and we have proved (38).

The second part of (i) will follow from

(43) L7072 4 Gn
When n =3, L =Wy By, 2X39 and L1 = W, X351 <\ Gs. Therefore we sup-
pose that n>4 and that (43) is true for G,_; and proceed by induction.

Again from (20)
WﬁBég,Z cee B&,,g,nfzxn,an < Gn§

and intersecting with Cs gives

anfz,lBgz,z “ee B({,L,Z,VL72X’I’L,77/72 4 C2.
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Thus from (41) and W, X,,1 <G, we see that L,_s is normalised by C..
However, [W,, L, 2]<W,, _,2X, 1, by Lemma 2, and so W,, normalises
Ly,_s. Since W,,Co = G, (43) follows.

(iii) It is easy to check that the hypotheses here imply those of parts (i)
and (ii). So L is a subgroup. Now however

[er ) L] < erprn,l <L7

by Lemma 2, and so W,, normalises L. Also when n = 3, by considering L
modulo 2;(G3) and intersecting with Cs, we see that L <{G,. Then the
induction argument used to prove (43) can be applied here to give L <G,
for all n. O

4. Quasinormal subgroups of large exponent.

We shall see that the quasinormal subgroups @ of G, lying in H,, other
than those of Theorem 2, all have exponent p™ for m = n — 2 or n — 1. Also
21(Q) modulo Q;,_;(H,) has ‘large’ rank, for all 1<k<m — 1. We begin
with those of exponent p" L.

THEOREM 3. (i) Let n =3 and Q be a quasinormal subgroup of G, of
exponent p" 1 and lying in H,. Then for 1<k<n —1,

(44) Q(Q) = By, . mod y,_1(H);

and b, =1, —p, for 1<k<n —2 and £, 1=1.
(ii) Again let n =3 and

B

Q=

-1
By i
1

=

with b, =r, — pforl1<k<n —2and{, 1>=1. Then Q is a subgroup of H,, of
exponent p"~1. Moreover Q qn Gy, if and only if

(45) be=r —p + 1,

forl1<k<n -2

Proor. (i) Since QX, is a subgroup, we see that ©;(QX,,) is an X,,-
module contained in £2,(G,,) and therefore has the form W;X,, ;. Also there is
an element kb1 € Q with h € Q,,_»(H),), by Theorem 2. Thus since W,
must normalise @,

[Whv hblmfl] <@N V[/}.l,p7
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by Lemma 2. However

this commutator subgroup does not belong to W, _,_1.

For, otherwise we would have [W,,, b1 ,—1]<W,,_,_1. Then conjugating by
2y, we would obtain (using (18))
(46) [Wﬁ 5 bl,n71b07n71] < Wﬁ 7p71X7’L,1 .
But b9y-1 = @y -1 mod Q,,_2(Gy), using (29) and the homomorphism z,.
Thus -1 would centralise W, X, 1/W,, _,_1X,.1, a contradiction.

Thus (44) is true for k = 1. The rest of (i) follows by induction on % from
Gn/Ql(Gn) = anl-

(i) The hypotheses here imply those of Lemma 4. Thus @ is a subgroup

of H,, of exponent p"~! (of the form (37)).
Now suppose that Q qn G,. Assume for the moment that

(47) bLzr—p+ 1

Then we obtain (45), again by induction on n. So it suffices to prove (47).
Let g = w.,x, and K = (g). Then

(48) Q1K) = (1),
by [1], Lemma 3.12 (2). In fact this follows easily from a simple module

calculation. Thus using additive notation,
9" = (wﬁxn)p =w, 1+ 907:1 + 9552 + -+ x;(p_l))xnvnfl
(49) = Wy, (%;1 - 1)p71xn‘n—l = W, (xn - 1)p71xn,n—l mod er—an,l

= Wy, —pr1%np—1 mod W, X, 1.

(The appearance of w,,_,11 here is the clue to establishing (47).) Similarly

2
gp = 7*1—p2+1x%,n*2 mod WA,.l,pz n,1-

(We can obtain (48) by computing ¢?"" in this way.) Since ¢; > 7, — p? + 1, it
follows from (48) that

(50) Tun—2 € QK.

Also b1 -1 € @, by hypothesis, and so QK contains
[01.0-1,91 = [b12—1, X b1 -1, wr, 1.

However, by Lemma 2,

[bl.nflywﬁ ]xn € W/a’i” = ng SQK
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Hence
(51) QK contains [by -1, %,] = 91,

say. Now g1 € Q% <QX,,,,_1, since QX n—1 <Gy, by Lemma 4 (iii). From
(4) and (12) we have

91 = Ypn-192,

where g € Q,_2(Gy) = Qy_2(H )Xy n—2. Therefore g» =hy, with h e
Q,_2(H,) and y € X,,,,—2. Thus y € QK, by (50). Then

g1 € QXn,nfl =02 € QXn,nfl =he QXn,nfl mHn = Q =02 € QK =
= Lpn—1 € QK,

by (51).
Finally from (49) we now obtain

Wy —p+1 € QKNH, =Q.

Thus ¢; =7 — p + 1, as required.

Conversely, suppose that f=r, —p+1 for 1<k<n —2and ¢, 1>1.
We show that Q gn G,,. Let g = hy, where h € H,,y € X,,, and let K = (g).
It suffices to show that QK is a subgroup. Let y € X, . \ X, 1, where
0<k<n. (Assume that X,, _; =1.) We claim that

(52) gp € QXn,k—l .

Note that QX,,,,—1 <Gy, by Lemma4 (iii). Thus QX,, ; is a subgroup for all 4;
and

(53) Q<H,.

Let h =wbgbs...b,_1, where we W, and b; € B;, 2<i<n —1. Con-
sidering 2:(G,) as G,-module, we have

gp = (/M)bZ cee bnle/)p = W((bz v bnfly)71 - l)pil(bZ o bnfl?/)ﬁ
Thus
(54) gp € WT1—]0+1027

by Lemma 1. We prove (52) by induction on 7.
Suppose n = 3. If k<2, then g? € W,,_2X3;_1, by Corollary 1, and so
gF € QXg,k,l. If k = 3, then by (54)

9’ € W, X2 N W, _p1Co = (W, "W, 1102) X352 <QX32.
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So (52) holds for n = 3. We proceed by induction on %, assuming that n >4
and that (52) holds in G,_;. Thus by induection (using G, /@21(G,) = Gy-1)
and (54), we have

gp € erleQXro,kfl N er —p+IC2 < (WﬁQ n W?“l—p—o—lCZ)Xn,an,kfl
= 71*p+1(W’V’1Q N CZ)Xn,an,kfl < Wﬁ —p+1 (Wpﬂfz—lQ)Xn,an?kfla

by the argument used in Lemma 3. Therefore g* € QX 1X,,x—1. So (562)
followsifk>2. Butifk<1,theng” € H,andsog” € Q (= QX,, s—1). Thus we
have established (52).

Now from (52) we obtain Q(g”) <QX,, ;—:. But

Q") = [QII(g") : QN (g")] = QP = 1QX s -
Therefore
(55) Q(9") = Xy -1,
a subgroup. By Lemma 4
Q1 QX n-1) = 2 1(@) Xy 1 =N,

say, and N <G,. If k<n —1, then by Lemma 1 (i), X, ; centralises @
modulo N and therefore g normalises @ (by (53)). Otherwise k = n and
then N = QX,, -1 = Q(¢”), by (65); i.e. QK is a subgroup.

This completes the proof of Theorem 3. d

Next we deal with the quasinormal subgroups of exponent p”~2. The
argument follows that of Theorem 3, though there added complications.
Establishing the necessity of our conditions for quasinormality involves
considering the product QK for K = (w,, b1 1%, 2) rather than (w, x,);
and the prime 3 causes problems.

THEOREM 4. (i) Let n=4 and Q qn G,, Q<H, and Q have exponent
p" 2 Then for 1<k<n — 2,

(56) Q) = By, mod _1(H,);

and U, =y, — p? for 1<k<n —3, and {,_3>1.
(ii) Again let n =4 and

n—2
Q=]]Bus
k=1

with 6, =7, — p? for L<k<n — 3 and l,_»>1. Then Q is a subgroup of H,
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of exponent p"~2. Moreover Q qn G, if and only if
bezry —p(p —1)

for1<k<n—3and l,_s=>p —2.

Proor. (i) We argue exactly as in Theorem 3 (i) to obtain the form (56).
Then for the restrictions on /¢, we use the fact that there is an element
hblﬁn,z S Q, with h € Q,,_3(H,). Thus [Wﬁ,hblﬁn,z] lies in Q N Wﬁ,pz (by
Lemma 2), but not in W, _»_;.

(ii) With L defined as in Lemma 4, we have

Q = ‘Qn—Z(L) N Hn-

Hence @ is a subgroup.
Now suppose that Q gn G,. We shall show that

(57) bzr —plp-1)
and
(58) ly=p — 2 when n = 4.

Then the necessity of our conditions will follow by induction on %, as in
Theorem 3. We shall prove that

(59) W2 € Q,
i.e. /1 >p" 2. Assume this for the moment and let
g =wrb1n12n2, K =(g).
Then since QK is a subgroup, (59) implies
[w2,9] € QK.
Therefore substituting for g and expanding (using (13)), we get
[wyn2,b10-1)001 € QK.

Thus x,1 € QK. Considering actions on ©;(G,) and using Lemma 2, we

obtain

&

D _— D
9 = Wbl,n—lxn,h

where
(60) w € Wi—pp-1) \ Wi —pp-1)-1-

The appearance of the suffix #; — p(p — 1) in (60) is the clue to establishing
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(57). Recall that by 41 and x, 2 commute, by Lemma 1 (i). Also ¢ is not di-
visible by p, since g” ¢ H,.. By (39), 0} ,,_; € Q. Therefore wax’ ; € QK and so
w € QK. But if (57) is false, then w ¢ Q. Thus (w) x (2,,.1) is disjoint from @
and embeds in the chain [QK /K], a contradiction. Then (57) will follow from
(59).

We have
(61) =1 — P,
from (i), i.e.
(62) O=p"Ep-2)-1.

Thus if p>5, then ¢, >p" 2 and we have (59). Therefore we may suppose
that p = 3.
Let g = w,,x, and K = (g). Then QK is a subgroup and we have

n—2 n—2 -1

(63) g = w1
€EQRKNW,, 21 Xz \ W, _p2Xp2).
Also b1 2 € @ (by definition) and thus QK contains
[b1.2, Wy, 2n] = [b12, 2, 1[b1.2, Wy, I
Here the first factor on the right has the form wx,, 2, where

w 6 an—271 <Q,

by (29), the fact that Cs contains b; 2 and x,,, and (62); and by Lemma 2 the
second factor lies in W), _ 2 X1 <QK, by (61) and the fact that

(64) Q(K) = X1
(see [1], Lemma 3.12 (2)). Therefore x, 2 € QK and hence, by (63),
W?‘l —pr2+1 < QK nNH, = Q

(again using (64)). Thus ¢, =7 — p" 2 +1 = p"~2(p — 2) and (59) follows.
It remains to prove (58). Here n = 4. Let g = b,_2 324 2. Then

9" = wby_22%41

where w € W._; (using (28) and the facts that b, 23 and x4 2 commute and
g € Cs). Thus

(65) 9" =wp 2.
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Let K = (g) and consider the subgroup QK. If uv has order p with u € Q
and v € K, then assuming (58) is false, we must have

v e (g").

But by 67), ty=r —plp—1) =pp — 2-1> p — 2 and hence by (65),
v € Q. Therefore uv € 1(Q) = W, = 21(QK) < QK and so g normalises
Wi,. Thus 242 normalises W,. However, W,. <W,, (by (59)), contradicting
[W,2,%42] = X41. This proves (58) and we have established the necessary
conditions in (ii).

Conversely suppose that

bozr,—pp —1), for 1<k<n —3, and ¢, 2=>p — 2.
Let g =hy, h € H,, y € X,,, and K = (g). We show that
(66) QK is a subgroup.
By Lemma 4 (ii),
(67) QX2 <Gy,

and so @ <\H,. Thus we may suppose that y¢X,;. Suppose that
Y € Xop \ Xuj-1, 2<k<n — 1. It follows from (67) that QX,, ;_; is a sub-
group. Then by analogy with (52) in the proof of Theorem 3 (ii), we have

(68) gp € QXn,k—l'

For, the argument used to prove (54) gives ¢’ € W,,_,;-1)Ce. Then (68)
follows by induction on 7, as in Theorem 3 (ii). Analogous to (55) we obtain

Q<gp> = QXn,kfl
and in the same way we deduce that QK is a subgroup.

Einally suppose that K = X,,. Then ¢ € H,X,,,_1 and, by the above,
Q(9™) = QX,.,_2 < G,.. Thus (66) follows and Q gn G,,. O

Our final result is surely the most striking, showing that a finite p-
group can be remarkably devoid of quasinormal subgroups throughout
most of its structure.

THEOREM 5. Let n=5. Then there are no quasinormal subgroups of
G, lying in H, and of exponent p¥, for 2<k<mn — 3.

Proor. Using G,/2:(G,) = G,-1 and induction, it suffices to prove
that there are no quasinormal subgroups of exponent p?. Thus suppose that



On the Rarity of Quasinormal Subgroups 103

Q qn G, Q<H, and Q has exponent p?. As we saw in Theorems 3 (i) and 4
(i), we must have

(@) =W, and Q = By,» mod W,

for some i, ¢5>1. Since w,, must normalise @ and there is an element
bisw € @, with w € W,,, we also have [w,,, by sw] € Q. Therefore w,, _,.» €
21(Q), by Lemma 2 and the argument used to establish (46). Thus

(69) izr —p" P =p"Fp-2)- 1L
When p =5, then it follows that
(70) i>p" 2

Assume for the moment that (70) is true even for p = 3. Let g = b1 —122
(= ®p.2b1.0-1, by Lemma 1 (i)) and put K = (g). Consider the subgroup QK.
By (70)

Also g must normalise Q;(QK) and hence
[wpn-2,9] = [Wyn-2, 01011001 € L1(QK).
Then since [w)2, b1 ,-1] € £1(Q), we have
xn1 € 21(QK).
Thus x,,1 = uv, with u € @, v € K, and clearly we must have

_ p(+ip) _ pp+ip®
v = gp< p) — bl’nflxn,la

for some integer 1. Therefore

— o PR
Lp1 = ubl,n—l L1,

and so bﬁ’?’f =wu~! € Q of exponent p%. Since bﬂi”f has order p" 2 (=p?),
we have a contradiction. Thus @ cannot exist.
It remains to prove that (70) holds for p = 3. Indeed we shall prove that

(71) izr —p" -1 -p" -1,
for all odd p. Then

izpt Tl 2pt 1= R — 2 1 1/p? — 1/p"2) > p 2
for all odd p and so (70) is true.
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In order to prove (71), we take g = w;, bi ixnvg, where p does not divide s.
Observe that b;4 and x,3 commute, by Lemma 1 (i). Also w,, and x,3

commute modulo W,, _,.-sX;, 1. Thus working in H,, modulo W,, _.s, we see

(from Lemma 2) that
gp = w/bfﬁxn,%

where w' € W), for j = r1 — p"~4(p — 1), but w’¢ W;_y, again by the argu-
ment used to prove (46). Similarly

gpz = w”bi{zzmm,
where w” € Wy, for k = j — p"3(p — 1), but w” ¢ W;._;. Here we are using
b;i) = bié mod 2:(Cs),
by (32) etc. Since, in the same way, we have
,pz -1
biy = bz mod 2(Cy),
we may write
gpz _ 1/{)///171—’%%”,1

forw"” € Wi, \ Wi_1. Recalling that there is an element by sw € Q (w € W,,)
and putting K = (g), it follows that

(72) w"wit, 1 = g” byow € Q(QK).

Also we can choose s such that

(73) w”w ¢ Wy_1.

However, p"2(p — 1)=2p" 2 = i1>7; — p" 2 (by (69))
>p" 2 _1>p i Wyns € Q.

Thus [w),n-s,9] = [wyns, bi i]xm implies x,1 € 21(QK). Now by (28) and
Corollary 1,

9" =bh =w' € Q@)
and so 21(QK) = 21(Q) x X,, 1. Then from (72) we have
w”’w S Ql(QK) N Hn = Ql(Q)

Hence 7>k by (73), i.e. we have proved (71). This completes the proof of
Theorem 5. O
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Concluding remarks. When we embarked on this work, we were in-
terested to know if every quasinormal subgroup of a finite p-group was a
term of a composition series consisting of quasinormal subgroups. Now it is
difficult to imagine how that supposition could have been further from the
truth. So we finish with the following question. Is there a non-trivial
subgroup-theoretic property X (see [8], page 9) of finite p-groups such that

(i) X is invariant under subgroup lattice isomorphisms, and

(ii) every chain of X-subgroups of a finite p-group can be refined to a
composition series of X-subgroups?
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