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Finite Groups in which z-quasinormality
is a Transitive Relation

VLADIMIR O. LUKYANENKO - ALEXANDER N. SKIBA

ABSTRACT - Let H be a subgroup of a finite group G. We say that H is t-quasinormal
in G if HP = PH for all Sylow p-subgroups P of G such that (|H|,p) =1 and
(|H|, |P%|) # 1. In this article, finite groups in which t-quasinormality is a
transitive relation are described.

1. Introduction.

Throughout this paper, all groups are finite.

An interesting question in finite group theory is to determine the in-
fluence of the embedding properties of members of some distinguished
families of subgroups on the structure of the group. The present paper
adds some results to this line of research.

Let H be a subgroup of a group G. Then n(G) denotes the set of all
primes dividing |G|; H® is the normal closure of H in G, that is, the in-
tersection of all normal subgroups of G containing H; H; is the normal core
of H in G, that is, the product of all normal subgroups of G contained in H.
Recall that a subgroup H of a group G is said to be S-permutable, S-qua-
sinormal, or n(G)-permutable in G (Kegel [22]) if HP = PH for all Sylow
subgroups P of G; the subgroup H is said to be S-semipermutable, S-
semiquasinormal, or S-seminormal in G if HP = PH for all Sylow p-sub-
groups P of G with (|H|,p) = 1.

We shall use the notion of 7-quasinormal embedding introduced in
[28]: a subgroup H of a group G is said to be t-quasinormal in G if
HP = PH for all Sylow p-subgroups P of G such that (|H|,p) =1 and
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(|H|,|P%)) #1. Tt is clear that every S-semiquasinormal subgroup is
7-quasinormal. The following example shows that in general the set
of 7-quasinormal subgroups is wider than the set of all S-semi-
quasinormal subgroups and, of course, than the set of all S-quasinormal
subgroups.

ExampPLE 1. Let p<r<gq be primes, R any cyclic r-group and @ a
faithfulirreducible B-module over I',. Let P be a faithful irreducible (§ >\R)—
module over [, and G = P AN(QAR). Then M = QR is a maximal subgroup
of G and Mg = 1. Suppose that R is S-semiquasinormal in G. Then
RQ® = Q"R for any element x € G. Since » < q and R is cyclic, R < Ng(Q®)
for all x € G by [19, Chapter IV, Satz 2.8]. Then M = QR < Nq(Q)<G.
Since M is maximal in G, M = Ng(Q). Then M* = (Ng(Q))" = Ng(Q®),
and so R < M* for all x € G. Hence R < Mg = 1, a contradiction. Thus R
is not S-semiquasinormal in G. Finally, note that Q% < PQ. Hence R is
7-quasinormal in G.

A group G is called a PST-group if S-quasinormality is a transitive
relation in G, that is, if H is an S-quasinormal subgroup of K and K is an S-
quasinormal subgroup of G, then H is S-quasinormal in G. Soluble PST-
groups have been studied in [1], [6], [7] and [11]. By a result of Kegel [22],
an S-quasinormal subgroup of a group G is subnormal. This is not the case
for S-semiquasinormality and z-quasinormality since a Sylow 2-subgroup
of S3, the symmetric group of degree 3, is S-semiquasinormal and z-qua-
sinormal but not subnormal.

Applying Kegel’s result (mentioned above), PST-groups are exactly
those groups in which every subnormal subgroup is S-quasinormal. This
class contains the class of all groups in which normality is transitive (7-
groups) and the class of all groups in which quasinormality is transitive
(PT-groups). The last two classes have been widely studied in [10], [12],
[17], [30] and [39]. The structure of soluble PST-groups was obtained by
Agrawal in [1]. A group G is called an SBT-group (see [24]) if S-semi-
quasinormality is a transitive relation in G. The structure of soluble SBT-
groups was obtained in [24]. Note also that SBT-groups form a proper
subclass of the class of PST-groups.

We say that a group G is a TQT-group if t-quasinormality is a transitive
relation in G. Our purpose here is to establish a structure of soluble TQT-
groups.

THEOREM 1.1.  Let P be a Sylow p-subgroup of a group G, Q a Sylow q-
subgroup of G such that p # q. The following statements are equivalent:
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(1) G s a soluble TQT-group.

(2) G is a supersoluble group which has an abelian normal Hall sub-
group of odd order D such that G/D is nilpotent, every subgroup of D is
normal in G, and every subgroup of G is t-quasinormal in G. Moreover, if
p € n(D) and q & n(D), then the order of [P, Q] divides r, where r € n(D),
and if |[P,Q] =, then r > p, r > q and the Sylow r-subgroup of G is
cyclic.

The following example indicates that SBT-groups form a proper sub-
class of the class of TQT-groups.

EXAMPLE 2. Let G=(x,y,z|al=y>=22=[y,z]=1, a¥ =a>, &* = &~ 1).
Notethat (y*) is a Sylow5-subgroup of G and (z) is a Sylow 2-subgroup of G, but
(Y")(z) # (2)(y").By[24, Theorem 3.1],if Gisasoluble SBT-group, then every
subgroup of G is S-semiquasinormal in G. Thus G isnot an SBT-group. Finally,
note that every subgroup of G is t-quasinormal in G. Hence G is a TQT-group.

The proof of Theorem 1.1 relies on the following result.

THEOREM 1.2. Let G be a group. The following statements are
equivalent:

(1) Every subgroup of F*(G) is t-quasinormal in G.

2) G s a supersoluble group and every subgroup of F(G) is t-quasi-
normal in G.

() G =DAM is a supersoluble group, where M is a nilpotent sub-
group and D is a Hall abelian subgroup of G of odd order such that every
subgroup of D is normal in G.

4) G is a soluble group and every subnormal subgroup of G is S-
quasinormal in G.

In this theorem F*(G) denotes the generalized Fitting subgroup of G,
that is, the product of all normal quasinilpotent subgroups of G; see [21,
Chapter X].

Note that, in view of Theorem 1.2, the class of soluble groups in which
every subnormal subgroup is S-quasinormal (PST-groups) coincides with
the class of groups in which every subgroup of the generalized Fitting
subgroup is r-quasinormal.

We shall prove Theorem 1.2 in Section 4. But before, in Section 3, we
prove the following fact which is one of the main steps in the proof of
Theorem 1.2.
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THEOREM 1.3. Let E be a normal subgroup of a group G. Suppose that
for every non-cyclic Sylow p-subgroup P of F*(E) there is a number p* such
that 1<p* < |P| and every subgroup of P with ovder p* and every cyclic
subgroup of P with order 4 (if p* =2 and P is non-abelian) is t-quasi-
normal in G. Then each G-chief factor below E is cyclic.

Note that Theorem 1.3 is independently interesting, as it not only
generalizes the main results of many papers, but also considerably sim-
plifies the proofs of some of them (see Section 5).

All unexplained notations and terminologies are standard. The reader
is referred to [8] and [15] if necessary.

2. Preliminaries.
We will need to know a few facts about z-quasinormal subgroups.

LeEmMA 2.1 [28, Lemma 2.2]. Let G be a group, H< K < Gand L <G.

1) If H is T-quasinormal in G, then H is t-quasinormal in K.

(2) Suppose that H is normal in G and n(K/H) = n(K). If K is t-qua-
sinormal in G, then K/H is t-quasinormal in G/H.

(3) Suppose that H is normal in G. Then EH/H is t-quasinormal in
G/H for every t-quasinormal subgroup E in G satisfying (|H|, |E|) = 1.

@) If H s t-quasinormal tn G and H < 0,(G), then H ts S-quasi-
normal in G.

(5) Suppose that H and L are t-quasinormal in G. If HL = LH and
n(H N L) = n(H) = n(L), then H N L s t-quasinormal in G.

LEmMMA 2.2 [28, Lemma 2.5]. Let N be an elementary abelian normal p-
subgroup of a group G for some prime p. Assume that there is a number p*
such that 1<p* <|N| and every subgroup of N with order p* is t-quasi-
normal in G. Then some maximal subgroup of N is normal in G.

LEmMa 2.3 [27, Theorem 1.4]. Let P be a Sylow p-subgroup of a group
G, where p is the smallest prime dividing |G|. Suppose that there is a
number p* such that 1 < p* <|P| and every subgroup of P with order p* and
every cyclic subgroup of Pwith order 4 (if p* = 2 and P is non-abelian) is t-
quasinormal in G. Then G is p-nilpotent.

LeEmMA 2.4 [27, Lemmas 2.8 and 2.9]. Let V be a t-quasinormal sub-
group of order 4 of a group G.
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(1) If V= A x B, where |A| = |B| =2 and A is t-quasinormal in G,
then B is T-quasinormal in G.
@) If V = (x) is cyclic, then (x?) is T-quasinormal in G.

Recall that a formation I is a class of groups which is closed under
taking homomorphic images and such that each group G has the smallest
normal subgroup (denoted by G%) whose quotient is in . A formation & is
said to be saturated if G €  for any group G with G/®(G) € §. We use I
to denote the class of all supersoluble groups; Z;;(G) denotes the largest
normal subgroup of a group G whose G-chief factors are cyclic; see [15,
p. 389]. The symbol 2A(p — 1) denotes the formation of all abelian groups of
exponent dividing p — 1; see [35].

LEMMA 2.5 [36, Lemma 2.2]. Let E be a normal p-subgroup of a group G.
IfE < Zy(G), then (G/Ca(E)" P < 0,(G/Cq(E)).

LEmMA 2.6 [4, Lemma 4]. Let P be a p-subgroup of a group G, where
p > 2. Suppose that all subgroups of P of order p are S-quasinormal in G. If
a is a p’-element of Ng(P) \ Cq(P), then a induces in P a fixed-point free
automorphism.

LeEmMA 2.7 [36, Lemma 2.8].  Let A, B, E be normal subgroups of a group
G. Suppose that G = AB. If E < Zy(A)NZy(B) and (|G : A|,|G:B|) =1,
then E < Zy(G).

LeEMMA 2.8 [36, Theorem C]. Let E be a normal subgroup of a group G.
If every G-chief factor below F*(E) is cyclic, then every G-chief factor below
E is cyclic.

3. Proof of Theorem 1.3.

First we prove that if W is a normal subgroup of G and for every non-
cyclic Sylow p-subgroup P of W there is a number p* such that 1 <p* < |P|
and every subgroup of P with order p* and every cyclic subgroup of P with
order 4 (if p* = 2 and P is non-abelian) is 7-quasinormal in G, then each G-
chief factor below W is cyclic. Suppose that this is false and consider a
counterexample (G, W) for which |G||W| is minimal. Let P be a Sylow p-
subgroup of W, where p is the smallest prime dividing |W|, C = Cs(P). If P
is not a non-abelian 2-group we use Q to denote the subgroup Q;(P).
Otherwise, Q = Qo(P).
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(1) IfY is a Hall subgroup of W, the hypothesis is still true for (Y, Y). If,
m addition, Y is normal in G, then the hypothesis also holds for
(G/Y,W/Y) and for (G,Y).

Let Y be a Hall subgroup of W and Y, a non-cyclic Sylow g-subgroup of
Y. Then Y, is a non-cyclic Sylow g-subgroup of W. By hypothesis and
Lemma 2.1(1), there is a number ¢* such that 1<¢* <|Y,| and every sub-
group of Y, with order ¢"* and every cyclic subgroup of Y, with order 4 (if
¢* = 2 and Y, is non-abelian) is t-quasinormal in Y. Thus the hypothesis is
still true for (Y, Y). Now let Y be a Hall subgroup of W which is normal in
G, QY /Y a non-cyclic Sylow g-subgroup of W/Y, where ¢ divides |[W/Y].
Then @ is a non-cyclic Sylow g-subgroup of W, so by hypothesis there is a
number ¢* such that 1 < ¢* <|Q| and every subgroup of @ with order ¢* and
every cyclic subgroup of @ with order 4 (if ¢* = 2 and @ is non-abelian) is -
quasinormal in G. If H* /Y is a subgroup of QY /Y with order |H*/Y| = ¢,
then H* = Y NH, where H is a Sylow g-subgroup of H* and H < Q.
Clearly, |H|=q*, hence H*/Y = HY/Y is t-quasinormal in G/Y by
Lemma 2.1(3). If ¢* = 2, H* /Y is a eyclic subgroup with order 4 and QY /Y
is non-abelian, then ) is non-abelian and similarly H*/Y is t-quasinormal
in G/Y. Thus the hypothesis is still holds for (G/Y, W/Y). Hence the hy-
pothesis is true for (G,Y).

2) If Y is a non-identity normal Hall subgroup of W, then Y = W.

Since Y is a characteristic subgroup of W, it is normal in G and by (1)
the hypothesis is still true for (G/Y,W/Y) and for (G,Y). If Y # W, the
minimal choice of (G, W) implies that W/Y < Zy(G/Y) and Y < Zy(G).
Hence W < Zy1(G), a contradiction.

3) If W #£ P, then W 1is not p-nilpotent.

Indeed, if W is p-nilpotent, then by (2), p does not divide |W|, contrary
to the choice of p.

(4) P s not cyclic.

Since p is the smallest prime dividing |W]|, it follows from (3) and
[19, Chapter IV, Satz 2.8].

(5) W = P is not a minimal normal subgroup of G.

Suppose that W # P. In view of (4), P is not cyclic. Then by hypothesis
and Lemma 2.1(1), there is a number p* such that 1<p* <|P| and every
subgroup of P with order p* and every cyclic subgroup of P with order 4 (if
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p* = 2 and P is non-abelian) is r-quasinormal in W. Then Lemma 2.3 implies
that W is p-nilpotent, which contradicts (3). Therefore W = P. Suppose that
P is a minimal normal subgroup of G. Then by Lemma 2.2 some maximal
subgroup of P is normal in G, which contradicts the minimality of P.

(6) |N| < p* for any minimal normal subgroup N of G contained in P.

Assume that p* <|N|. Then every subgroup of N with order p* is t-
quasinormal in G, so by Lemma 2.2 some maximal subgroup of N is normal
in G, a contradiction. Thus we have (6).

(M) If P/N < Zy(G/N) for every minimal normal subgroup N of G
contained in P, then &(P) # 1.

Suppose that @(P) = 1. Then P is an elementary abelian p-group. Let B
be any minimal normal subgroup of G contained in P such that R # N.
Then P/R < Zy(G/R). Thus from the G-isomorphism N ~ NR/R we de-
duce that N < Z;1(G), hence P < Zy;(G). This contradiction shows that N is
the only minimal normal subgroup of G contained in P. Now let N1 be any
maximal subgroup of N. In view of (6), |N1| <p*. We claim that N; is t-
quasinormal in G. Let S be a complement of N in P, B a subgroup of S such
that |N1||B| = p*. Then by hypothesis N1B is t-quasinormal in G. Hence
NiBNN =N;(BNN)=N; is t-quasinormal in G by Lemma 2.1(5).
Therefore every maximal subgroup of N is r-quasinormal in G. Hence
some maximal subgroup of N is normal in G by Lemma 2.2, a contradiction.
Therefore @(P) # 1.

&) Ce(P/D(P))/C is a p-group.

Suppose that this is false. Let a & C be a p’-element of Cg(P/P(P))
and Gy = P)\(G/C). Then aC is a non-identity p’-element of G/C and
aC € Cg,(P/®(P)), which contradicts [18, Chapter 5, Theorem 1.4]. Thus
Cq(P/d(P))/C is a p-group.

9) P/D(P) £ Zy(G/D(P)).

Suppose that P/®(P) < Zy(G/D(P)). Then Lemma 2.5 implies that
(G/Ce(P/®(P))" P~V is a p-group. Hence, in view of (8), (G/C)"?~V is a
p-group. Let H/K be any chief factor of G below &(P). Then
G/Ce(H/K) € A(p — 1), since O,(G/Cq(H/K)) =1 by [34, Chapter 1,
Lemma 3.9]. Hence |H/K| = p in view of [34, Chapter 1, Lemma 4.1].
Thus W = P < Z;)(G). This contradiction completes the proof of (9).

(10) |P| > pF+.
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Suppose that |P| = p**1. Then by hypothesis every maximal subgroup
of P is t-quasinormal in G. By (6) and Lemma 2.1(2) the hypothesis is still
true for (G/N, P/N) for any minimal normal subgroup N of G contained in
P,s0o P/N < Zy(G/N) by the choice of (G, W) = (G, P), whence, in view of
(7), ®(P) # 1. Then P/d(P) < Zy(G/P(P)), which contradicts (9).

11 k> 1.
Suppose that k£ = 1.

(@) G has a normal subgroup 1 # R < P such that P/R is a non-cyclic
chief factor of G, B < Zy(G) and V < R for any normal subgroup V # P of
G contained in P.

Let P/R be a chief factor of G. Then R # 1 by (5). Moreover, the hy-
pothesis holds for (G, R), so R < Z;;(G) and P/R is not cyclic by the choice
of (@G, P) = (G,W). Now let V be any normal subgroup of G with V <P.
Then V <Zy(G). If VLR, then from the G-isomorphism P/R =
VR/R ~V/VNR we deduce that P < Z;;(G), contrary to the choice of
(G,P). Hence V < R.

(b) Ce(R)/C is a p-group.

Let Gy = P)\(G/C). If a is a p’-element of C(Q2) such that a ¢ C, then
aC is a non-identity p'-element of G/C and aC € Cg,(£2), which contradicts
[16, Theorem 2.4]. Thus Cg(Q)/C is a p-group.

() Q £ Zy(G).

Suppose that Q < Z;;(G). Then by Lemma 2.5, (G/CG(.Q))QI(Z’*D is a
p-group. Hence, in view of (b), (G/C)Ql(p_l) is a p-group. Therefore
G/Ce(P/R) € A(p — 1), which implies that |P/R| = p. Hence we have (c).

d =P
Indeed, if Q <P, then, in view of (a), 2 < Z(G), which contradicts (c).
(e) P < OP(G).

Suppose that P Z OP(G). Then from the G-isomorphism POP(G)/OP(G) ~
P/(OP(G) N P) we deduce that G has a cyclic chief factor P/V, where
OP(G) N P <V, which contradicts (a).

(f) There is a prime q # p such that q divides |G : C].

Otherwise, any G,-chief factor of P, where G, is a Sylow p-subgroup of
G, is a chief factor of G, which implies W = P < Z(G), a contradiction.
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Final contradiction for (11).

In view of (d) we have P/R = (ViR/R)(V2R/R) ... (ViR /R), where V; is
a cyeclic group of order p or order 4 and V;R/R is a cyclic group of order p.
By hypothesis, V; is t-quasinormal in G. In view of Lemma 2.1(4), V; is
S-quasinormal in G, so if @ is a Sylow p’-subgroup of G, then V;Q = QV.
Hence PNV,Q = V,(PN Q) =V;2V,;Q. Suppose that p = 2. Then in view
of [19, Chapter IV, Satz 2.8], V;Q is nilpotent, so @ < Cg(V;). Therefore
OP(G) < Cg(P/R), whence Cg(P/R)= G, which contradicts (a). Thus
p > 2. Notice also that OP(G) # G. Indeed, if OP(G) = G, then, in view of
[31, Lemma A], V;R/R is normal in G/R, so V;R/R = P/R is cyclic,
which contradicts (a). Thus OP(G) # G. Now we claim that there is a
prime ¢ # p such that O%(G) # G. Indeed, assume that 0%(G) = G for all
primes q # p. Then for every G-chief factor H/K of order p we have
C¢(H/K) = G. In particular, for a minimal normal subgroup L of G
contained in R we have L < Z(G). Hence Cp(a) # 1 for any p’-element
a € G\ C. Since every subgroup V; is S-quasinormal in G, in view of
Lemma 2.6, OP(G) < C, which contradicts (f). Therefore there is a prime
q # p such that P < 0%(G) # G. Since P < OP(G) # G by (e), we have
that P < Z;;(G) by Lemma 2.7, a contradiction.

Hence k > 1.
(12) If P is a non-abelian 2-group, then p* > 4.

Since P is a non-abelian 2-group, it has a cyclic subgroup H = (x) with
|H| = 4. Suppose that p* = 4. Then by hypothesis H is t-quasinormal in G.
Therefore (x?) is r-quasinormal in G by Lemma 2.4(2). Now note that if G
has a subgroup V = A x B of order 4 such that |A| =2 and A is t-quasi-
normal in G, then V and B are t-quasinormal in G (we use here some ar-
guments of the proof of Theorem 1 in [32]). Indeed, V is t-quasinormal in G
by hypothesis. Hence B is t-quasinormal in G by Lemma 2.4(1). Therefore
some subgroup Z of Z(P) with |Z| =2 is r-quasinormal in G, so every
subgroup of P with order 2 is t-quasinormal in G by Lemma 2.4(1), which
contradicts (11).

(13) If N 1s an abelian minimal normal subgroup of G contained in P,
then the hypothesis s still holds for (G/N,P/N).

In view of (10), |P| > p**L. If either p > 2 and |[N|<p” or p =2 and
IN|<pF1, it is clear. So let either p >2 and |N| =p* or p =2 and
IN| € {p*,p*1}. Inview of (11), k > 1. Then by hypothesis every subgroup
of P with order p* is r-quasinormal in G. Suppose that |N| = p*. Then N is
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non-cyclic and hence every subgroup of G containing N is non-cyclic. Let
N < K <P, where |K: N| =p. Since K is non-cyclic, it has a maximal
subgroup L # N. Then K = LN is t-quasinormal in G, as it is the product
of two 7-quasinormal in G p-subgroups. Thus if either p > 2 or P/N is
abelian, the hypothesis is true for (G/N,P/N) by Lemma 2.1(2). Next
suppose that P/N is a non-abelian 2-group. Then P is non-abelian, so
pF >4by (12). Let N < K < V,where |[V:N|=4and |V : K| =2. Let K;
be a maximal subgroup of V such that V = K; K. Suppose that Kj is cyclic.
Then N ¢ Ki, so V = K;N, which implies |[N| = 4. But then p* = 4, which
contradicts (12). Hence K; is non-cyclic and as above one can show that K;
is 7-quasinormal in G. Therefore every cyclic subgroup of P/N with order 2
and order 4 is 7-quasinormal in G/N by Lemma 2.1(2). Finally, suppose
that |N| = p¥~1. If |N| > 2, then as above one can show that every sub-
group of P/N with order 2 and order 4 (if P/N is non-abelian) is t-quasi-
normal in G/N. Now, suppose that |[N| = 2 and P/N is non-abelian. Then P
is non-abelian and p’“ = 4, which contradicts (12). Hence we have (13).

Final contradiction.

In view of (7) and (13), ®(P) # 1, whence P/®(P) < Zy(G/D(P)) by (13),
which contradicts (9). Therefore each G-chief factor below W is cyclic.

Since F*(F) is characteristic in E, it is normal in G. Hence taking
W = F*(F) we deduce from above that each G-chief factor below F**(F) is
cyclic. Then each G-chief factor below E is cyclic by Lemma 2.8. This
completes the proof of this theorem.

4. Proof of Theorems 1.1 and 1.2.

The following lemma is well known.
LEMMA 4.1.  Let G be a group and N <G. Then (G/N)" = G®N/N.

LEMMA 4.2.  Let G be a metanilpotent group. If every subgroup of G*
of prime power order is t-quasinormal in G, then G is a Hall subgroup
of G.

Proor. Suppose that this lemma is false and let G be a counterexample
with minimal |G|. Then D = G # 1. Let N be a minimal normal subgroup
of G. Then by Lemma 4.1, (G/N)" = G®N/N = DN/N. Let V/N be any
subgroup of DN /N of prime power order p*. Then V = (VND)N.If Nisa
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p-group, then V is a p-group and so it is 7-quasinormal in G by hypothesis.
Then V/N is t-quasinormal in G/N by Lemma 2.1(2). Otherwise,
V=N )\Vp, where V), is a Sylow p-subgroup of V. By hypothesis, V,, is -
quasinormal in G, so V/N is r-quasinormal in G/N by Lemma 2.1(3).
Therefore the hypothesis holds for G/N, so (G/N)* = DN/N is a Hall
subgroup of G/N by the choice of G. Now assume that G has two minimal
normal subgroups H and R such that H is a p-group and R is a ¢g-group,
where p # q. Then, without loss of generality, we may let H < D. Then
DR/R is a Hall subgroup of G/R by the choice of G. Let D, be a Sylow p-
subgroup of D. Then D, R /R is a Sylow p-subgroup of DR/R, and so it is a
Sylow p-subgroup of G/R. Hence D, is a Sylow p-subgroup of G. Suppose
that D), # D and let D, be a Sylow »-subgroup of D, where r # p. Then we
see as above that D, is a Sylow r-subgroup of G. Thus D is a Hall subgroup of
G. Now we consider the case when all minimal normal subgroups of G are p-
groups. Then F(G) = 0,(G) is a Sylow p-subgroup of G and so D < 0,(G).
If H # D, then, by using the same argument as above, we see that D is a
Sylow p-subgroup of G. Hence, we may put H = D. Now we claim that
@ = P(0,(G)) =1. In fact, if we assume that @ #1, then DP/P =
G"®/d = (G/®)" is a Hall subgroup of G/®. If H < &, then G/® is a
nilpotent group. But 0,(G) <G, and so @ < &(G). This shows that G is
nilpotent so that H = G* = 1, a contradiction. Hence H ¢ &, and so H®/®
is a non-identity p-group. Consequently, we have H® = O,(G). It follows
that H = 0,(G). This contradiction shows that &(0,(G)) =1. Hence
0,(G) is an elementary abelian group. Hence every subgroup of O,(G)
is normalin G. Let O,(G) = (a) x (a2) x ... x {(as), where (a;) is a minimal
normal subgroup of G, and (a) = H. Write a; = aaz...a;. Then since
(a1) N (ag) N...N (a) = 1, we have 0,(G) = (a1) x (az) X ... x {(az). Since
Gisnotnilpotent, 0,(G) Z Z(G). Hence thereis anindex ¢ such that a,¢Z(G).
It is clear that (a;) <G and that (a;) # H. Since H = D = G*, (a;)H/H <
Z(G/H). Hence from the G-isomorphism (a;)H/H ~ (a;) we have
(a;) < Z(G), a contradiction. The lemma is proved.

Proor or THEOREM 1.2. If every subgroup of F*(G) is 7-quasinormal in
@, then G is supersoluble by Theorem 1.3. Hence, in view of [21, Chapter X],
every subgroup of F(G) = F*(G) is t-quasinormal in G. So (1) implies (2).

We now show that (2) implies (3). Suppose that G is a supersoluble
group and every subgroup of F(G) is t-quasinormal in G. Then D = G" is a
Hall subgroup of G by Lemma 4.2. Since every chief factor of G is cyclic, it
follows that D is odd order. By using well known Schur-Zassenhaus’s
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theorem, we see that D has a complement M in G. Since G/D ~ M is
nilpotent, M is a Hall nilpotent subgroup of G and G = D A\ M. Now let H
be an arbitrary subgroup of D, n(H) = {p1, p2, - . ., p+} and P; be a Sylow p;-
subgroup of H. Since D is a normal nilpotent subgroup of G, P; is
subnormal in G. By hypothesis, P; is t-quasinormal in G. Moreover,
P; <0,(G), so P; is S-quasinormal in G by Lemma 2.1(4). Then
O0P(G) < N¢(P;) by [31, Lemma A]. Since D = G* < OPi(G) and D is a Hall
subgroup of G, we have that OPi(G) = G for all< € {1,2,...,t}. Hence P; is
normal in G, so H = P1P;...P; is normal in G. Finally, since D is odd
order, it follows that D is abelian. Therefore, (3) is a consequence of (2).

Now we show that (3) implies (4). Assume that G = DM is a super-
soluble group, where M is a nilpotent subgroup and D is a Hall abelian
subgroup of G of odd order such that every subgroup of D is normal in G.
Let H be a subnormal subgroup of G and P a Sylow p-subgroup of G. If
p € n(D), then P < D, so P is normal in G by hypothesis. Thus HP = PH.
Assume that p & n(D). By using well known Schur-Zassenhaus’s theorem,
we see that D has a complement L in G such that P < L. Then P is a Sylow
p-subgroup of L. Since H is subnormal in G and (|D|, |L|) = 1, we have that
H =(HnND)HNL). By hypothesis, HND is normal in G. Moreover,
G/D ~ L is nilpotent. Hence P is normal in L. Then (H N L)P = P(HN L).
Thus HP = (H N D)(H N L)P = PH. Therefore, (4) is a consequence of (3).

Finally, we show that (4) implies (1). Suppose that G is a soluble group
and every subnormal subgroup of G is S-quasinormal in G. Then
F(G) = F*(G) by [21, Chapter X], so every subgroup of /(&) is subnormal
in G. Hence by hypothesis every subgroup of F*(G) is S-quasinormal in G,
and, obviously, it is 7-quasinormal in G. This completes the proof.

Proor orF THEOREM 1.1. First we show that (1) implies (2). Let G be a
soluble TQT-group. Then, in view of [21, Chapter X], F*(G) = F(G). Hence
every Sylow subgroup of F*(G) is normal in F**(G), so every subgroup of
F*(G) is t-quasinormal in F*(G). Moreover, F*(G) is t-quasinormal in G.
Since G is a TQT-group, we have that every subgroup of F*(G) is t-qua-
sinormal in G. By Theorem 1.2, G has an abelian normal Hall subgroup D
such that G/D is nilpotent and every subgroup of D is normal in G. Let H
be a subgroup of G and S; any Sylow subgroup of DH such that
(|H],]S81]) = 1. Then S; < D, so HS; = S1H. Hence H is t-quasinormal in
DH. Now let Sz be any Sylow subgroup of G such that (|[DH|, |Sz|) = 1.
Then SeD/D is a Sylow subgroup of G/D. Since G/D is nilpotent, SaD is
normal in G. Then (DH)S; = HS3D = So(DH). Hence DH is t-quasinormal
in G. Since G is a TQT-group, H is -quasinormal in G.
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Now let P be any Sylow p-subgroup of G, @ a Sylow g-subgroup of G such
that p # q, p € (D) and q & n(D). Then PND =1=Q N D. Since G/D is
nilpotent, DP and D@ are normal in G. If Pis normalin G, then, in view of [19,
Chapter III, Hilfssatz 1.6(c)(d)], [P,Q] <[P, DQI<PNDQ=1. If Q is
normal in G, then similarly we have that [P, @] = 1. Suppose that P < P% and
Q<QC. Let r be a prime dividing |D N PQ%| and C,. a subgroup of G with
|G| = r.Then G, < D,soC,isnormalin G. We may assume without loss that
rdivides |P%|. Since every subgroup of G is t-quasinormal, (|C,Q|, p) = 1 and
(IC-Q|,|PY]) # 1, we have that C,QP is a subgroup of G. First assume that
C, < PSNQ°. Then PN C,QP = C,.P and Q° NC,QP = C,Q, so C,Q <
N¢(C,P)and C,.P <N¢(C,Q). Hence [P, Q] <[C,P,C,Q] < C,.PNC,Q=C, by
[19, Chapter III, Hilfssatz 1.6(c)(d)]. Now assume that C, < PY and
C, Z Q% Then @ < Ng(C,.P) and Q% N C,QP = @, so C,.P < N(Q). Hence
[P,Q] <[C.P,Q] < C,.PNQ = 1by[19, Chapter III, Hilfssatz 1.6(c)(d)]. If
C, Z P% and C, < QY then similarly we have that [P, Q] = 1. Finally, as-
sume that C, ¢ PSQ%. Then P°NC,QP =P and Q°NC,QP =Q, so
Q < Ng(P)and P < Ng(Q). Hence [P,Q] < PNQ = 1 by [19, Chapter 111,
Hilfssatz 1.6(d)]. Thus if G contains a subgroup Cs with |C;| = s such that
Cs # C, and s € n(D N PYQC), then similarly [P, Q] < C,. Hence [P, Q] <
C, N Cs = 1. Now suppose that [P, Q]| = . Then G has only one subgroup
with order r. Hence the Sylow r-subgroup of G is cyclic by [19, Chapter I,
Satz 2.20]. Therefore, (2) is a consequence of (1).

(2) = (1) It is evident.

5. Some applications of Theorem 1.3.

Buckley [13] obtained a description of nilpotent groups of odd order
all of whose subgroups of prime order are normal. As a consequence, he
also proved that a group of odd order is supersoluble if all its subgroups
of prime order are normal. Applying the description of minimal non-
supersoluble groups due to Doerk [14] and Huppert [20], we can go
further and prove that a group is supersoluble if all cyclic subgroups of
prime order and order 4 are normal. Later, Srinivasan [37] proved that a
group G is supersoluble if every maximal subgroup of every Sylow
subgroup of G is normal in G. These results have been developed in
various directions, especially in the framework of formation theory. In
particular, if ¥ is a saturated formation containing all supersoluble
groups and G is a group with a normal subgroup £, then the following
results are true.
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(1) If G/E € § and the cyclic subgroups of £ of prime order and order 4
are either all S-quasinormal (Ballester-Bolinches and Pedraza-Aguilera
[9], Asaad and Csorgd [4]) or all S-semiquasinormal (Li [23]) in G, then
Geg.

(2) If G/E € § and the cyclic subgroups of F*(¥) of prime order and
order 4 are either all S-quasinormal (Li and Wang [26]) or all S-semi-
quasinormal (L. Wang and Y. Wang [38]) in G, then G € .

3) If G/E € § and the maximal subgroups of every Sylow subgroup of
E are either all S-quasinormal (Asaad [2]) or all S-semiquasinormal (Li
[23]) in G, then G € ¥.

4) If G/E € § and the maximal subgroups of every Sylow subgroup of
F*(E) are either all S-quasinormal (Li, Wang and Wei [25]) or all S-semi-
quasinormal (Wang [38]) in G, then G € .

Theorem 1.3 not only generalizes all the results [2], [4], [9], [13],
[23]-[26], [37], [38] mentioned above and some main results in [3], [5],
[29], [33] but also gives shorter proofs of some of them.
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