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On Quasi-Polarized Manifolds Whose Sectional Genus is
Equal to the Irregularity

YosHIAKI FUKUMA

ABSTRACT - Let (X, L) be a quasi-polarized manifold of dimension %. In our previous
paper, we proved that if dimX = 3 and h%(L) > 2, then g(X, L) > h!(Ox) holds.
Here g(X, L) denotes the sectional genus of (X, L). In this paper, we give the
classification of quasi-polarized 3-folds (X, L) with h%(L) > 3 and g(X, L) = h}(Ox).
Moreover as an application of this result, we also give the classification of polarized
manifolds (X, L) with dim Bs|L| = 1, R%(L) > n and g(X, L) = h!(Oy).

1. Introduction.

Let (X, L) be a quasi-polarized manifold with dim X = ». For this pair
(X, L), the sectional genus g(X, L) is defined by the following formula:

gX.L) =1+ %(KX - DL,

where Ky is the canonical bundle of X. Then there is the following con-
jecture which was proposed by Fujita [7, (13.7) Remark].

CoNJECTURE 1.1 (Fujita). Let (X,L) be a quasi-polarized manifold.
Then (X, L) > q¢(X), where ¢(X) := dim H (Ox) is the irregularity of X.

For this conjecture, there are some results (see [9], [10], [12] and so on).
But it is unknown whether this conjecture is true or not even for the case of
dim X = 2. If dim X = 2, then this conjecture is true if 2°(L) > 0 (see [9]).
Moreover the classification of quasi-polarized surfaces (X,L) with
g(X,L) = ¢(X) and (L) > 1 was obtained (see [8], [9]).

If dim X = 3 and 2°(L) > 2, it is known that this conjecture is true, and
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the classification of polarized 3-folds (X,L) with ¢g(X,L) = q¢(X) and
k(L) > 3 was given (see [12]).

In this paper, we will give the classification of quasi-polarized 3-folds
with ¢(X, L) = ¢(X) and h°(L) > 3. As an application of this result, we are
able to give the classification of polarized n-fold (X, L) with g(X, L) = q¢(X),
dim Bs|L| = 1 and k(L) > n. (Here we note that g(X,L) > ¢(X) holds if
dimBs|L| =1.)

The author would like to thank the referee for giving some useful
comments.

2. Preliminaries.

DEFINITION 2.1. Let X and Y be projective varieties with
dimX >dimY > 1,and let f : X — Y be a surjective morphism with con-
nected fibers. Then (f, X, Y) is called a fiber space. Moreover if L is a nef
and big (resp. an ample) line bundle on X, then (f, X, Y, L) is called a quasi-
polarized (resp. polarized) fiber space.

Lemma 2.1.  Let X and C be smooth projective varieties with dim X = n
and dim C = 1, and let L be a nef and big line bundle on X. Assume that
there exists a fiber spacef : X — C such that h°(Kr + L) # 0 for a general
fiber F of f. Then f.(Kxc + L) is ample.

Proor. First we note that there exists a natural number m such that
(mL)" — n(mL)" 'F > 0. Then by [3, Lemma 4.1], there exists a natural
number k such that Ox(k(mL — F)) has a nontrivial global section. Hence
we have an injective map Ox(kF) — O(kmL). On the other hand, there
exists aline bundle A on C such that O(kF) = f*(\). Hence by [4, Corollary
1.9] we see that f.(Kx,c + L) is ample and we get the assertion. O

DEFINITION 2.2. (i) Let (X1,L1) and (X3, Lg) be quasi-polarized vari-
eties. Then (X1, L;) and (X3, Lg) are said to be birationally equivalent if
there is another variety G with birational morphisms g; : G — X; (¢t = 1,2)
such that g;L1 = g5 Ls.

@) Let (f1,X1,Y,L1)and (f2, Xz, Y, L) be quasi-polarized fiber spaces.
Then (f1,X1,Y, L) and (fo, X, Y, Lo) are said to be birationally equivalent
if there is another variety G with birational morphisms ¢;: G — X;
(2 =1,2) such that giL; = g3Ls and fi 0 g1 = f2 0 g2.
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DEFINITION 2.3. Let X be a normal projective variety of dimension » and
let D be a Q-divisor on X. Then D is said to be generically nef if
DLy --- L, 1 >0forany collection of ample Cartier divisors Ly, ..., L,,_; on X.

DEFINITION 2.4. Let (X, L) be a quasi-polarized variety of dimension 7.
Then the A4-genus AX, L) of (X, L) is defined by the following:

AX,L) =n+L" — K°(L).

ProposiTION 2.1.  Let (X, L) be a quasi-polarized manifold of dimen-
stonn. If Kx + (n — 1)L is not generically nef, then A(X, L) = 0or (X, L) s
birationally equivalent to a scroll over a smooth curve.

Proor. See [16, Proposition 1.3]. O

3. Main results.
First we will prove the following theorem.

THEOREM 3.1. Let (f,X,C,L) be a quasi-polarized fiber space such
that X and C are smooth with dimX = n and dimC = 1. Then g(X,L) >
> g(C). Moreover if g(X, L) = g(C), then (X, L) is one of the following two
types.

(a) A4X,L)=0.

(b) The pair (X, L) is birationally equivalent to a scroll over C.

Proor. (1) If g(C) = 0, then g(X, L) > 0 = g(C) by [16, Theorem 1.1].
Moreover if g(X,L)=0=g(C), then by [16, Theorem 1.2] we have
AX,L)=0.

(2) Next we assume that g(C) > 1.

(2.1) First we assume that Ky + (n — 1)L is generically nef. Then by
[15, 1.2 Theorem] we see that there exists a natural number j with
1 <j <m —1 such that 2°(Kx +jL) > 0. Hence 2°(Kp + jLr) > 0 for any
general fiber F of f. Then f.(Kx,c +jL) # 0. By Lemma 2.1 we see
that f.(Kx /¢ +jL) is ample. By the same argument as [10, Lemma 1.4.1],
we get (Kyo+jL)L"'>0. Since 1<j<mn-—1, we have (Kx,+
+m—1L)L"! > 0. Then

9X, L) =g(C) + %(KX/C + (1 — D)L 4 (g(C) — D(@p)" = 1)
> g(0).
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(2.2) Next we assume that Ky + (n — 1)L is not generically nef. Then by
Proposition 2.1 we see that A4(X,L) = 0 or there exist a quasi-polarized
variety (X', L’), a smooth projective variety M and birational morphisms
1y M — X and u, : M — X’ such that (X', L) is a scroll over a smooth
curve.

If AX,L) = 0, then we infer that 21(Ox) = k1 (Ox) = 0 (see [12, Lem-
ma 1.15]). Hence g(C) = 0 and this contradicts the assumption of g(C) > 0.
So we may assume that (X’,L') is a scroll over a smooth curve B. Let
f': X' — B be its fibration and let & :=f" ou, : M — B. Then for any
general fiber F, of h, we have hl(OFh) = 0. Since ¢g(C) > 0, we see that
fou(Fy) is a point. Therefore by [2, Lemma 4.1.13] there exists a sur-
jective morphism ¢ : B — C such that f o iy = J o h. But since f and f” have
connected fibers, we see that J is an isomorphism. On the other hand, we
can easily check that g(X',L') = g(B). So we get gX,L) =gX' L) =
= g(B) = g(C). Therefore we get the assertion. O

REMARK 3.1. There exists an example of a quasi-polarized fiber space
(f,X,C, L) such that g(X,L) = g(C) and (X, L) is birationally equivalent to
(V,H) with A(V,H) = 0. For example, let (V,H) = (P", Op=(1)). Then we
can easily see that A(V, H) = 0. We take two general members H; and Ho
in |H| and let A be a pencil which is generated by H; and Hs. By using this
pencil, we can make a fiber space over a smooth curve. Namely, there exist
a smooth projective variety X, a birational morphism x: X — P" and a
fiber space f : X — C over a smooth curve C. We set L := u*(Op»(1)). Since
q(X) = 0, we see that C = PL. Moreover 9gX,L) = g(P", Op(1)) = 0 = g(C)
and (X, L) is birationally equivalent to (V, H).

Next we consider quasi-polarized manifolds (X,L) with dimX = 3,
h(L) > 3 and g(X, L) = ¢(X).

THEOREM 3.2. Let (X,L) be a quasi-polarized 3-fold. Assume that
hO(L) > 8. If (X, L) = q¢(X), then (X, L) satisfies one of the following two
types.

(a) AX,L)=0.

(b) The pair (X, L) is birationally equivalent to a scroll over a smooth
curve C.

Proor. By [6, Theorem 4.2], there exists a quasi-polarized variety
(X', L) which is birationally equivalent to (X, L) and satisfies one of the
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following conditions:

(1) Kx + 2L is nef for the canonical Q-bundle Kx;
(i) AX,L)=AX',L") =0;
(iii) (X’,L') is a scroll over a curve,

where X’ is a normal projective variety with only Q-factorial terminal
singularities. Since g(X,L) = g(X’,L’) and ¢(X) = q(X’), we may assume
that X has only Q-factorial terminal singularities and (X, L) satisfies one of
the above conditions.

If (X, L) is the type (ii), then g(X,L) =0 by [6, (1.7) Corollary] and
q(X) = 0 by [12, Lemma 1.15]. Hence we obtain (X, L) = ¢(X) in this case.

If (X, L) is the type (iii), then we can check g(X,L) = q(X) by easy
calculation. _

So we may assume that Ky + 2L is nef. Let 7 : X — X be a resolution of
X such that X\z '(Sing(X)) =~ X\Sing(X), and L = 7*(L). Then /(L) =
= h%(L) > 3. Let A be a linear pencil which is contained in |L| such that
A = Ay + Z, where Ay is the movable part of 4 and Z is the fixed part of
|L|. We will make a fiber space by using this 4. Let ¢ : X——>P! be the
rational map associated with Ay, and 6 X' — X an elimination of in-
determinacy of ¢. So we obtain a surjective morphism ¢’ : X’ — P, If
necessary, we take the Stein factorization ¢ : C — P! of ¢/. Then we have
a fiber space f' : X' — C such that ¢ =dof'. Let F' be a general fiber of
f' and let a:=degd. We consider this quasi-polarized fiber space
(f",X',C,0°(L)). By the proof of [12, Theorem 2.1], we see that there
exists a quasi-polarized fiber space (f1,X1,C,L1) which is birationally
equivalent to (f, X’ C, 0*(L)) such that (f;, X7, C, L) satisfies one of the
following conditions.

o Kx + 2L, is fi-nef.
e (f1,X1,C, L) is a scroll.

If (f1,X1,C, Ly) is a seroll, then we see that g(X, L) = ¢(X) and this is
the type (b) in Theorem 3.2. So we may assume that Ky, + 2L is fi-nef. In
this case, by [14, Lemma 0.2], we see that Kx, o + 2L is nef. _

(a) The case of g(C) > 1. Then 6 is the identity map. So we have X =X
and 9*(L) L. By the construction of the fiber space (f”, X',C,0°(L)), we

get L= Z F; + Z, where each F; is a fiber of f and Z is the fixed part of
. i=1

|L]. The;n there exists an ample line bundle P € Pie(C) such that
a

ST F; = (f")"(P). In particular deg P = a.

i=1
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CramM 3.1. a > 3.

Proor. First we note that hOL)=h"L)= hO( S Fi +Z)
- ho( ZF) 1O(P). Since KAL) > 3, we have h°(P) > 3. If a < 2, then

AC, P) =1+degP — h°(P) =1+ a — h°(P) < 0. On the other hand, since
P is an ample line bundle on C, we have A(C, P) > 0 by [5, Corollary 1.10] or
[7, (4.2) Theorem]. Therefore A(C, P) = 0. But then C = P! (see [5, Lemma
3.1]) and this contradicts the assumption that g(C) > 1. Hence we have
a > 3. O

Here we note that L is numerically equivalent to aF” + Z by the con-
struction above. By the same argument as in the proof of [12, Claim 2.2], we
have

(K o+ L)L) > HES o+ 2L)L)F'

for any natural number ¢ with ¢ <a. Hence (K§/C+2Z)(Z)2 >

> S(K}/C + ZZ)(Z)F’ holds because a > 3. Since g(C) > 1and (ZF/)Z > 1,we
get

gX,L)=1+ %(K} +2L)(LY?
=g(C) + %(K;/C + 2L)LY + (9(C) = D(Lp? = 1)
>g(C) + g(Kg/C + 2L)L)F'
= 9(0) + 39" L) + 3 CFF 3

Since ho(i| ) > 0and dimF” = 2 we have g(#", IZ\ ) > q(F") by [9, Lemma
1.2 (2)]. Because g(C) + q(F") > q(X), we have

o&. L) > g + 2907 L)+ S CFF ~3

Since ¢(X,L) =g(X,L) = q(X) = q(X) holds, we get 2g(F" L|n)+
+ §(Z)2F/ — 3 < 0. Hence we have g(F", Z|F,) = 0. Therefore x(F") = — o0

and by [9, Theorem 2.1] we have q(F') =0. So q(X) g(C) because
9(C) = q(F") + 9(C) > q(X) > ¢(C). Hence we obtain g(X L) = 9(C), and by
Theorem 3.1 we get the assertion in this case.

(b) The case of g(C) = 0. Let y := o 6.

(b.1) If @ > 2, then
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9(X,L) =g(X,L)
— &, 0"
— 14 5y + 2L D)
14 (Ky + 2000 D)F

because Kx + 2L is nef and a > 2. Let D= O(F"). By [12, Claims 2.3 and
2.4], we have
g(X,L) > 1+ y"(Kx + 2L)(0"(L))F"

=1+ 0" (Kx) + 2L)(O"(L)F'
=1+0"(K; + 2L) (O (L)F'

>1+ (9*(K)~( + D) + 0" (L))O" (L)F
>1+ (K, + F' +0°L)O D)F
=29(F", 0"(L)|p) — 1.

Since dim F” = 2 and h%(0"(L)|) > 0, we have g(F", 0" (L)|p) > ¢(F") by
[9, Lemma 1.2 (2)]. Moreover since ¢(F") = q(F") + g(C) > q¢(X") = q¢(X), we
get g(X, L) > 2q(X) — 1. Therefore ¢(X) <1 because ¢g(X,L) = ¢(X). In
particular g(X,L) < 1. From [6, Corollaries (4.8) and (4.9)], we see that
(X, L) is birationally equivalent to one of the types (a) and (b) in Theorem
3.2. (Here we use the assumption that g(X,L) = qX).)

(b.2) Here we assume that a = 1. Then 2°(0*(L)| ) > 2. By the same
argument as in Case (2) in the proof of [12, Theorem 2.1] we have

¢X) = gX,L) > g(F', 6" L)) > q(F") > ¢(X).

Hence we have x(F") = — oo by [9, Theorem 3.1] since g(F", 0 (Z)\ ) =qF")
and h°(0*(L)| ) > 2. Moreover we get

(1) X') = q(X) = q(F").

Here we apply the relatively minimal model theory for the fibration
X —-C= PL. Since x(F") = — 0o, we see that there exist smooth pro-
jective varieties X* and T with dimX* =38 and 1 = dimC < dim7T < 2, a
birational morphism &° : X* — X' and surjective morphisms 6, : X — T
and 2 : T — C with connected fibers such that f” o 6% = 5 0 01 and Fs is
birationally equivalent to a Fano manifold, where F, is a general fiber of
d1. In particular ¢(F5,) = 0. We put f* := " 0 6".
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(b.2.1) Assume that dim7 = 1. Then J» is an isomorphism. Hence
q(T) = 0 because C = P!, On the other hand, since q(F's,) = 0, we have
q(X) = ¢X*) = ¢(T) = 0. Thus we get g(X,L) =0 from the assumption
that g(X, L) = q(X). Therefore by [6, (4.8) Corollary] we get the assertion.

(b.2.2) Next we assume that dim7 = 2. If ¢(X) <1, then we have
9(X, L) <1 and by [6, Corollaries (4.8) and (4.9)] we get the assertion. So
we may assume that ¢(X) > 2. Let F, (resp. F*) be a general fiber of J;
(resp. f¥). Then

O1|p: : F* — F,

is a surjective morphism with connected fibers. Since a general fiber of 6; | p:
is P!, we have q(F*) = q(F,). On the other hand, we have ¢(X*) = ¢(T)
because any general fiber of J; is P!, and we have q(F%) = ¢(X*) by (1). So
we get ¢(T) = q(F*) = qFs,) = qFs,) + q(]Pl). Now we are assuming that
q(X*) = ¢(X) > 2, so we have q(F'5,) > 2. Therefore, considering the fiber
space dg : T — C = lPl, we see from [1, Lemme] or [9, Lemma 1.5] that 7' is
birationally equivalent to F's, x P In particular x(T) = — co. So, taking the
Albanese map of T, there exists a morphism« : T — B, where B is a smooth
projective curve with g(B) = ¢(T) = q(F's,). Then o 61 : X # — B has con-
nected fibers.~Moreover since ¢(X*) = q(F?) = qF's,) = g(B) we obtziin
g(X*, (00 6%'(L) = g(X, L) = ¢(X) = ¢(X*) = g(B). Since (X*, (00 6*)"(L))
is a quasi-polarized 3-fold, we get the assertion by Theorem 3.1. O

Here we want to propose the following conjecture which is a quasi-
polarized manifolds’ version of [12, Conjecture 2.15].

CONJECTURE 3.1. Let (X, L) be a quasi-polarized n-fold. Assume that
RO(L) > n. If g(X, L) = q(X), then (X, L) is one of the following.

(a) AX,L)=0.
(b) The pair (X, L) is birationally equivalent to a scroll over a smooth
curve.

REMARK 3.2. If n = 2 (resp. n = 3), then this conjecture is true by [9,
Theorem 3.1] (resp. Theorem 3.2 above).

Let (X, L) be a polarized manifold of dimension %. If Bs|L| = 0 (resp.
dim Bs|L| = 0), then by [2, Theorem 7.2.10] (resp. [11, Theorem 3.2]) we see
that g(X, L) > q(X). Moreover, we can get a classification of (X, L) with
9X, L) = ¢(X) and dim Bs|L| < 0 (see [17, (3.6) Theorem] and [11, Theo-
rem 3.2]). So, as the next step, we consider the case where dim Bs|L| = 1.
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THEOREM 3.3. Let (X, L) be a polarized manifold of dimension n > 3.
Assume that dim Bs|L| = 1.

@) The imequality g(X,L) > q(X) holds.
(i) Furthermore we assume that h°(L) > n. If g(X,L) = ¢(X), then
(X, L) is one of the following.
(@) (P, Opi(1)).
() (Q", 0 ).
(e) A scroll over a smooth curve.

ProoF. From the assumption, we see that there exist an (n — 3)-ladder
X D X; D --- D X,_3 such that each X; is a normal and Gorenstein pro-
jective variety of dimension n —j (see [13, Proposition 1.12 (2)]). Let
L; = Lx; for every j with 1 <j <n — 3. Then we see that

2) W(Ox) = ' (Ox,) = --- = (Ox, ;)

and

3) 9X, L) = 9X1,L1) = - - = g(Xy—3, Lin-3).

Let n: M,_s — X,,_3 be a resolution of X,,_s. Then

(4) 9WMy—3,7" (Ly-3)) = 9(Xy-3, Lin—3)

and

(5) WOy, ,) > W' (Ox, ).

(i) Here we note that h°(L,_3) > 2. Hence by [12, Theorem 2.1] we have
(6) 9M 3,7 (Lin-3)) > q(My,—3).

Therefore by (2), (3), (4), (56) and (6), we get g(X, L) > ¢(X).

(ii) Assume that A°(L) > n. Then h%(L,_3) > 3. If g(X, L) = ¢(X), then by
@), 3), (4), (5) and (6) we have g(M,,_3, n*(Ly,3)) = q(M,,_3) and q(M,,_3) =
= q(X,,_3). In particular, X,,_3 has the Albanese map (see [2, Remark 2.4.2]).
Let o : X, 3 — Alb(X,_3) be its Albanese map, where Alb(X,,_3) is the
Albanese variety of X,, 3. Then «on: M, 3 — Alb(X,,_3) is the Albanese
map of M, 3. Since (M,_3,7"(L,_3)) is a quasi-polarized 3-fold with
Wo(m*(L,—3)) > 3 and g(M,,_3, 7*(L,_3)) = q(M,,_3), we can apply Theorem
3.2. Then (M,,_3, n*(L,,_3)) satisfies one of the following types:

o AM,,_3,7n"(Ly,-3)) = 0.

o (M,,_3,n*(Ly,_3)) is birationally equivalent to a scroll over a smooth

curve.
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If AM,_3,7*(Ly_3)) =0, then g(X,L) = gM,,_3, 7*(Ly,_3)) = 0. There-
fore we get the assertion from Fujita’s results (see [7, (12.1) Theorem and
(5.10) Theorem]).

Next we assume that (M,,_3, 7n*(L,_3)) is birationally equivalent to a
seroll over a smooth curve. Let (V, H) be its scroll. If 21(Oy) = 0, then we
see that g(X,L) = 0 and we get the assertion. So we may asssume that
h'(Oy) > 1. Then the dimension of the image of Albanese map of V is one
because (V,H) is a scroll over a smooth curve. Since M,_3 and V are
birationally equivalent each other, we see that the dimension of the image
of o o7 is also one. Hence the dimension of the image of « is also one.
Since 7YOy) > 0 implies 2'(Ox) >0, we can take the Albanese map
B: X — Alb(X) of X.

CrLAamv 3.2. dimfp(X) = 1.

Proor. First we consider a map b : X,,_3—X — Alb(X). By the uni-
versality of the Albanese map, there exists a morphism c : Alb(X,,_3) —
— Alb(X) such that ¢ o « = b. On the other hand, since dim «(X,,_3) = 1, we
have dim b(X,,_3) = dim (¢ o «)(X,,_3) < dim a(X,,_3) = 1. But by [2, Propo-
sitions 5.1.1 and 5.1.2] we have dimb(X,,_3) > 1 because dim f(X) > 1.
Hence dim b(X,,_3) = 1. Furthermore by using [2, Propositions 5.1.1 and
5.1.2], we also see dim f(X) = 1. O

Since dim f(X) = 1, we find that f(X) is smooth and f: X — f(X) is a
fiber space over a smooth curve (X). Let C = B(X). Since h'(Ox) = ¢(C),
we get g(X, L) = g(C). By [10, Theorem 1.4.2] we see that (X, L) is a scroll
over C. So we get the assertion. O

REMARK 3.3. (i) Theorem 3.3 shows that [12, Conjecture 2.15] is true
for the case of dim Bs|L| = 1.

(i) If dimBs|L| < 0, then we see that 2°(L) > n. Hence by [17, (3.6)
Theorem] and [11, Theorem 3.2] we infer that [12, Conjecture 2.15] is true
for the case of dim Bs|L| < 0.
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