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Some Results on the Partitions of Groups

M. FARROKHI D. G. (*)

ABSTRACT - We investigate some properties of partitions of groups. Some in-
formation on the structure of nilpotent groups as well the embedding of groups
with nontrivial partitions into a larger one are discussed. Moreover, we consider
the structure of groups admitting a nontrivial partition with 1, 2 or 3 subgroups
(considering the whole group) with nontrivial partition and the relation between
the number of subgroups with nontrivial partition and the number of primes
dividing the order of the group. Finally we analyze the relation between the
number of components of a nontrivial partition of a group and its order.

Introduction.

Let G be a nontrivial group. A collection I7 of nontrivial subgroups of G
is said to be a partition of G if every nontrivial element of G belongs to a
unique subgroup in /7. If |I7]| = 1, then /7 is said to be the trivial partition.
The subgroups in I7 are the component of the partition.

The study of groups partitions was first considered by Miller in 1906
and have been continued by many author’s such as Young, Hughes,
Thompson, Khukhro, Isaacs, Herzer, Schulz, Pannone, Kontorovich, Wall
ete. Baer [2,3], Kegel [10] and Suzuki [16] in 1960-1961 obtained the clas-
sification of those finite groups, other than p-groups, admitting a nontrivial
partition. We refer the reader to [21] for a history of partitions.

THEOREM (The Classification Theorem). Let G be a finite group ad-
mitting a nontrivial partition. Then G is isomorphic with exactly one of
the following groups

(1) Sy
@) a p-group with H,(G) # G;

(*) Indirizzo dell’A.: Department of Mathematics, Ferdowsi University of
Mashhad, Mashhad, Iran.
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3) a group of Hughes-Thompson type;
(4) a Frobenius groups;

(5) PSLE2,p") with p™ > 4;

(6) PGL(2,p™) with p™ > 5 and p odd;
(7) Sz(22n+1)’

where p is a prime and n s a natural number.

This paper is organized in four different sections investigating several
problems concerning partitions of groups. In section 1 we obtain some
results on the structure of nilpotent groups with partition, in particular
we prove that a p-group of nilpotent class less than p admitting a non-
trivial partition has exponent p. In section 2, we use a group admitting a
nontrivial partition with a component containing its derived subgroup to
generate an infinite sequence of groups with the same property con-
taining the first group as subgroup. This result can be applied to show
that all finite groups admitting a nontrivial partition can be embedded in
larger groups with nontrivial partitions. In section 3, we classify all finite
groups with a nontrivial partition, which admit 1, 2 or 3 subgroups
(considering the whole group) with a nontrivial partition. Also we give an
upper bound for the number of subgroups admitting a nontrivial partition
of a group with a nontrivial partition in terms of the order of group. Fi-
nally, in section 4, we use the classification theorem of finite groups ad-
mitting a nontrivial partition to show that if I7 is a partition of a finite
group G, then the greatest common divisor between the order of G and
the number |I7| — 1 is greater than one. Finally we show that a finite
group G with nontrivial partition has a partition /7 such that |/7] — 1 di-
vides |G|.

1. Nilpotent groups with a nontrivial partition.

We start with some elementary lemmas, the first of which is well known
(see for instance [2]).

LEmma 1.1. Let G be a group and let II be a partition of G. If
x,y € G\ {1} with xy = yx and either

@) fx| # [yl, or
@) |x| = |y| is @ composite number,

then x,y belong to the same component of G.
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In order to prove Theorem 1.3 we need the following lemma of which we
give a proof (see also [11])

LeEmMA 1.2, Let G be a group which admits a nontrivial partition. Then
Z(G) is isomorphic with one of the following groups:

Q) trivial group;
(2) an elementary abelian p-group; or
3) a torsion-free group,

where p a is prime number.

Proor. Let IT be a nontrivial partition of G and suppose Z(G) # 1. Let
x,y € Z(G) \ {1} and suppose that X and Y are components of I7 with
x,y e XUY.Letge G\ (XUY). Since xg = gx and yg = gy we have, by
Lemma 1.1, that |x| = |g| = |y| is a prime or |x| = |g| = |y| is infinite.
Therefore Z(G) is either an elementary abelian p-group or a torsion-free
group. (|

THEOREM 1.3. If G is a nilpotent group admitting a nontrivial parti-
tion, then either G is a p-group for some prime p, or G is a torsion-free group.

Proor. Since G is nilpotent Z(G) # 1 and so, by Lemma 1.2, either
there exists a prime p such that Z(G) is an elementary abelian p-group or
Z(G) is a torsion-free abelian group. If Z(G) is torsion-free, then by a well-
known result of Mal’cev [15, 5.2.19] G is torsion-free too. Also if Z(G) is an
elementary abelian p-group, then by [15, 5.2.22] G is a p-group. O

Concerning the p-groups with small nilpotent classes we have the fol-
lowing structural result, which will be used in sections 3 and 4. We refer the
interested reader to [13, 20] for related topics. Recall that if G is a group
and p is a prime, then the Hughes subgroup H,(G) is the subgroup of G
generated by all the elements of order different from p. As in [12, p. 183] it
can be proved that a p-group of nilpotent class » has a nontrivial partition if
and only if H,(G) # G.

THEOREM 14. Let G be a p-group of nilpotent class less than p ad-
mitting a nontrivial partition. Then G is a p-group of exponent p.

Proor. Let G be a minimal counterexample with respect to the nil-
potent class # which is less than p. Observe that 1 # Z(G) # G because G is
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not abelian by Lemma 1.2. Moreover we have that H,(G) # G by a previous
observation and Z(G) < H,(G) by Lemma 1.1 and Lemma 1.2. Note also
that H,(G/Z(G)) < H)(G)/Z(G). So Hy(G/Z(®)) # G/Z(G) and G/Z(G) has
anontrivial partition. Now the class of G/Z(G) is n — 1. Then, by minimality
of G, we have that G/Z(G) has exponent p and &P € Z(G), for every x € G.
Moreover H = (x,y) is finite for allx, ¥ € G (see[15,5.2.18]). Since n <p we
have that H is regular. So for any couple a,b € H we have 1 = [aP, ] =
[a, bTP (see [6, Satz 10.6]). Also, by the regularity of H we have that Q;(H) is
the set of all the element of order p. Then H' has exponent p. Since
xPyP = (xy)Pc (see [6, p. 322]) where ¢ € U1(H'), we have that ¢ = 1 and so
aPy? = (xy)’. Now since G = (G \ Hy(G)) the group G has exponent p,
which is a contradiction. O

2. Embedding of groups with a nontrivial partition into a larger one.

It is straightforward to show, by using Lemma 1.1, that a nontrivial
direct product of finite groups has a nontrivial partition if and only if there
exists a prime p such that each of the groups in the product, except
probably one group, is a p-group of exponent p and the subgroup gener-
ated by all elements of order # p is proper. But the situation is not too clear
for subgroups of direct products. Here we consider groups G admitting a
nontrivial partition with a component containing G’ to show that all direct
products of G have subgroups containing G properly as an isomorphic copy
with the same property as G.

DEFINITION. Let X be a subgroup of G and n < m. Then
Fm,n(G§X) = {(917 cee agm) eG": (gl o Ons e Om—nt1 'gm) S menJrl}

LemMA 2.1. If X < Gand 2 <n < m, then Iy ,(G;X) is a subgroup of
G™ if and only if G’ C X.

Proor. First assume that 'y, ,(G; X) is a subgroup of G™. If &,y € G,
then by the definition

n—2 times n—2 times
1l Lot el 1 TG X
(@ a1, e w1, 1, 000) € Ty (G X)

and
n—2 times n—2 times

1y 1,y 'yl 1 G:X
y 7@/7 rt 7?/ aya P 7--~)€Fm,n( ’ )
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Hence
n—2 times n—2 times n—2 times
Ly ey, 1 1 1l 1 1yl 1
(90 y 2y, 1., ,):(90 Y, Ly 7)(y Y, Ly 7)

belongs to I}, (G;X), whence

eyl = @y Dyl 1eX.

Hence G' C X.
Now suppose that G' C X and (xq,..., %), Y1, ..., Yn) € Lma(G; X).
Then ;1 -+ %iyn, Yir1 -+ Yirn € X s0 that

Liy1 - 'xiJrnyi_Jrln o yL_Jrll € X’
for eachi=0,1,...,m —n. Now since G’ C X we conclude that
@iy @oayil) €X
that is
@1, )Y Yn) = @y Ta) € Tin(G: X,

Therefore I, ,,(G; X) is a subgroup of G™. O

Utilizing the above result we can prove the main result of this section.

THEOREM 2.2. Let G be a group admitting a nontrivial partition I1. If
IT has a component X containing G, then also Iy, 2(G; X) admits a non-
trivial partition with X™ as a component, in which Iy, 2(G; X) C X™.

Proor. By the definition X™ C I',2(G;X) and (g.97%,...) ¢
I'y,2(G; X). Let 2 be the set of all m-tuples (X3, ...,X,,) € I[I"™ such that
X1,..., Xy #X and

oG X)N Xy x -+ x Xy) # 1
Then
FWL,Z(G;X) =X"U U (FWl,Z(G;X) NX7 x - x X)),

for if X; = X for some 7 and (xq,...,%) € Iy2(GX)NX x -+ x X)),
then
L1X2, + + oy Bi 15, Liig 1y -+« s L1 € X
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and we have in turn
@i 1,841 € X
®i 2,2 € X

hence we deduce that I, 2(G;X) N (X; x -+ x X,,) € X™. Now assume
that

(@1,...,00) € (rm,Z(G;X) NXyx---x Xm))ﬂ(rm,Z(G§X)ﬂ(Yl X - x Yi)),

inwhich (Xy,...,X,,),(Y1,...,Y,,) € Qare distinct m-tuples. Then X; # Y;
for some 7 and x; € X; NY; = 1. By the same reason which has been con-
sidered before it follows that (xq,...,2x,) € X™ that is (xq,...,2,) =
1,...,1). Hence

Iy, = { X"} U{lpoGX)N Xy x -+ x X)) : Xq,...,Xp) € 2}

is a nontrivial partition of Iy, 2(G;X). Moreover, I m,g(G,X)’ CX™ as
G’ C X. The proof is complete. O

Lemma 2.3. If G is a finite group and X is a subgroup of G, then
[T 2(G; X)) = |X |"G| for each natural number m. In particular, for
every finite group G admitting a nontrivial partition with a component X
containing G' and each natural number m, there exists a group of order
|G|IX ™", which admits a nontrivial partition.

ProoF. Let (g1,...,9m) € I'm2(G;X). Then there exists x; € X such
that ¢;9;,1 =«;, for each i=1,...,m —1. Hence every element of
I',2(G; X) is of the form

-1 -1 -1
(91,91 %1,95 @2, ., 00 1%m—1),

where ¢, € G, x; € X and g1 :gi‘lxi, for each 1 =1,...,m —1. On
the other hand, we observe that different choices of m-tuples
(91,21, .-, Xm—1) € G x X" 1 produces different elements of I m2(G; X).
Therefore I',,5(G; X) has exactly |G||X|" " elements, as required. O

REMARK. An easy observation shows that if we replace I, 2(G;X) in
Theorem 2.2 by

I'(G;X) ={(g91,92....): 9: € G,9i9i+1 € X,Vi € N}

or
FZ(GaX) = {("'79*1;90791;"') 2 gi € Gvgigi+l GX,V'L S Z}?
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then Theorem 2.2 still remains true and we can obtain infinite groups with a
nontrivial partition.

ProPOSITION 2.4. Let m,n >2, G be a finite group admitting a
nontrivial partition with a component X containing G' and let X" be
the corresponding component of I, 2(G; X) containing Iy 2(G; X). Then

an,?(G; X) = rm,?(rn.Q(G; X)a X")~

Proor. If ((g11,---,910)5 - (Gm1s- s Gmn)) € Fm,Z(rnZ(G;X);Xn),
then we know from the definition that g; ;g; .1, and g; ;g; j;1 € X, wheni + 1
in the former and j + 1 in the latter does not exceed m and #, respectively.
Let T be an m x n grid and let ¢ be a space-filling curve of 7', which is a
bijective map from A = {1,...,mn} to T with the property that the image
of every two consecutive members of A are adjacent blanks of 7'. It is evi-
dent that ¢ induces a map from I, (I, 2(G; X), X™) to I 'y 2(G; X), which
sends an element ((g11,---,910)s--+s(Gm1s---sGmn)) to (gg,...,9s ).
Clearly, this map is an injective homomorphism. What remains is to show
that this is indeed an epimorphism. For this let (¢, ...,9,,,) € L 'mn2(G; X)
and put g; for $(i)-blank of 7' Now if ¢, g} are placed in two adjacent blanks
of T, then the path defined by ¢ connecting ¢/ and g} has odd length. From
this and the fact that the product of each two consecutive elements on
the path belongs to X, we conclude that ggg]’» belongs to X. Hence
(911559105 -, (Gm1, - -, Gmn)), Where g; ; is the element located at
(1,7)-blank, belongs to Iy, 2(I',,2(G; X), X™) and will be sent to (g5, . . ., g,,,,)
by the map. O

REMARK. According to the above statements, if G is a group admitting
a nontrivial partition with a component X containing G, then the groups

Ioo(G X), I'32(G5 X)), ...

are the only groups which can be obtained in this way up to isomorphism.

Now we attempt to obtain the structure of all finite groups G admitting
a nontrivial partition with a component containing G'. Recall that if G is
a finite group, then G is a group of Hughes-Thompson type, if G is not a
p-group and that G # H,(G) for some prime divisor p of |G]|.

ProposiTiON 2.5. A finite group G has a nontrivial partition with a
component containing G' if and only if G is isomorphic with one of the
Sfollowing groups:
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(1) a p-group with H,(G) # G;
2) a group of Hughes-Thompson type; or
(3) a Frobenius group with cyclic complement.

Proor. It is easy to see that all of the groups in (1), (2) and (3)
have the desired property. Thus we assume that G is a finite group, I7
is a nontrivial partition of G and X is a component of /7 such that
G' CX. Let Y #X be a component of I7 and let x,y € Y \ {1} such
that x,y are conjugate in G. Then y =Y for some g € G and so
xly=[r,9l€cXNY =1 that is x =y. Now if g € Ng(Y) and x €Y,
then 2/ €Y so that «’ =2 and consequently g€ Cq(Y). Thus
Ng(Y)=Cg(Y). If Y = Ng(Y) for some Y € IT\ {X}, then Y = Cg(Y) is
abelian and so YNYY =1, for all g € G\ Y, since Y has no conjugate
elements. Hence G is a Frobenius group with complement Y. By [15,
10.5.6], the Sylow p-subgroups of Y are cyclic, which implies that Y is
cyclic. Now suppose that G is not a Frobenius group. Then for each
component Y # X of IT, we have Ca(Y) = Ng(Y) D Y and so by Lemma
1.1, it follows that every component of I7 other than X is an elemen-
tary abelian p-group for some prime p. Let Y,Z # X be distinct
components of /7 and let y € Y and 2z € Z be of orders p and q, re-
spectively. Then |yG'| = p and [2G'| = ¢ and if p # q, then |yzG’'| = pq
so that pq|lyz|. Hence yz € G\ X is of composite order, which is im-
possible. Therefore there exists a prime p such that each element of
G\ X has order p so that H,(G) C X # G. Consequently G is either a
p-group with a nontrivial partition or a group of Hughes-Thompson
type, the desired conclusion. O

ExampLE. Let p,q be primes such that g|p — 1. Then there exists a
non-cyclic group G of order pq such that its nontrivial subgroups form a
nontrivial partition for G with a component X = H,(G) of order p con-
taining G'. Let M = G x Z;” Then Hy(M) # M and so M has a nontrivial
partition. Moreover |H,(M)| = pq™ and H,(M) > M'. Hence, by Lemma
2.3, we can construct a group of order p"*1¢"" "1 which admits a non-
trivial partition for each n > 0.

Utilizing the above results we obtain the following embedding theorem.
THEOREM 2.6. Let G be a finite group admitting a nontrivial partition.

Then G can be embedded in a group of larger size with a nontrivial par-
tition.
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Proor. By a theorem of Dickson [6, p. 214] and a theorem of Suzuki
[17], each of the groups PSL(2, p"), PGL(2, p") and Sz(22"+1), where p is a
prime and # is a natural number can be embedded into a finite group of
larger size with a nontrivial partition. Also, by Theorem 2.2 and Proposition
2.5, every p-group with a nontrivial partition and every group of Hughes-
Thompson type can be embedded in a finite group with larger size admit-
ting a nontrivial partition. Now if G is a Frobenius group with kernel N and
complement H, then G can be embedded into a larger Frobenius group with
kernel N x N and complement H, where H acts on each component of
N x N as H acts on N. O

3. Number of subgroups with a nontrivial partition.

If G is an arbitrary finite group containing a subgroup with a nontrivial
partition, then G has minimal subgroups with the same property. In this
section, we attempt to describe the structure of these subgroups and to
interrelate the number of subgroups with a nontrivial partition with the
order of group GG, when G admits a nontrivial partition.

We first show the existence of finite groups with arbitrary number of
subgroups admitting a nontrivial partition.

Lemma 3.1.  For each natural number n, there exists a finite group G
with exactly n subgroups admitting a nontrivial partition.

Proor. Let q be a prime number and let 7 be a natural number. Using
a famous theorem of Dirichlet on arithmetic progressions [1, Theorem 7.9],
there exists a prime number p such that ¢"|p — 1. Now since U(Z,), the
group of units of /7, under multiplication is cyclic, there exists a natural
number 7 such that # is of order ¢"” modulo p. Let

G: <x7y : xp :yqn = l,xy :x’y.>_

We can see that G is a Frobenius group with kernel K = (x) and comple-
ment H = (y) and the subgroups KH;, in which H; = (y7), for
1=0,1,...,%n — 1 are distinguished as the subgroups of G, which admit a
nontrivial partition, as required. O

Now we determine the structure of all finite groups admitting a non-
trivial partition, which have one, two or three subgroups with a nontrivial
partition, respectively. The first of which is the most important because it
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gives a criterion for a group to have only trivial partition. We use this
criterion in section 4 to show that the complements of a Frobenius group
have only trivial partition.

PropoSITION 3.2. Let G be a finite group admitting a nontrivial
partition. Then the maximal subgroups of G have no nontrivial partitions
if and only if G is a non-cyclic group of ovder p*> or pg, where p,q are
distinct primes.

ProoF. Let G be a finite group admitting a nontrivial partition.
Clearly, if |G| = p? or pq, where p, q are distinct primes, then all of the
maximal subgroups of G have only trivial partitions. Now assume that G has
no maximal subgroups with a nontrivial partition and let /7 be a nontrivial
partition of G. If M is a maximal subgroup of G, then M C X for some
component X of I7 and so M = X, otherwise /7 induces a nontrivial partition
on M, which is a contradiction. On the other hand, if X is a component of 17,
then X C M for some maximal subgroup M of G. So in conjunction with the
previous result we deduce that X = M. Hence [T is exactly the set of all
maximal subgroups of G. Suppose that X = N¢(X) for all components X. If
X € II, then G # Uycq XY and consequently there exists a component Y of
I1, which is not conjugate to X. Hence

Uxruy

9eG 9eG
=[G:XI(X|-D+[G:YI(Y| -1 +1
> |G,

|G| >

which is a contradiction. Thus there is a component X of /7 such that
X C Ng(X) sothat X <G since X is a maximal subgroup of G. If g € G \ X is
of prime order p, then X(g) = G that is |G| = p|X| and consequently every
component Y # X of IT has order p. If X is a p-group of order p™, then
m =1 since G is a p-group with maximal subgroups of order p. Now sup-
pose that X is not a p-group and |X| has a prime divisor ¢ # p. If p||X|, then
Sylow p-subgroups of G are of order at least p?, which contradicts the
maximality of components of I7 different from X. Let @ be a Sylow g-sub-
group of X. Then G = Ng(Q)X. As p does not divide the order of X, we
should have p||N¢(Q)| so that Ng(Q) = G, for [Ng(Q)) is divisible by pq but
no maximal subgroups of G has this property. Hence @ <G and so G = QY
for all components Y # X, as QY does not lie in a maximal subgroup. Then it
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follows X = Q,i.e., X isaq-group. If Z # 1is a characteristic subgroup of X,
then Z <G and similarly G = ZY for each Y € IT \ {X7}. So it follows that
X = Z. In particular, ®(X) the Frattini subgroup of X is trivial and X is an
elementary abelian g-group. Since X has no nontrivial partitions we obtain
|X| = g so that |G| = pq and the proof is complete. O

We observe that if the maximal subgroups of a finite group G have no
nontrivial partition, then by Proposition 3.2, G has no subgroup with
nontrivial partition. So we can deduce the following

COROLLARY 3.3. A finite group G with nontrivial partition has only
one subgroup with nontrivial partition if and only if G is non-cyclic of
order p* or pq, where p and q are different primes.

If G is a group and /7 is a partition of G, then /7 is said to be a maximal
partition, if each component of I7 has only trivial partition. In fact, our
maximal partitions are just the primitive partitions of Young [19]. But
since the primitive partitions are the maximal elements in the set of all
partitions ordered by <, where I7 < IT' if and only if every component of I7
is IT'-admissible, in what follows we shall use the name maximal partition
instead of primitive partition. Clearly, maximal partitions have the max-
imal cardinal among all partitions of a group. Note that, Young [19] and
also Zorn’s lemma guarantee the existence of maximal partitions for any
group and the definition assures the uniqueness of maximal partition.

PRrROPOSITION 3.4. Let G be a finite group admitting a nontrivial
partition. Then G has exactly two subgroups with a nontrivial partition
if and only if G is a Frobenius group with kernel K and complement H, in
which H, K satisfy the following properties:

(1) K is non-cyclic of ovder p? which is the normalizer of its nontrivial
subgroups and H s cyclic of order q; or
(2) K is cyclic of order p and H is cyclic of order ¢2,

where p, q are distinct primes.

Proor. Let G be a group admitting a nontrivial partition and let M be
the unique proper subgroup of GG, which admits a nontrivial partition. Also
let I7 and IT’ be the maximal partitions of G and M, respectively and let A be
the set of all components of I7 intersecting M nontrivially. By Proposition
3.2, M is a maximal subgroup of G and since M <°G we have |G| = r|M| for
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some prime 7. If M C X for some component X of 17, then M = X, which is
impossible as X has only trivial partition. Then it follows that I7 N M is a
nontrivial partition of M and by Proposition 3.2, it is exactly I1'. In parti-
cular, there exist primes p, g and components X, Y1, ...,Y, € IT such that

p
M=Mnx)ul JMnYy,

i=1

where (M NX|=p, [ MNYy|=---=|MNY,| =qand MNX<IM. First
suppose that p = g = . Then G is a p-group of order p? of nilpotent class at
most 2. If p is odd, then by Theorem 1.4, G is of exponent p so that every
maximal subgroup of G admits a nontrivial partition, which is impossible.
Also if p = 2, then as G cannot be of exponent 2 we should have

G2Dg=(x,y: 2=y =12a"=271).
But Dg has two different subgroups
<9€2,y> >~ 7o X Vo, <9€2,y96> >~ 7o X 7o,

which have nontrivial partitions. Hence G is not p-group. Now we in-
vestigating the possibilities that p = q or p # q. First suppose that p = ¢
that is [M| = p®. We observe that M is a completely reducible F,, — (x)-
module. If M is not irreducible then there is a submodule N of order p on
which (x) acts nontrivially. In this case G has at least two proper subgroups
which have nontrivial partition, namely M and N (x). So the action of (x) on
M must be irreducible. In particular G is a Frobenius group and » divides
p? — 1 but it does not divide p — 1.

Finally, assume that p # ¢. In this case M N X is a characteristic sub-
group of M and hence normal in G. If M N X C X, then X <G and since |G|
is the product of three primes, we have G = XZ for each component Z # X
of I1. In particular, G = XY;, which implies that |Z| = |Y;| = ¢ is of prime
order for all components Z # X of 1. Clearly, X is cyclic and if | X| = pq or
pr, where r # p, q, then X has a characteristic subgroup (x) of order q or 7,
which is normal in G and hence (x)Y; is a proper subgroup with a nontrivial
partition of order ¢? or gr, which is different from M, a contradiction. Thus
|X| = p? and since |II| = p? +1 > p + 1 = |IT’| there exists a component Z
of IT such that (M N X)Z is a proper subgroup with a nontrivial partition
different from M, which is impossible. Therefore we must have M N X = X
that is X C M. If r # q, then there exists an element x € G \ X of order »
such that X (x) is a proper subgroup with a nontrivial partition different
from M. Hence every component of /7 other than X is a cyclic g-subgroup
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and moreover |G| = pg®. If |[II| > |II'| and Z € IT \ IT', then XQ;(Z) is a
proper subgroup with a nontrivial partition other than M, which is im-
possible. Thus |7| = |IT’|. Now since |Z| < ¢? for each component Z # X
we get

P =G| = |X|+ (V1| + -+ |V, —p < p+pg® —p =pg,

which is possible only if |Y;| = - - - = |Y,,| = ¢?. Therefore G is a Frobenius
group with cyclic kernel X of order p and cyclic complements Y; of order ¢2.
Conversely, each of the groups in parts (1) and (2) satisfies the hypothesis
of the theorem. O

PrOPOSITION 3.5. Let G be a finite group admitting a nontrivial
partition. Then G has exactly three subgroups with a nontrivial partition
if and only if either G =2 Dg or G is a Frobenius group with kernel K and
complement H, in which H, K satisfy the following properties:

(1) K s non-cyclic of order p%, H is cyclic of order ¢ and K is the
normalizer of its nontrivial subgroups;
(2) K is cyclic of order p and H is cyclic of ovder ¢>. In this case,

. P a
G={(x,y:af :yq3 =1la¥ =a i £1,i £ 1); 07

3) K 1is cyclic of order p and H 1is cyclic of order qr. In this case,

. P p
G=(oy:al =y =La¥ =o' 1 £ 1, #1Li7 £1),

where p, q,r are distinct primes and 1<t <p.

Proor. Let G be a finite group admitting a nontrivial partition and
let M,N be the proper subgroups of G, which admit a nontrivial parti-
tion. Also let 17, IT' and II” be the maximal partitions of G, M and N,
respectively. Since M, N are the only proper subgroups of G admitting a
nontrivial partition, either M, N are normal in G or M, N are conjugate.
First suppose that M, N are conjugate and that N = MY for some g € G.
Now since M, N have only two conjugates [G : No(M)] =[G : No¢(N)] = 2
so that Ng(M), Ng(N) <G and consequently

NG(N) = Ng(M?) = No(My = Ne(M).

This implies that M, N C Ng(M) C G, which is impossible by invoking
Proposition 3.2. Hence M, N are normal subgroups of G. Now we consider
two possibilities:
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(i) One of M, N is contained in the other. Without loss of generality we
may assume that M C N so that N is a maximal subgroup of G and
[G : N] = » for some prime 7. Also, by Proposition 3.4, N is of order pg? and
M is of order pq or ¢2, for some distinct primes p, g. Since N is a maximal
subgroup of G admitting a nontrivial partition it does not lie in a component
of I1. Also we should have |II| = |II N N|, otherwise we can choose a
component X € I7 such that N N X = 1. Then it follows that M X is a proper
subgroup with a nontrivial partition other than M, N, which is impossible.
Suppose that M C X for some component X of I7. Thus X is a normal
subgroup of G and its order is a product of three primes. Moreover,
G = XY for each component Y € IT\ {X}. Hence there exists a prime s
such that |Y| = s for each component Y € IT\ {X} and |/7| = |X| + 1. On
the other hand, |IT N N| = |M| + 1 and since N N X = M, each component
of IT N N other than M is of order s and |[N| = |M|s. Then it follows that
|[IT| > |IT N N|, which is impossible as it has been observed before. More-
over, as for N we have M # X for each X € 1. Now invoking Proposition
3.4, we obtain

IONM=1II"and INN = IT".

If r # p,q, then G has an element x of order » and M((x) is a proper
subgroup with a nontrivial partition different from M, N, which is im-
possible. Thus » = p or ¢. In this case, we have two possibilities by Pro-
position 3.2. First assume that |M| = pq. If X’ € IT' is the Sylow p-sub-
group of M as in Proposition 3.4, then X' is a characteristic subgroup of M
and consequently X’ JG. Also X’ = X" € IT" and for each component
Y” € 1"\ {X"}, the subgroups M NY” and Y” are of orders ¢ and ¢?,
respectively. Let X be a component of I7 containing X'. If p||Z|, for some
component Z € IT \ {X}, then G has a proper subgroup with a nontrivial
partition of order p?, which is impossible. Hence the components of I7
other than X are ¢g-subgroups. Also X G for X’ 1@, from which XY is a
proper subgroup with a nontrivial partition different from N for each
Y' € IT'\ {X'}. Thus XY’ = M and we deduce that X = X’ is of order p.
Since N is a Frobenius group with complements Y” # X", the compo-
nents of I7” other than X" are conjugate pairwise, which induces the same
property for components of /7 different from X. Consequently |Y| = ¢3
for each Y € IT\ {X}. If the component Y € IT\ {X} is not cyclic and
y € Y1 # Y NN is nontrivial, then y is of order ¢q or ¢> and M(y) is a
proper subgroup with a nontrivial partition different from M, N, which is
impossible. Hence the components of I7 other than X are cyclic. There-
fore G is a Frobenius group with kernel X of order p and complements
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Y € 17\ {X} of order ¢* and we have

. P
G={(x,y:af :yq3 =1, =2, i E2 1,i7 Z 1),

for some 1<i<p. In the second case, we have |[M| = ¢, the components of
IT' are of order q and |II'| = q + 1. From this IT' C IT", the components in
IT"\ IT are of order p and |IT"| = ¢* + ¢ + 1. If X" € [1" \ II' and ¢||X| for
some component X of I7 containing X”, then X has an element x of order q
and M (x) is a proper subgroup with a nontrivial partition of order ¢®, which
is impossible. Moreover, since the components of [1”\ II' are pairwise
conjugate, the same property is valid for the components of 77, which in-
tersect M trivially. Hence these components are p-subgroups of the same
order. If there is a component X € I7 such that X N M # 1 and ¢?|| X/, then
X has a subgroup H of order ¢? possessing M N X, which implies that HM is
a proper subgroup with a nontrivial partition of order ¢3, a contradiction. On
the other hand, if there is a component X € IT such that X N M # 1 and
p||X|, then X has an element x of order p, which does not belong to N and
thus M((x) is a proper subgroup with a nontrivial partition different from
M, N, which is impossible. Hence /7' C IT and the componentsin /7 \ I’ are
cyclic of order p?. Therefore G is a Frobenius group with non-cyeclic kernel
M of order ¢? and cyclic complements Y € IT \ IT' of order p?. Moreover, M
is the normalizer of its nontrivial subgroups and p? divides ¢* — 1 but it does
not divide g — 1.

(ii) None of the M, N is contained in the other. In this case, both of
M, N are maximal subgroups of G. Thus the components of IT are cyclic
subgroups of orders, which are the products of at most two primes. Also
M NN # 1is asubgroup of order a prime p. Let M N N = (x) and X be the
component of I7 containing x. Then (x) <G and consequently X JG. If G is
a p-group, then |G| = p? and G has nilpotent class at most 2. G is not of
exponent p, otherwise every nontrivial element of G lies in a proper sub-
group with a nontrivial partition so that G = M U N, which is impossible.
Hence, by Theorem 1.4, G = Dg. Now suppose that G is not a p-group.
Then at least one between M, N is non-abelian. Assume that M is non-
abelian of order pq. If M C Y for some component Y € 1, then M =Y,
which is impossible as Y is cyclic. The same statement is also true for N. If
(x) C X, then for each component Y € IT \ {X} we have G = XY, for Xisa
maximal subgroup of G. Thus every component of /7 other than X has
order g as M has elements of order ¢ outside X. Now since (x) IM, N, we
have |IT'| = |II"| =p + 1 and |II| > 2p + 1. But |II| cannot exceed 2p + 1,
otherwise M NY = NNY =1 for some component Y of /7 and (x)Y is a
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proper subgroup with a nontrivial partition different from M, N, which is a
contradiction. Now let |X| = pr. Then

pqr= |G| =|X|+ (| -1)g-1) =pr+ (] -1(@q-1)

and we have that |/7| = pr + 1. Thus we should have » = 2. If p is odd, then
X has a characteristic subgroup (y) of order 2. Hence (y) {G and (y)Y
is a proper subgroup with a nontrivial partition for each component
Y e IT\ {X}, which is impossible because |M| = |N| = pq # 2q = [{(y)Y|.
Thus p =2 and so ¢ is odd, as G is not a 2-group. In this term, G has a
unique element x of order 2, which implies that & € Z(G) and this is in
contradiction with Lemma 1.1. Hence M NN = (x) = X. Clearly, the
components of II' other than X are conjugate by powers of x. Now if
Y,Z CW for some component W e II, Y € IT' and Z € II" such that
Y,Z # X, then Y* , Z¥ C W* for i =0,1,...,p — 1. In particular, we de-
duce that N is also non-abelian, because the conjugates of Z by powers of x
should be different. If |Z| = r, then |W| = qr and we have |IT| =p + 1. In
this case, G is a Frobenius group with cyclic kernel X of order p and cyclic
complement W of order ¢r. We note that, ¢ # r otherwise Y = Z, and so we
would have M = N. Hence
T R e
G=(x,y:a =y =1V =2" 19217 £1,17" =1),

for some 1<i<p. Now assume that no components of 77’ and IT” other
than X lie in a component of I7 simultaneously. Then |I7| = 2p + 1 and we

can separate the components of /7 other than X into two classes Y7,...,Y),
and Zi,...,Z, in such a way that MNY;#1 and NnZ; #1 for
1=1,...,p. Also we have |Yi|=---=1Y,| and |Z{|=---=|Z,|. If

MnNY; CY; then |Y;| is a product of two primes, and we would have
G=XUY U---UY), a contradiction. Hence M NY; =Y; and Y; C M.
Similarly Z1,...,Z, CN. Let |Zi| =--- = |Zp| = r. Then
pgr = |G|
= X|+(Y1|-D+---+(Yp| -D+(Z1| -D+---+(Z,| - D
=p+plg=D+pr—1
<pqr,

which is a contradiction. The proof is complete. O

As it is shown in Propositions 3.2, 3.4 and 3.5, the number of subgroups
with a nontrivial partition depends on the number of prime divisors of the
order of G. In the sequel, we are investigating this relation more precisely.



Some Results on the Partitions of Groups 135

Recall that for each natural number n = p{"'---p%, where n» >1 and
D1, - - -, Pm are distinet primes, the function 2(n) determines the number of
prime divisors of » considering repetitive primes, i.e.,

Qn)=a1+ -+ ap.

THEOREM 3.6. Let G be a finite group admitting a nontrivial partition
and let n be the number of subgroups of G with a nontrivial partition. Then
QG < n+1 with equality if and only if the subgroups of G with a
nontrivial partition form a chain.

Proor. For an arbitrary group G let v(G) denotes the number of
subgroups of G admitting a nontrivial partition. Now let G be a finite group,
which admits a nontrivial partition. If w(G) = 1, then by Proposition 3.2,
Q(G|) = 2 < wG) + 1. Assume that the result holds for all groups with v-
value less than that of G. According to Proposition 3.2, G possesses a
maximal subgroup M with a nontrivial partition. Hence v(M) < v(G) — 1
and consequently Q(|M|) < v(M) + 1. If M ]G, then [G : M]is a prime so
that Q(G|) = Q(M|)+1 < w(G)+ 1. Now suppose that M?Q G, then
Ng(M) = M. Since G, the conjugates of M and proper subgroups of M
admitting a nontrivial partition are all distinct, we obtain

V@) >1+[G:M]l+vM)—1=[G: M]+v(M).
Let [G:M]= p‘fl ---p% be the canonical decomposition of [G: M]

n

into primes. Then [G : M] > 20+ -+t = 220GMD that is Q(G : M]) <
log, ([G : M]). Therefore

Q|G)) = QM| + QG : M])
<wW@) - [G: M1+ 1+1ogy(IG : M])
< w(G)+1.

Also the last inequality implies that for a finite group G with a
nontrivial partition Q(|G|) = v(G)+1 if and only if the subgroups of
G admitting a nontrivial partition form a characteristic chain

H,<°H,<]°¢... d°H ) = G,
where H; is a maximal subgroup of H;,;. O
We close this section by determining the structure of those finite groups
G admitting a nontrivial partition such that the subgroups of G with a non-

trivial partition form a chain. To do this we first need the following lemma.
Recall that a partition /7 of a group G is normal if 779 = IT for each g € G.
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LemMa 3.7.  Let G be a finite group admitting a nontrivial partition.
Then G has exactly one maximal subgroup with a nontrivial partition if
and only if G is a Frobenius group with elementary abelion kernel K and
cyclic complement H of prime power order. Moreover, G has no nontrivial
normal subgroups properly contained in K.

Proor. Let IT be a nontrivial normal partition of G and let M be the
unique maximal subgroup of G, which admits a nontrivial partition. Then
M <G and [G : M] = q is a prime. If no component of I7 lies in M, then
|X| = |X N M|q for each component X of I7. Moreover, IT N M form a par-
tition for M and we have

q|M| = |G|
= > [XI-qm| -1
Xell
=Y aXnM|- (1| -1
Xell

= q(M|+ (11| — 1) — (1] = D).

Then it follows that ¢ = 1, a contradiction. Let A be the set of all compo-
nents of 77, which are contained in M. If X € IT \ A, then X ¢ M and we
conclude that X is a maximal subgroup of G as M is the only maximal
subgroup of G admitting a nontrivial partition. Now we consider two pos-
sibilities:

(1) Ne(X) =X, for some component X € I7 \ A. In this term G is a
Frobenius group with complement X and since

&\ xnmy

X
=[G: X]X \ X NM| _lal <|X|—| |) =G| — M|
geG

X q

the components of I7 \ A are pairwise conjugate. This means K = Uy 4Y is
the Frobenius kernel of G, which is nilpotent by [15, 10.5.6]. If K has a
nontrivial characteristic subgroup H, then H G and for each Y € IT \ A,
HY is contained in a maximal subgroup of G with a nontrivial partition
different from M, a contradiction. Thus K is an elementary abelian p-group,
which is the normalizer of its nontrivial subgroups. Let x € G \ M be of the
least possible order. Then |x| = ¢! for some ¢ > 1. Since K (x) Z M we have
G = K(x), otherwise G has a maximal subgroup with a nontrivial partition
containing K(x) different from M, which is impossible. Therefore the
components of I7 \ A, as the Frobenius complements of G are cyclic of order
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¢'. Conversely, every group with the aforementioned properties has a un-
ique maximal subgroup, which admits a nontrivial partition.

2) X<4G for every component X € IT\ A. Let X € IT\ A and let
x€G\X. Then G = X(x) as X is a maximal subgroup of G and hence
there is a prime p such that |x| = p for each © € G\ X. If |II| > |A| + 1,
then there exists a component Y € IT \ A different from X and prime r
such that |x| = r for each « € G\ Y. But since G \ X U Y is nonempty we
deduce that p = ». Therefore G is a p-group of exponent p and we can see
that G has maximal subgroups admitting a nontrivial partition different
from M. Therefore |II| = |A|+1 and consequently G = M UX, where
IT\ A= {X}, which is impossible. O

THEOREM 3.8. Let G be a finite group admitting a nontrivial partition.
Then the subgroups of G, which admit a nontrivial partition form a chain
if and only if G is a Frobenius group with kernel K and complement H
satisfying the following conditions:

(1) K is cyclic of order p and H is cyclic of order q". In this case

p s on—1 p ot P
G=(xy: o’ =y? =1aY =a',i7 #£1,i =1); or

(2) K 1is mon-cyclic of order p* and H is cyclic of order ¢". In this case
G=(x,yz:0" =yP =27 =1,y = yw,a* =y, y° = x'y’),
where

n—1

A= {0 ;] € GL@,p), AT £1, AY =1, det(A™ — kI) #0,

1
m which m=1,2,....4" -1, k=12 ..., p—1 and p,q are distinct
primes.

Proor. By Lemma 3.7 and the fact that the subgroups of G, which
admit a nontrivial partition form a chain, G is a Frobenius group with ele-
mentary abelian kernel K of order p or p? and cyclic complement H of order
q" for some distinct primes p, ¢ and natural number n. For, if | K| > p?, then
it has subgroups with nontrivial partition which are not members of a chain.
Also in the case where |K| = p?, K is the normalizer of its subgroups of
order p in G. Considering the order of K we have two possibilities:

(i) K is cyclic of order p. Let K = (x) and H = (y). Since K I G, a¥ = !
for some 7 and consequently a/ =« for each t € N. Then it follows
w=a" =2 that is i £ 1. Also o/ =« . Then it follows that
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g1 n—1

p n— .
i7" £1, because xy? " #y? 'x. On the other hand, every group with
these properties is a Frobenius group with cyclic kernel of order p and
cyclic complement of order ¢" satisfying the hypothesis of theorem.

Therefore
n i g p ot
G=(ry:a=y" =La’ =o,i" " #1,¢ £1).

(ii) K is an elementary abelian p-group of order p?. Let H = (z),
v € K\ {1} and y = 2%, then y ¢ (x) and hence K = (x,y). Let y* = a'y/,
where ¢,7 are assumed to be in Z, and let A be the matrix, which is in-
troduced in (ii). Then

U, UNS U U Um | gm | U
"y’ = a"my" and L}m} =A {v]’
for all u,v € 7, and integers m. Now since K is the normalizer of its
nontrivial subgroups, for each u,v € Z, such that k # 0, (u,v) # (0,0) and
1 <m<q"
(xuyv)z'” # (xuyv)k’

o]

ie., det(A™ — kI) # 0. On the other hand, A7 #1 and A?" = I, for the
same is true for z. Conversely, we can verify that every group with these
properties is a Frobenius group with elementary abelian kernel of order p?
and cyclic complement of order q" satisfying the hypothesis of the theorem.
Therefore

which is equivalent to

G=(,yz:0 =y’ =27 =Ly =ya,* = y,y° = a'y),

where A7 #£1, A7 =1 and A™ has no eigenvalues in 7, for each
m=12...,¢"—1. O

REMARK. Note that the structure of groups in Proposition 3.4(1) and
Proposition 3.5(1) can be obtained from Theorem 3.8(2) by putting n» =1
and 2, respectively.

The case of infinite group is more difficult. In the spirit of Proposition
3.2 we have the following result, but a precise classification of those infinite
groups admitting a nontrivial partition without proper subgroups admit-
ting a nontrivial partition remains open.
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THEOREM 3.9. Let G be an infinite group, which admits a nontrivial
partition. If G has no proper subgroups admitting a nontrivial partition,
then either G is a simple group or G' = Hy(G), [G : G'l =pand G' = G” for
some prime p.

Proor. Let IT be a nontrivial partition of G. If X € IT is not maximal,
then there exist a subgroup H of G containing X properly. But then [T N H
is anontrivial partition for H, which is impossible by hypothesis. Thus G has
a unique nontrivial partition with maximal subgroups as its components.
Suppose that G is not simple. Then G has a nontrivial normal subgroup N,
which lies in a component X of I7. If x € G \ X, then N(x) has a nontrivial
partition so that G = N{x) and N = X. Hence there exists a prime p such
that |x| =p for each x € G\ X, from which N = H,(G). As N has no
characteristic subgroups N = N'. Moreover, since G' C N, we should have
N = (@, as required. O

4. Number of components of a partition.

Schulz [16] had shown by using the classification theorem of finite
groups admitting a nontrivial partition that a finite group with a linear
partition is either an elementary abelian p-group or a Frobenius group. In
this section, we shall invoke a similar procedure to prove the following
result concerning the number of components of a nontrivial partition and
the order of group itself.

THEOREM 4.1. Let G be a finite group admitting a nontrivial parti-
tion II.

1) If G 2 PSL(2,2"), then ged(|II| — 1,|G|) # 1 and if G =2 PSL(2,2"),
then there exists a montrivial partition IT' such that
ged(I7 — 1,|G) = 1;

(2) If IT is normal, then ged(|IT] — 1,|G|) # 1; and

(8) There exists a nontrivial partition IT* of G such that |II*| — 1 di-
vides |G|.

Proor. Using the classification theorem of finite groups admitting a
nontrivial partition it is enough to deal with each case separately. So, let G
be a finite group with a nontrivial partition. Then

(i) G=S84. Let 1 T be the maximal partition of G. Then it is easy to see
that the components of I7 T are cyclic subgroups of G. Let P be a Sylow 2-
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subgroup of G. Then P = Dg and P contains exactly one cyclic subgroup of
order 4. If P were I1 T—admissible, then considering an element x € G \ P
with |(x)| = 4 we would have PN (x) =1 and |P{x)| = 32, a contradiction.
Since there is no partition of G containing two different components of
order 6, the length of a nontrivial partition of G is either 10 or 13, which
satisfy ged(10 — 1,|G|) # 1 and 13 — 1||G|, respectively.

(i) G is a p-group. Let I7 be a nontrivial partition of G and let 6(H) be
the number of cyclic subgroups of order p for an arbitrary subgroup H of
G. Then, by [6, Satz 1.7.2], S(H) £ 1 and so

=312 o) =) £1

Xell Xelnl

that is ged(|1| — 1, |G|) # 1. Also if M is a maximal subgroup of G con-
taining H,(G), then M together with the cyclic subgroups of order p
generated by elements of G \ M form a nontrivial partition I7* of G and
we have p|M| = |G| = M|+ ((II"| — D)(p — 1). Hence |II"| — 1 = |M| and
so |IT*| — 1 divides |G|.

(iii) Gis a group of Hughes-Thompson type. Let p be a prime such that
Hy(@) C G, then[G : H,(G)] = p, for G is not a p-group. Also, by [9], H,(G)
is a nilpotent group. If p{|H,(G)|, then G is a Frobenius group and we do
this in part (iv). Hence we can assume that H,(G) is not a group of prime
power order, whence by Theorem 1.3, H,(G) has only the trivial partition.
Thus H,(G) together with the cyclic subgroups of order p generated by
elements of G\ H,(G) form the only nontrivial partition /7 of G and we
have p|H,(G)| = |G| = |Hy(G)| + (|II| — 1)(p — 1). Then it follows that
|[II| — 1 = |Hp(G)| and so |II| — 1 divides |G|.

(iv) Let G be a Frobenius group and suppose that K and H are re-
spectively the Frobenius kernel and a complement of G. By [15, 10.5.5] and
Corollary 3.3, H has no nontrivial partitions. In addition, by [15, 10.5.6], K
is nilpotent and if K has a nontrivial partition, then by Theorem 1.3, K is a
p-group. Clearly, K together with the conjugates of H form a nontrivial
partition /7* for G and we have |IT*| = |K| + 1 so that |/T*| — 1 divides |G].
Also if K has no nontrivial partitions, then I7* is the only nontrivial par-
tition of G. Now assume that K is a p-group with a nontrivial partition.
Thus the maximal partition of K together with the conjugates of H make
the maximal partition /7 Tof G.If H is a proper subgroup of a IT*-ad-
missible subgroup M of G, then M is also a Frobenius group with kernel
Ky C K. Thereby every nontrivial partition /7 of G has the form

I=1{K,,....K,,My,....M, H", ... H%"}



Some Results on the Partitions of Groups 141

where K; are subgroups of K and M; are Frobenius subgroups of G with
kernel Ky, as subgroups of K and complements /, as conjugates of H. As
M; contains exactly |Kj,| conjugates of H and K;, ..., Ky, Ky, ..., Ky
form a partition for K, we get

n

1| =m+mn+ K| — Ky, | - — |Ky,|
Lmin
L 5(K) + -+ + 0Ky) + 0Ky + - - + 06Ky,
£ 5K)
L1

Therefore ged(|17] — 1,|G|) # 1.

(v) G = PSL(2,p") with p" > 4. By [6, Satz I1.8.5], there are subgroups
H, K and L of G of orders p", (p" — 1)/d and (p" + 1)/d, respectively, where
d = ged(p™ — 1,2) such that the conjugates of H, X and £ makes a nontrivial
partition for G. Moreover, H is an elementary abelian p-group, K and £ are
cyclic groups, and H, K and £ have p" + 1, p"(p" + 1)/d and p™(p" — 1)/d
conjugates, respectively. Let I7 T be the maximal partition of G and let H be a
17T -admissible proper subgroup of G, which is not a component of 17 . We
shall use [6, Hauptsatz I1.8.27] of Dickson to determine the structure of H. If
H =~ A4, then as K and £ are cyclic Hall subgroups of G and A4 has no ele-
ments of order 4, we have that 4 divides |H| = p™. Then it follows that p = 2
andd = 1. Since H is 17T-admissible we have p" +1 = 3. Then it follows that
n=2and G = PSL(2,4) = A;. If H = Aj;, then similarly we can show that
p =2 and d = 1. Since A5 has no elements of order 15 and H is I7 T ad-
missible, we should have p" —1=3 and p"+1=5. Then we have
G = A5 = H, acontradiction. If H =~ S, then as the Sylow 2-subgroups of H
are not cyclic and K, £ are cyclic Hall subgroups we should have 8|p”. But
then the Sylow 2-subgroups of H should be elementary abelian p-groups,
which is impossible. If H is a dihedral group of order 2m with m|(p" +1)/d,
then m = (p" £1)/d as m #1. Also if p is odd, then (p" £1)/d =2.
Therefore we have p" =5 and G = PSL(2,5) =~ PSL(2,4) = A;. If H is the
semidirect product of an elementary abelian p-group of order p™ with a cyclic
subgroup of order k¥ such that k divides both p™ — 1 and p" — 1, then
k|(p" — 1)/d and hence k = (p" — 1)/d. On the other hand, k|p2°d™™ — 1 so
that p" — 1|d(p&ed®™m _ 1), Since d < 2 we have ged(m,n) = n, i.e., m = n.

pvn(p?m _ 1)
If H >~ PSL@2,p™), in which m|n, then |PSLZ,p™)| = —

p" —1p"” — 1.Ifp™ — 1 # 1, then we should have p™ — 1 = p" — 1. Then we

and
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have m =n, a contradiction. Thus p™ =2 and so H =2 PSL(2,2) = Ss.
Therefore p"+1=3 and so n=2 and G = PSL(2,4). Finally, if
H =~ PGL(2,p"™) then we must have that 2m divides %. On the other hand, H
contains cyclic subgroups of order p™ — 1 and p™ + 1. So, if H were IT t.

pn -1
ged@,p — 1)
only if n = 2m, p =3 or p = 2 and m = 1. In the case p = 3 we have that
G =PSL2,9) and H = PGL(2,3) = S,. In such a case H is not IT T—ad—
missible, because all the involutions of H cannot be covered by the 3 cyclic
subgroups of H of order 4. Therefore we must have p =2 and so
G = PSL(2,4) and H = PGL(2,2) = PSL(2,2) = S5 and this case has been
considered before.

Now assume that p is odd and G 22 PSL(2,4). Let IT be a nontrivial par-
tition of G and let X be a component of /7, which is neither a conjugate of XC and
L nor a Sylow p-subgroup. Then X is a semidirect product of a p-subgroup Hx
of order p™ and a cyclic subgroup of order (p” — 1)/2, whichis aconjugate of K.
Hence X is a Frobenius group with kernel Hy. Suppose that X1, ..., X,, are
such components and Hy, and Ky, 1, . . . , Kx, ;» are their Frobenius kernel and
complements, respectively. Let k be the number of p-components of 77. Then

admissible then we would have < p™ + 1. This is possible if and

[T =k+m+ (G : Ne(K)] —mp"™) +[G : Ng(L)]

(N N( M
:k+m+(pg(pz—s_l)—mp”)—kpi(pz 1

Lk+m.
But k + m is the number of p-components of I7', where IT’ is obtained from
1T by omitting X; from IT and putting the partition of X; instead. As Sylow p-
subgroups of G are pairwise disjoint we can classify p-components of I7’ in

such a way that the union over components of each class is a Sylow p-sub-
group of G. Now if A is the set of all p-components of I7’, then

1) £ 37 6x)

XeA

I

geG
£ [G : Ng(H)I6(H)
% p"+1

L.
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Therefore ged(|/7] —1,|G|) # 1. Now let G = PSL(2,2"), where n > 2.
Then G has a dihedral sub%roup M of order 2(2" — 1), which is a I7 T—ad—
missible subgroup, where /7! is the maximal partition of G. Moreover, since
[G: Ng(H)] = 2" + 1, there exist Sylow 2-subgroups H; and Hy of G such
that H1 "M = Hs N M = 1. Since H; and Hy are elementary abelian 2-
groups, if x1,y1 € H1 and x2,y2 € He are distinct elements such that
(v1) N (y1) = (w2) N (y2) =1, then (w1, 91) = (1) U (y1) U (x1y1) and
(2, Y2) = (2) U (y2) U (w2y2). Thus we can construct a partition 17’ from
ol by omitting the components of M, (x1,¥1) and (xs, y2) and replacing M,
(®1,y1) and (w2, y2) instead. Therefore

T =[] -2 —1)—2 -2
=[G : Neg(H)I2" =1 +[G : NI+ 1[G : Ne(L)] - 2" - 3

M@ 1 1) 292 — 1)
Tt T3

— 22n+1 _ zn —4

| —2"_3

and we can see that ged(|/7'| — 1, |G|) = 1. Nowlet /T be a normal partition of
G. If His both a dihedral group of order 2(2" + 1) and a component of 77, then
the conjugates of H are disjoint as the components of 77. Then it follows that
G has at least 2"(2%" — 1)/2 involutions while G has only 22" — 1 involutions
and this is possible only if 7 = 1. Also if H is both a semidirect product of a
Sylow 2-subgroup with a cyclic subgroup of order 2" — 1 and a component of
11, then K has at least [G : Ng(H)]|H| = 2"(2" + 1) different conjugates
while the number of conjugates of K is [G : Ng(K)] = 2"(2" + 1)/2, which is
impossible. Therefore every component of /7 is either a p-subgroup or a
conjugate of K or £. Now if A is the set of all p-components of 77, then

[1I| = |A] +[G : Ne(K)] + [G : Ng(L)]

277/ 2” 1 277/ 2” _ 1
3600 + (2+ )| (2 )

XeA

So it follows that ged(|/7] — 1, |G]) # 1. Finally, assume that G = PSL(2, p")
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and I is the partition of G consisting of all conjugates of H, K and £. Then
[IT*| = [G : Ng(H)] +[G : Ne(K)1+[G : Ng(L)]

n( Y] 1) 77,( n 1)
n 1 j 1 2 1
=p'+1+ 5 + 5

:p271, _’_pn_’_l.

Hence |IT*| — 1 divides |G].

(vi) G = PGL(2, p") with p odd and p™ > 5. Let IT be a partition of G and
let M be the subgroup of G, which is isomorphic to PSL2,p"). If X is a
component of 77, then [X : X N M] < 2. Nowif X N M = 1, then |[X| = 2. But
X contains either a p-subgroup of G or a conjugate of K or L. By this we
conclude that |KC||2 or |£]|2 and consequently p” = 2 or 3, a contradiction.
Therefore X NM #1 and so |II|=|IINM|. Now utilizing part (v),
ged([II N M| — 1,|PSLZ,p")|) # 1,which implies that ged(|I1| — 1, |G|) # 1.
On the other hand, by [6, Satz I1.8.5], G has a partition I7* consisting of all
conjugates of 7/, K" and £’ of orders p”, p"* — 1 and p" + 1, respectively, in
such a way that

[IT*| =[G : Ng(H)] +[G : No(K)] +[G : Ng(£)]

n n 1 V(2 7’[_1
_prp14? (p2+ ), P (p2 )

:p2n+pn+1'

Hence |II*| — 1 divides |G].

(vii) G = S2(221). Let 11T be the maximal partition of G and let H be a
11T -admissible subgroup of G, which is not a component of I7 . By [7,
Theorem 3.10] and [8], IT t consists of all conjugates of subgroups H, K, U,
and Uy of orders ¢, q¢—1, ¢+2r+1 and q¢—2r+1 with ¢ +1,
(¢® +1)/2, 471|G|/|V1| and 471|G]|/|Vz| conjugates, respectively, where
g =22+ pr=2" "V, = NoU;) and [V; : U;] = 4, for i = 1,2. We shall use
[17, Theorem 9] of Suzuki to determine the structure of H. If H = Sz(s)
such that ¢ is a power of s, then the order of Sylow 2-subgroups of H is less
than that of H, which is impossible. Also if H is either a conjugate to a
subgroup of V; (1 = 1,2) or a conjugate to a subgroup of N;(K), then the
Sylow 2-subgroups of H are of order 2 or 4 while the order of Sylow 2-
subgroups of G are at least 64. Moreover, if H is a conjugate to a subgroup
of HIC, then H is a conjugate of HK. Hence a I7 T _admissible subgroup of G
is either a component of I7 Tora conjugate of HK. Now let /7 be a nontrivial
partition of G and let m be the number of components conjugate to HK.
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Then
[II| = (G : Ng(H)] — m) + (IG : Ng(K)] — mq)
+[G : NgUD1+[G : NeU)]+m

20,2

AFE+1) 1 |G| 1 |G|

=@+ D+ mg

q 2 T ) T )
4 1 |U1|+|Z/12|
=14 A
4 |U||Us|

2(q+1)

(1]

1+- q(q +1@-1)

@?+1

IiES

1

and consequently ged(|I7| —1,|G|) # 1. Moreover, if IT* is the partition
containing the conjugates of H, I, U; and Us, then

[I"| =[G : No(F)] + [G : N1+ [G : NoWUD] +[G : NoUs)]
=q' +¢* +1.

Then it follows that |I7*| — 1 divides |G|.
Now the result follows from parts (i) - (vii) and the proof is complete. [

This paper is a part of my master degree thesis [5] on partitions of
groups.
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