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Conic Sheaves on Subanalytic Sites
and Laplace Transform

Luca PrRELLI (%)

ABSTRACT - Let E be an dimensional complex vector space and let E* be its dual. We
construct the conic sheaves OE and Op  of tempered and Whitney holo-
morphic functions respectively and we give a sheaf theoretical interpretation of
the Laplace isomorphisms of [10] which give the isomorphisms in the derived
category OE [n] ~ OfE‘vﬁ and Og:‘ [n] ~

Introduction.

Classical sheaf theory is not well suited to the study of various objects
in Analysis, which are not defined by local properties. To overcome this
problem Kashiwara and Schapira in [11] developed the theory of ind-
sheaves on a locally compact space and defined the six Grothendieck op-
erations in this framework. For a real analytic manifold X, they defined the
subanalytic site X, as the site generated by the category of subanalytic
open subsets and whose coverings are the locally finite coverings in X.
Moreover they proved the equivalence between the categories of ind-R-
constructible sheaves and sheaves on X,. They constructed the sheaf of
tempered distributions as a sheaf on X, and when X is a complex manifold
they introduced the sheaf of tempered holomorphic functions. Thanks to
the results of [16] we have a direct construction of the six Grothendieck
operations on Mod(ky,, ), without using the theory of ind-sheaves. So we
will work directly with sheaves on subanalytic sites.

Let X be a real analytic manifold endowed with an action of R*. Our first
goal is to define conic sheaves on X;, and then, when X is a vector bundle, to
extend the construction of the Fourier-Sato transform for classical sheaves
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to conic sheaves on subanalytic sites. In order to do that we have to choose a
suitable definition of conic sheaf: indeed there are several definitions, which
are equivalent in the classical case but not in the framework of subanalytic
sheaves. We choose the one which satisfies some desirable properties (as
the equivalence with sheaves on the conic topology associated to the action
and the isomorphism of conic sheaves with limits of conic R-constructible
sheaves) and for which the Fourier-Sato isomorphism applies.

Let E be a complex vector space. As an application we construct the
conic sheaves Of@w and (DVEV;[<+ of tempered and Whitney holomorphie
functions respectively and we prove a sheaf theoretical interpretation of
the Laplace isomorphisms of [10] which induce isomorphisms in the de-
rived category OfEAR+ 1] ~ O%Tw and Ogg 1] ~ g@-'

In more details, the contents of this paper are as follows.

In Section 1 we first recall the results of [11] and [16] on sheaves on
subanalytic sites. Then we consider the category of conic sheaves on
subanalytic sites. Let k be a field and let X be a real analytic manifold with
an action x of R™. Let U be an open subset of X. We say that U is R*-
connected if its intersections with the orbits of 1 are connected. We denote
R*U the conic open set associated to U (i.e. R"U = u(U,R™)). A sheaf F
on X, is said to be conic if '(RTU;F) = I'(U;F) for each R"-connected
relatively compact open subanalytic subset U of X. We call Mod+ (kx,,) C
Mod(kyx,,) the category of conic sheaves. This definition is different from
the classical one. Let us consider the projection p : X x R — X. One can
define the subcategory Mod” (kx, ) of Mod(kx, ) consisting of sheaves sa-
tisfying 4~1F ~ p~1F. The categories Mod"(ky,,) and Mod - (ky,,) are not
equivalent in general. The category of conic subanalytic sheaves has many
good properties, for example it is equivalent to the category of sheaves on
the conic subanalytic site X, .+ (i.e. the category of open conic subanalytic
subsets of X with the topology induced from Xg,). This equivalence is
strictly related to the geometry of subanalytic open subsets of X. When £
is a vector bundle, one can define the Fourier-Sato transform which gives
an equivalence between conic sheaves on Ey, and conic sheaves on E,,
where E* denotes the dual vector bundle.

In Section 2 we study the conic sheaves of tempered and Whitney
holomorphic functions. Let E be a real vector space, and let £ — P be its
projective compactification. We define the conic sheaves of tempered
distributions DbfER+ and Whitney C*°-functions Cj’;{{vf If U is an open sub-

analytic cone, the sections I'(U; Db%w) are distributions which are tem-
pered on the boundary of U and at infinity, and the sections I'(U; C;;‘f) are
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Whitney C*-functions on U with rapid decay at infinity. If F' is a conic R-
constructible sheaf on £ we have

RHom(F, Dby, ) ~THom(F, Dbp),

00,W / w 00
RHom(F,C5™) ~D'F @ Cj,

where THom(-, Dbg) and - g Cy are the functors introduced in [10].
When £ is an » dimensional complex vector space we define the sheaves
O%w and ng of tempered and Whitney holomorphic functions taking the
solutions of the Cauchy-Riemann system with values in tempered dis-
tributions and Whitney C>-functions respectively. We show that these
sheaves are invariant by the Laplace transform. In fact the Laplace
isomorphisms of [10] induce isomorphisms in the derived category
E[+[n] OE* and (9“’A [12] ~ O“’ , where A denotes the extension of

the Fourier- Sato transform to comc sheaves on E,. Moreover these iso-
morphisms are compatible with the action of the Weyl algebra.

1. Conic sheaves on subanalytic sites.

In the following X will be a real analytic manifold and & a field. Ref-
erences are made to [11, 16] for an introduction to sheaves on subanalytic
sites. We refer to [2, 12] for the theory of subanalytic sets and to [4, 19] for
the more general theory of o-minimal structures.

1.1 — Review on sheaves on subanalytic sites.

Denote by Op(Xs,) the category of subanalytic open subsets of X. One
endows Op(X;,) with the following topology: S C Op(Xg,) is a covering of
U € Op(Xy,) if for any compact K of X there exists a finite subset Sy C S
such that K N Jycg, V =K N U. We will call X, the subanalytic site.

Let Mod(ky,,) denote the category of sheaves on Xy,. Then Mod(kyx,,) is
a Grothendieck category, i.e. it admits a generator and small inductive
limits, and small filtrant inductive limits are exact. In particular as a
Grothendieck category, Mod(ky,, ) has enough injective objects.

Let Modg-.(kx) be the abelian category of R-constructible sheaves on
X, and consider its subcategory Mod},_.(kx) consisting of sheaves whose
support is compact.
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We denote by p: X — X, the natural morphism of sites. We have

functors
P
Mod(ky) =—p!
P

Mod (kx,,).

The functors p~! and p, are the functors of inverse image and direct
image respectively. The sheaf p /" is the sheaf associated to the presheaf
Op,,X) > U — F(U). In particular, for U € Op(X) one has pky ~
ini) p.kev, where V € Op,,(X). Let us summarize the properties of

VccU
these functors:

e the functor p, is fully faithful and left exact, the restriction of p, to
Modg-.(kx) is exact,

e the functor p~! is exact,

e the functor p, is fully faithful and exact,

e (p71,p,) and (p,, p~!) are pairs of adjoint functors.

For each F' € Mod(ky,,), there exists a small filtrant inductive system
{F;}, with F; € Mod},_.(kx), such that F ~ lil)n p.Fi. Moreover let {F;} be a

filtrant inductive system of kx, -modules and let G ¢ Mods;_.(kx). One has
the isomorphism

1.1) Hom(p, G, liLnFi) ~ lil)n Hom(p,G, F;).
i i
Let X,Y be two real analytic manifolds, and let f : X — Y be a real
analytic map. We have a commutative diagram

1.2) lp lp
/

X T R Y:s'a

We get external operations f !, f, and fi,, where the notation f; follows
from the fact that fi o p, # p, o fi in general. If f is proper on supp(#) then
f.F ~ fuF, in this case fy commutes with p,. While functors f ! and @ are
exact, the functors Hom, f. and f, are left exact and admit right derived
functors. In particular the functor Rfy admits a right adjoint, denoted by f*,
and we get the usual isomorphisms between Grothendieck operations
(projection formula, base change formula, Kiinneth formula, ete.) in the
framework of subanalytic sites.
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We refer to [16] for a detailed exposition.
Finally we recall the relations between the six Grothendieck operations
and the functors p~1, Rp, and p,.

the functor p~! commutes with ®, f ~1and Rfy,

the functor Rp, commutes with RHom, Rf. and f*,

the functor p, commutes with ® and f !,

if f is a topological submersion (i.e. it is locally isomorphic to a pro-
jection Y x R" — Y), then f' ~f ' @ f'ky commutes with p~! and Rf;
commutes with p,.

1.2 — Conic subanalytic sheaves.

Let X be a real analytic manifold endowed with an analytic action u of
R". We have a diagram

L H
X— X xR* ?{ X,
where 1(x) = (x,1) and p denotes the projection. We have pto1=poi1=id.

DEFINITION 1.2.1. (1) We say that a subset S of X is R -connected if
S N b is connected or empty for each orbit b of w.

(i) Let S be a subset of X. We set R*S = u(S,R™").
(iii) Let S be a subset of X. Then S is conic if S =R'S. i.e. S is
invariant under the action of R*.

If U € Op(X), then R*U € Op(X) because x is open.

DEFINITION 1.2.2. A sheaf of k-modules F on X, is conic if the
restriction morphism I'(RYU; F) — I'(U;F) is an isomorphism for each
R*-connected U € Op®(X,,) with RTU € Op(Xq).

(i) We denote by Mody+(kx,,) the full subcategory of Mod(kyx,,)
consisting of conic sheaves.

(ii) We denote by D°.(kx,,), the full subcategory of D’(kx,,) con-
sisting of objects F such that H'F belongs to Mody+ (kx,,) for all j € Z.

REMARK 1.2.3. Let X be a real analytic manifold endowed with a
subanalytic action i of R*. As in classical sheaf theory one can define the
subcategory Mod“(kx,) of Mod(kyx,) consisting of sheaves satisfying
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W IF ~ p~1F. The categories Mod"(kyx,,) and Mod- (kx,, ) are not equiva-
lent in general.

In fact let X = R, set X™ = {x € R; x > 0} and let u be the natural
action of R" (i.e. u(x,t) = tx). The sheaf pkyx: ~ li_m>p*k(%,n> belongs to

nelN
Mod“(kx,,) but not to Mody-(kx,,). Indeed, it is Eeasy to check that
I'X"; plkx+) = 0 while I'((a, b); p)kx+) ~ k, 0<a<b. Moreover, since kx- is
conic and the functors 4! and p~! commute with p, we have pkyx: €
Mod“(kx,,).

DEFINITION 1.2.4. We denote by Op(Xy+) (resp. Op(X,, ) the full
subcategory of Op(X) consisting of conic (resp. conic subanalytic) subsets,
i.e. U e Op(Xy+) (resp. U € Op(X,, x+)) if U € Op(X) (resp. U € Op(Xy,))
and it is invariant by the action of R™.

We denote by X+ (resp. X, +) the category Op(Xy+) (vesp. Op(X, +))

endowed with the topology induced by X (resp. Xgq).

Let n: X — X+, 1y 1 Xoa — Xy g+ and pg+: X+ — Xoar+ be the
natural morphisms of sites. We have a commutative diagram of sites

X _ K

(13) l?} lnsﬂ
XR+ ﬁ';" Xsa,R"' Y

We need to introduce the subcategory of coherent conic sheaves.

DEFINITION 1.25. Let U € Op(Xy+). Then U s said to be relatively
quasi-compact if, for any covering {U;},.; of X+, there exists J C I finite
such that U C J;c; U;. We write U CC X+,

We will denote by Op°(Xy+) (resp. Op‘(X,, +)) the subcategory of
Op(Xy+) consisting of relatively quasi-compact (resp. relatively quasi-
compact subanalytic) open subsets.

One can check easily that if U € Op°(X), then R*U € Op°(Xy+).

DEFINITION 1.2.6. Let F € Mod(kx,,) and consider the family
Op(X, sa,R* )-

() F is X, p+finite if there exists an epimorphism G — F, with
G =~ @icrky,, 1 finite and U; € Op“ (X, g+)-
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(i) F is X, g+-pseudo-coherent if for any morphism v : G — F,
where G is X, g+ -finite, kery is X, o+ finite.

(i) Fis X, p+-coherent if it is both Xy g+ finite and X, +-pseudo-
coherent.

We will denote by Coh(X,
of X, r+-coherent objects.

g+) the subcategory of Mod(kx,, ) consisting

sa,]

Replacing Op®(X,) with Opc(Xsa’W ), we can adapt the results of [11, 16]
and we get the following result (see [5] for a detailed proof).

THEOREM 1.2.7. () Let G € Coh(Xga z+) and let {F;} be a filtrant

mductive system in Mod(lcxmR+ ). Then we have an isomorphism

1111)1 I‘IOHI]CXM‘RJr (pIR**G? F»L) 5 Homkxsa_,[z+ (/)R+*G, 1111)1 Fl)
1 1

Moreover the functor of direct image py+, associated to the morphism py+
wmn (1.3) s fully faithful and exact on Coh(X, sa R

() LetF Mod(kxm_ - ). There exists a small filtrant inductive system
{Fi}icr in Coh(X, g+) such that F ~ lil)n Pr L

i

NoOTATION 1.2.8. Since py+, is fully faithful and exact on Coh(X, +), we
can identify Coh(X, sa. r+) With its image in Mod(ch ) When there is no
risk of confusion we will write F instead of P L fmﬂ F € Coh(X, g+).

Let us consider the category Mody: (kx,,) of conic sheaves on Xy,. The
restriction of 7, induces a functor denoted by 7,,, and we obtain a dia-

gram

ﬁ.‘i!}.*
ht[OdR+ (kXSu) - B'{[Od(!{:){sa:.lk"' )

Moa
(1.4) l /
Mod(kx,,)

Now assume the hypothesis below:

(i) every U € Op°(Xy,) has a finite covering consisting
of R -connected subanalytic open subsets,

(ii) for any U € Op°(Xy,) we have R*U € Op(X,),

(iii) for any x € X the set R*x is contractible,

(iv) there exists a covering {V,}, . of Xy, such that
V, is R*-connected and V,, cC V,,,; for each n.

(1.5)
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Let U € Op(X,,) such that R U is still subanalytic. Let F € Mod(ka_ - ).
Let ¢ be the natural map from I'(R*U; F) to I'(U; 5} F) defined by

F(RTU;F) — T'RYU;n.nF)
(1.6) ~  T(RTU;nlF)

St

— r'U; ﬂs_alF).

ProrosiTION 1.2.9. Let F € Mod(chmN). Let U € Op(Xsy), assume
that U is R -connected and that R*U 1is still subanalytic. Then the
morphism ¢ defined by (1.6) is an isomorphism.

PROOF. (i) Assume that U € Op°(Xy,) is R"-connected. Let F ¢
Mod(ky,, . ), then F' = liLn pr+ i, with F; € Coh(X, ¢+). We have the chain

of isomorphisms i

Homy, (ku, 1y, lim pr+ F;) ~Homy,  (ky, Hi,n/’*”ilFi)
i %
~lim Homy, (kyy, ' F')
i
~ lln HOka‘[ N (kR+U? Fi)
i

~Homy,
sa

LR (kRJr v IET)I pRJr*Fi)’

where the first isomorphism follows since 7! o pp+, =~ p, oy~ ! and the
third one follows from the equivalence between conic sheaves on X and
sheaves on Xp+. In the fourth isomorphism we used the fact that
RYU € Op“(X, g+)-

(ii) Let U e'Op(Xm) be RT-connected. Let {Vi}nen € Cov(Xy,) be a
covering of X as in (1.5) (iv) and set U,, = U NV,,. We have

A7) TUing F) = Mm I(Uy; 0, F) ~ im I(R* U, F) ~ T(R* U F).

O

THEOREM 1.2.10.  The functors 7,, and i3} in (1.4) are equivalences of
categories inverse to each others.

ProoF. (i) Let F € Modg-(kyx,), and let U € Op‘(Xy,) be R"-con-
nected. We have

LU F) = T(RTU; F) = TR U334, F) = TU; 1 1150, F).

sa ”sa*
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The third isomorphism follows from Proposition 1.2.9. Then (1.5) (i) implies
Hsa s =~ id.
(ii) For any U € Op°(X,, g+) we have:

T(U; il F) ~ T(U; L F) ~ I'(U; F)

where the second isomorphisms follows from Proposition 1.2.9. This implies
Nsanllsa == id. O

NoratioN 1.2.11. Since n} is fully foithful and exact we will
often identify Coh(X,, z+) with its image in Modg-+(kx,,). Hence, for
F € Coh(X,, ) we shall often write F instead of 1, F.

Thanks to Theorem 1.2.7 we can give another description of the cate-
gory of conic sheaves.

THEOREM 1.2.12. Let F' € Mody+(kx,, ). Then there exists a small fil-
trant system {F;} in Coh(Xy, +) such that F' ~ lim p.LF.

1

Assume (1.5). Injective and quasi-injective objects of Mod(ky,,) are not
contained in Modj,+(ks,). For this reason we are going to introduce a
subcategory which is useful when we try to find acyclic resolutions.

LeEmMA 1.2.13.  Assume that X satisfies (1.5). Then the following prop-
erty is satisfied:

has a finite refinement {V;};_, such that each ordered

each finite covering of an R*-connected U € Op°(Xy,)
1.8
union JI_, V; is R*-connected for eachj € {1,... ,n}.

ProOF. Let U € Op°(Xy,) be R"-connected. Then each finite cove-
ring of U admits a finite refinement consisting of R -connected open
subanalytic subsets. Let {U;};_; be a finite covering of U, U; € Op‘(Xy,)
IR *-connected for each i. We will construct a refinement satisfying (1.8).

For k=1,...,n set V11 := U, and Vi, = Ug(i) n R+(U}C n Ua(i)) for
1=2,...,m and o(@)=1—1 if 1<k, o@) =1 if >k Then set
Uiz == Uiy Vi and Vig; == U,y N R (Upe N Uiy Forj = 1,...,n define
recursively Uk7 = UZ:l Uf:l Viei and iji = U N R+(U]Qj N U(r(i))~ Re-
mark that U)_, Uj_; Uiy Vi = U, R"U, N U. By Lemma 1.2.14 below
all the sets V};; are R*-connected and {iji}i,k,j is a refinement of {U;},
satisfying (1.8) (with the lexicographic order). |
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LEmmA 1.2.14.  Assume that X satisfies (1.5) (ii1). Let U,V , W be open
and RT-comnected. Then UUNVNRT(UNV)HIUWNRYNUNW)) is
R*-connected.

ProOF. Inwhat follows, when we write R "2 we suppose that R*x ~ R.
If R*2 = x everything becomes obvious.

(i) First remark that UNV (resp. UNW, VN W) is R"-connected.
Indeed,letx; € UNRx, 22 € VN R for some & € X. Then x; = u(x, a),
xz = pu(x, b). Every path in R« connecting x; and a2 contains u(x, [a, b]).
Since U and V are R"-connected then U NV D wu(x, [a, b]).

(ii) Now let us prove that U U(V N RY(U NV)) is R"-connected. Let
x1, 02 €c UUWVNRYUNV)NR x for some x € X. Then x; = u(x,a),
we = u(x,b). We want to prove that u(x,[a,b]) c UUV NRYUNV)). If
x1, 29 € U it follows since U is R -connected and if 1,02 € VN RT (U N V)
it follows from (i). So we may assume thatx; € U andxz € VN R(UNV).
Since U is R -connected and a2 € R*xy, there exists y = u(x,c) c UNV.
Then (x,[a,c]) C U. In the same way u(x,[b,c]) C VAR (UNV) and
hence u(x,[a,clU[b,c]) c UUV NRT(UNV)).

(iii) Let us show that UU(VNRT(UNV)HUWNRT(UNW)) is RT-
connected. Let x1,00 c UU(WVNRTUNVHUWNRT(WUNW)NR 2
for some « € X. Then x; = u(x,a), 2 = u(x,b). We want to prove that
w@, [a,b) cUUWV AR UNV)IUWNRY(UNW)). By (i) and (i) we
may reduce to the case x; €V, xo € W. As in (i), there exist
y1 =ux,c) e UNV and yo = u(x,d) e UNW. Then u(x,[c,d]) € U,
w@,la,c]) C VAR (UNV) and u,[b,d]) c WNRYUNW). Hence
w,le,d]Ua,c]Ulb,d]) e UUVNRYUNV)UWNRY(UNW)) and
the result follows. O

DEFINITION 1.2.15. A sheaf F' € Mod(ky, ) is R -quasi-injective if for
each R -connected U € Op°(Xy,) the restriction morphism I'(X;F) —
I'(U; F) is surjective.

Remark that the functor 7! sends injective objects of Mod(kx,, .. ) to
R*-quasi-injective objects since I'(U; n,1F) ~ I'(RTU; F) if U € Op°(Xy,)
is R"-connected. Moreover the category of R -quasi-injective objects is
cogenerating in Mod(ky,) since injective objects are cogenerating in
Mod(ky,, ). Once we have (1.8) and (1.5) (iv) it is easy to prove Propositions
1.2.16 and 1.2.17 below in the same way as the corresponding classical
results for c-soft sheaves (see Propositions 2.5.8, 2.5.10 and Corollary 2.5.9
of [8]).
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ProposITION 1.2.16. Let 0 — F/ — F — F” — 0 be an exact sequence
m Mod(ky,,) and assume that F' is R*-quasi-injective. Let U € Op(Xy,) be
R*-connected. Then the sequence

0—-I(UF)—TUF)—TUF)—0

1S exact.

PROPOSITION 1.2.17.  Let F', F be R*-quasi-injective and consider the
exact sequence 0 — F' — F — F" — 0 in Mod(kyx,). Then F" is R'-
quasi-injective.

It follows from the preceding results that

PROPOSITION 1.2.18. R™-quasi-injective objects are injective with
respect to the functor I'(U;-), with U € Op(X,,) and R -connected.

COROLLARY 1.2.19. R -quasi-injective objects are ,,,-injective.

THEOREM 1.2.20. The categories D'(kx,, .) and D% (kx,) are equi-
valent.

Proor. Inorder to prove this statement, it is enough to show that 7}
is fully faithful. Let F € Db(ka,RJ and let F” be an injective complex quasi-
isomorphic to F. Since 7! sends injective objects to R"-quasi-injective
objects which are 7,,,-injective, we have Ry, 1. F ~ 1y, it B’ ~ F' ~ F.

This implies R#,,. 75! ~ id, hence 7} is fully faithful. O

COROLLARY 1.221. Let F € D% (kx,) and let U € Op(X,,) be R*-
connected. Then RIC(RTU; F) = RI(U; F).

Hence for each F € D?

RT (sza) we have F~ ﬂ;alF/ Wlth F/ € Db(kasa.RJr ).

REMARK 1.2.22. Thanks to these results, in order to prove that a
morphism /' — G in D]Ify(sza) is an isomorphism, it is enough to check that
RI(U;F) S RI(U;G) for each U € Op(X, +)-

REMARK 1.2.23. It is easy to check that the six Grothendieck opera-
tions, except the functor of proper direct image, preserve conic subanalytic
sheaves. We refer to [17] for a detailed exposition.
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1.3 — Conic sheaves on vector bundles

Let E = Z be a real vector bundle, with dimension % over a real ana-
lytic manifold Z. Then R™ acts naturally on E by multiplication on the fi-
bers. We identify Z with the zero-section of £ and denote by i : Z — E the
embedding. We set £ = E'\ Z and 7 : E — Z denotes the projection.

LemMa 1.3.1.  The category Op(E,) satisfies (1.5).

Proor. Letus prove (1.5) (i). Let {V;},. be alocally finite covering of
Z with V; € Op°(Zy,) such that t71(V;) ~ R™ x R" and let {U;} be a re-
finement of {V;} with U; € Op°(Zy,) and U; C V; for each i. Then U is
covered by a finite number of —1(U;) and U N t1(U;) is relatively compact
in t71(V;) for each i. We may reduce to the case E ~ R™ x R". Let us
consider the morphism of manifolds

R R™ x Sn—l xR — R™ x R"
(z,9,7) — (z,71()),

where i: 5" R" denotes the embedding. Then ¢ is proper and sub-
analytic. The subset ¢ 1(U) is subanalytic and relatively compact in
R™ x S" x R.

(a) By a result of [20], ¢~ }(U \ Z) admits a finite cover {V[/_',-}j6 7 such
that the intersections of each W, with the fibers of z:R"™ x " 'x
R — R™ x 8"! are contractible or empty. Then p(W;) is an open sub-
analytic relatively compact R*-connected subset of R™ x R” for each j. In
this way we obtain a finite covering of U \ Z consisting of R"-connected
subanalytic open subsets.

(b) Let p € n(p~ (U N Z)). Then n1(p)N U is a disjoint union of in-
tervals. Let us consider the interval (m(p), M(p)), m(p)<M(p) € R con-
taining 0. Set Wy = {(p,r) € U; m(p)<r<M(p)}. The set W is open
subanalytic (it is a consequence of Proposition 1.2, Chapter 6 of [19]),
contains ¢~ 1(U N Z) and its intersections with the fibers of 7= are con-
tractible. Then ¢p(Wy) is an open R "-connected subanalytic neighborhood
of UNZ and it is contained in U.

By (a) there exists a finite covering {¢(Wj)}je ; of U\ Z consisting of
R*-connected subanalytic open subsets, and p(W,) U UjE 7oW;) =U.

By Proposition 8.3.8 of [8] the category Op(E,) also satisfies (1.5) (ii).
Moreover (1.5) (iii) and (iv) are clearly satisfied. O
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Now let us consider £ endowed with the conic topology. In this situa-
tion, an object U € Op(Ey-) is the union of U € Op(&-) and Uy € Op(Z)
such that 1 2(Uy) c U.If U,V € Op(Ey+),then U cc Vif Uy cc VzinZ
and U ccV in E‘W (this means that #(U) cc (V) in E‘/R+, where
n:E—E /R™ denotes the projection).

Applying Theorem 1.2.20 we have the following

THEOREM 1.3.2. The categories D]I[’%+(kEsa) and Db(kEm_m ) are equiva-
lent.

Consider the subcategory Modﬁ’_C r+(kg) of Modyg_. ¢+ (kg) consisting of
sheaves whose support is compact on the base (i.e. (supp(F)) is compact in
7). The restriction of 77! to Coh(Esavm) gives rise (see [17] for more de-
tails) to an equivalence of categories

1.9) 7' : Coh(B,, ) = Mod§y., (k).
As a consequence of Theorem 1.2.12 one has the following

THEOREM 1.3.3. Let F' € Mody-+(kg,, ). Then there exists a small fil-
trant system {F;} in Mod;cRb_c‘W (kg) such that F' ~ lii)n p.Fi.

1

We end this section with this result, which will be useful in the next
section.

LEMMA 1.34. LetF e D?{+ (kg,,). Then:

() Rt.,F ~i'F.
(11) R‘L’]}F ~ Z'F

PROOF. (i) The adjunction morphism defines Rt F ~i 't 'Rt,F — i 'F.
Let V € 0p°(Zy,). Then

lim R*I'(U;F) ~ lim R*I'(U;F) ~ R*r«\(V);F) ~ R*I"(V; Rt.F),
—_ —_

Uov
Uov %

where U € Op(E,,) and R -connected. The second isomorphism follows
from Corollary 1.2.21.

(i) The adjunction morphism defines i'F — i't'RtyF ~ RtyF. Let
V € 0p°(Zy), and let K be a compact subanalytic R -connected neigh-
borhood of V in E. Then t=}(V) \ K is R"-connected and subanalytic, and
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Rz 1(V)\ K) = 7 1(V) \ Z. By Corollary 1.2.21 we have the isomorphism
Rz Y(V);RI,F) ~ R 1(V); Rk F).

It follows from the definition of Rty that for any k € Z and V € Op°(Zs,)
we have RFI'(V; Rty F) ~ liLn REI(t71(V); Rk F), where K ranges through

K
the family of compact subanalytic R *-connected neighborhoods of V in E.
On the other hand for any k € Z we have

R¥I(V:i'F) ~ RFHom(i, ky, F) ~ RFHom(i,i 't Yky, F) ~ R*I'(zX(V), RI",F)

and the result follows. O

1.4 — Fourier-Sato transformation.

Let E 5 Z be a real vector bundle, with dimension % over a real ana-
lytic manifold Z and E* 5 Z its dual. We identify Z as the zero-section of E
and denote ¢ : Z — E the embedding, we define similarly i : Z — E*. We
denote by p; and pg the projections from £ x; E*:

E x E*
Z

A= A{w,y) € EXE" (x,y) > 0}

We set

A=A,y € BXE"; (v,y) <0}

and we define the functors
Yy =Rpr.oRICy o]o!2 :D%+(kE;u) N D%+(kEsa)
Dy = Rpano(aoprt: DY lkm,) — Dy (k)
Wa = Rps.oRCgop: Dy (kg,) — Dy (ki)
Dy = Bpu o (g opy : Dy (k) — DY (k)
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REMARK 1.4.1. These functors are well defined, more generally they
send subanalytic sheaves to conic subanalytic sheaves.

LEMMA 1.4.2. Let F € D?[’{+(kgxa). Then supp(RI4(p1 1F))a) is con-
tained in Z x 7 E*.

Proor. We may reduce to the case F € Modg+(kg,). Then
F =limp F;, with F'; MOd{é’_C,W(kE)- We have

1

HERIo(py 7! lim p, Fi)a) ~ li_)mHk(RFA(PflP*Fi)A/)
i i
= I@P*Hk(RFA(Pl_lFi)A/)

1

~lim p, (H*REa(pr ' Fi)a)) 75

1

where the last isomorphism follows from Lemma 3.7.6 of [8]. O

LEmma 1.4.3.  Let B and C be two closed subanalytic subsets of E such
that BUC = E, and let F € D*(kg,,). Then RI¢(Fg) ~ (RI'¢F)p.

Proor. We have a natural arrow (I oF)g — I'c(F'g), and R(I ' cF)g ~
(RI'¢F)p since (-)p is exact. Then we obtain a morphism (RI¢F)g —
RI'¢(Fp). It is enough to prove that for any k€7 and for any
F € Mod(kg_ ) we have (R*I'cF)g = RFI'o(Fg). Since both sides commute

sa

with filtrant liLn, we may assume F' € Mod},_.(kg). Then the result follows
from the corresponding one for classical sheaves. O

PROPOSITION 1.4.4. The two functors @4, ¥ :Df[’v(kEw) — D%Al@;ﬂ)
are 1somorphic.

Proor. We have the chain of isomorphisms:
Dy F = Rpau(pr ' Fa
~ Rpay R 4((py ' F)ar)
~ Rpay(RIa(p1 "))
~ Rps.(RI4(p1 ' F))a
~ Rp2.RI4(p17'F).
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The first isomorphism follows from Lemma 1.3.4 (ii), the second one from
Lemma 1.4.3, the third one from Lemma 1.4.2 and the last one from Lemma
1.3.4 (). O

DEFINITION 1.4.5. Let F € D, (kg,,).
(i) The Fourier-Sato transform is the functor

()" Db (kg,) — Db (ki)

F'A :@AIFZYIAF.
(ii)) The inverse Fourier-Sato transform is the functor
()" : Dy (kgy,) — DY (kg,,)
Fv :WA/FZQDAF.

It follows from definition that the functors " and ¥ commute with Rp,
and p~!. We have quasi-commutative diagrams

M M
D} (kg) —= Db, (kg-) Dt (kg) == Db, (kg»)

M M
D}, (kg,,) = Db, (kgs) D% (kg.,) = D}, (kgs,)-

This implies that these functors are the extension to conic sub-
analytic sheaves of the classical Fourier-Sato and inverse Fourier-Sato
transforms.

THEOREM 1.4.6. The functors " and v are equivalence of categories,
mwerse to each others. In particular we have

HomD?ﬁ(kEm)(F, G) ~ HomD;[,ﬁ(kE;u)(FA’ GM).
ProOF. LetF ¢ D?{+ (kg,,). The functors " and " are adjoint functors,
then we have a morphism F — FV. To show that it induces an isomorphism
it is enough to check that RI'(U; F) — RI'(U; F"V) is an isomorphism on a
basis for the topology of E,. Hence we may assume that U is R -connected.
By Corollary 1.2.21 we may suppose that U is an open subanalytic cone of E.
we have the chain of isomorphisms:
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RHom(kU, F/\v) = RHom(kU, BUAr¢A/F)
~ RHom(QA/kU, (pArF)
~RHom(@u ks, V4 F)
~ RHOI‘H(@A(DA/ICU, F)
~ RHom(ky, F),

where the last isomorphism follows from Theorem 3.7.9 of [8] and from the
fact that the functors " and ¥ commute with Rp,. Similarly we can show
that for G € D%+ (kg:,) we have an isomorphism GV = G. O

REMARK 1.4.7. In the complex case we have the same result with

A= {(x,y) € EEE*,Re@w/) > 0},
A" = {(@,y) € E X B, Re(w,y) < 0}.

REMARK 1.4.8. The Fourier-Sato isomorphism can be extended to the
case of ind-sheaves (see [11] for complete exposition). On E+ one can
define the category Ind(lcEw) of conic ind-sheaves: F' ¢ Ind(lcgw) ifitis a
filtrant ind-limit of F; € ModCb(lcEW) (i.e. with compact support on the
base). With slight modifications to the results of this section one can extend
the Fourier-Sato transform to this setting and prove that it induces an
equivalence between the categories D*(Ind(kg,, )) and Db(Ind(kETﬁ ).

2. Laplace transform.

As an application of the preceding constructions we introduce the conic
sheaves of tempered and Whitney holomorphic functions in order to give a
sheaf theoretical interpretation of the Laplace isomorphisms of [10]. We
refer to [6, 9] for the definition of the functors of temperate and formal
cohomology and to [10] for the action of the Laplace transform on tem-
perate and formal cohomology.

2.1 — Review on temperate cohomology.
From now on, the base sheaf is C. Let M be a real analytic manifold.

One denotes by Dby, the sheaf of Schwartz’s distributions, and by Dy, the
sheaf of finite order differential operators with analytic coefficients. In [6]
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the author defined the functor
T Hom(-, Dbyy) : Modg-.(Cpr) — Mod(Dyy)

in the following way: let U be a subanalytic subset of M and Z =M \ U.
Then the sheaf T"Hom(Cy, Dbyy) is defined by the exact sequence

0— FZ'DbM — DbM — T’HO?’}’L(‘CU,'DZ)M) — 0.

This functor is exact and extends as functor in the derived category, from
D%_.(Cyyp) to DY(Dyy). Moreover the sheaf T Hom(F', Dby) is soft for any R-
constructible sheaf F'.

Let us denote by Cj; the sheaf of C*-functions and let Z be a closed
subset of M. One denotes by Z}; , the sheaf of C*-functions on M vanishing
up to infinite order on Z.

DEFINITION 2.1.1. A Whitney function on a closed subset Z of M is an
indexed family F = (F*),cnn consisting of continuous functions on Z such
that Vim € N, Yk € N, |k| < m, Vo € Z, Ve > 0 there exists a neighborhood
U of x such that Vy,z € UNZ

PRV

[j+k|<m

We denote by Wy; , the space of Whitney C*-functions on Z. We denote by
Wii 7 the sheaf U— WiF ;0.

In [9] the authors defined the functor

- €35 : Modgee(Car) — Mod(Dyy)

in the following way: let U be a subanalytic open subset of M and Z = M \ U.
Then Cy & Cy =Zyz and Cy ® Cyr = Wit z- This functor is exact and
extends as a functor in the derived category, from D:’[’{_C(CM) to DP(Dyy).
Moreover the sheaf F & Cyy is soft for any R-constructible sheaf F'.

Now let X be a complex manifold, X* the underlying real analytic
manifold and X the complex conjugate manifold. The product XxXisa
complexification of X® by the diagonal embedding X® < X x X. One de-
notes by Oyx the sheaf of holomorphic functions and by Dx the sheaf of
finite order differential operators with holomorphic coefficients. For
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F € Db _.(Cx) one sets
THom(F, Ox) :RHomDX (O%, THom(F', Dbxx)),
F & Ox =RHomp (O, F & C0),

and these functors are called the functors of temperate and formal coho-
mology respectively.

2.2 — The Weyl algebra.

Let E be complex vector space of finite dimension ». Let us denote by
O(E) the polynomial ring on E. We denote by D(E) the Weyl algebra on £,
that is, the ring of differential operators with coefficients in O(F).

The Fourier transform A : D(E)— D(E*) and the inverse Fourier
transform V : D(E*) — D(F) induce isomorphisms which are defined as
follows: let (z1,...,2,) and ({3, ...,{,) be two systems of coordinates in £
and E* respectively. We have

2 = —0; and 9] =(;.
On the other hand we have
—2; =09 and 8, ={j.

Let us consider the subanalytic site .. We denote by D(E,) (resp. O(E,))
the constant sheaf on E, associated to D(¥) (resp. O(E)). We denote by
Mod(D(E,)) the category of D(E,)-modules.

2.3 — The sheaves Db, and C3p.
Let M be a real analytic manifold.

DEFINITION 2.3.1. One denotes by Dbﬁw the presheaf of tempered dis-
tributions on My, defined as follows:
U I'(M; Dbyy)/ I'ypy(M; Dbygy).

As a consequence of the Lojasievicz’s inequalities [13], for
U,V € Op(My,) the sequence

0 — Dbl (U UV) — Dby, (U) @ Db, (V) — Dbl (UNV) — 0
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is exact. For each U € Op(My,) the restriction morphism 7I"(M; Dbﬁw) —
U, Dbfw) is surjective and RI'(U; Dbfw) is concentrated in degree zero.
Moreover Dbfw is exact on Modg-.(Cyy), i.e. it is a quasi-injective object of
Mod(Cyy,,). We have the following result (see [11], Proposition 7.2.6)
PROPOSITION 2.3.2. Foreach F' € Modg-.(Cyy) one has the isomorphism
Hom(F, Dby,) ~ ['(M; T Hom(F, Dby)).

Now let X be a complex manifold, X® the underlying real analytic
manifold and X the complex conjugate manifold. One defines the sheaf
O € D*(Cy,,) of tempered holomorphic functions as follows:

O% = RHom,p, (pOx, Dby, ).
The relation with the functor of temperate cohomology is given by the
following result
PRrOPOSITION 2.3.3. Foreach F D%_C(CX) one has the isomorphism
THom(F,Ox) ~ p~'RHom(F, O%).

Let M be a real analytic manifold. As usual we set D'(-)=
RHom(-,Cy). Remember that an open subset U of X is locally cohomo-
logically trivial (l.c.t. for short) if D'Cy ~ C. We consider a slight gen-
eralization of the sheaf of Whitney C*°-functions of [11].

DEFINITION 2.3.4. Let F' € Modg-.(Cyp) and let U € Op(M,). We define
the presheaf CH’;’[‘VFV as follows:

U T(M;HD'Cy 0 F & C9).
Let U,V € Op(My,), and consider the exact sequence
0— Cyry — Cp@Cy — Cyuy — 0,
applying the functor Hom(-, Cp;) = H°D'( - ) we obtain
0— H'D'Cyuy — H'D'Cy & H'D'Cy — H'D'Cyny,

applying the exact functors - ® F, - (% Cy; and taking global sections we
obtain

0 — Cip(U U V) — Cyyip(U) & Cypip(V) — Cip(UN V).

This implies that CZ;‘}V is a sheaf on M,. Moreover if U € Op(My,) is Le.t.,
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the morphism I'(M; C%’g) — I'(U; Cf‘j"g) is surjective and RI'(U; C;;l’g) is
concentrated in degree zero. Let 0 - F — G — H — 0 be an exact se-
quence in Modg-.(Cys), we obtain an exact sequence in Mod(Cyy,,)

(2.1) 0— Cz;"g — C;;lg — CAO;\IV; — 0.

We can easily extend the sheaf Cz;‘g to the case of F' € D?{_C(CM),
taking a finite resolution of F' consisting of locally finite sums ©Cy, with
V let. in Op°(M). In fact, the sheaves CAO/o[ig(‘,V form a complex quasi-
isomorphic to ij’[lg consisting of acyclic objects with respect to I'(U; ),
where U is le.t. in Op°(My,).

As in the case of Whitney C*-functions one can prove that, if
G € D%_(Cy) one has

p I RHom(G,Cigi) ~ D'G & F & C3y.

ExampLE 2.3.5. Setting F' = Cy; we obtain the sheaf of Whitney
C>-functions. Let U be an open subanalytic subset of M. Then sz[‘fVL is
the sheaf of Whitney C*-functions vanishing on M \ U with all their
derivatives.

NOTATION 2.3.6. Let Z be a locally closed subanalytic subset of M. We

set for short Cypiy instead of Cyyit. .

Let X be a complex manifold and let F' € D%_C(CX). We denote by
OYr € Db(Cy,,) the object defined as follows:

O§‘F = RHom,,!DX(p!O)—(, C;{‘&)

Let 0 - F — G — H — 0 be an exact sequence in Modg-.(Cx). Then the
exact sequence (2.1) gives rise to the distinguished triangle

2.2) O%p — O%ia — OX —.

The relation with the functor of formal cohomology is given by the
following result

ProposiTION 2.3.7. For each F.G € D?{_C(CX) one has the isomor-
phism

DF G & Ox ~ p ' RHom(F, 0% ).
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2.4 — Direct images for proper smooth morphisms.

Let X be a complex manifold of complex dimension dimX. Let Q% de-
note the subanalytic sheaf of tempered holomorphic forms of degree
dimX. Let f : X — Y be a morphism of complex manifolds. Let Dy_y =
Ox @10, f 1Dy be the transfer bimodule of f. The inverse image of a Dy-
module M is defined by

=YV Lo
FFM=Dy y & fIM.
B oy

Set d = dimX — dimY. We recall the following isomorphisms of [11]
and [17]:

! L
23) fQy ~Q © pDx_yld],
mDx
2.4) f'OY ~ RHom,,p, (pDx_y, OY)I2d].

Isomorphisms (2.5) and (2.7) below has been already proven in [11] in the
framework of ind-sheaves and can be obtained thanks to the equivalence
between ind-R-constructible sheaves and subanalytic sheaves. Here we
give a direct proof.

PRrOPOSITION 2.4.1. Let M € D(Dy). There are natural isomor-
phisms

! L L _
2.5) i@ @ pM)~Q% & pf ' Mld],
pDy nDx

26)  f'RHom,p,(pM,0F) ~ RHom,p,(p, f ' M, OP)[2d].
Proor. (i) We have the chain of isomorphisms

L -1
® pf~M

L
1@ @ pM)~ f'Q}
pDy nf~ Dy

. L L )
~ 0l & Dy & pfMId)
pDx pf Dy
~ 4 L -1
~ QX ® p;f M[d]7
nDx

where the first isomorphism follows from Proposition 2.4.7 of [16] and the
second one from (2.3).
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(i) We have the chain of isomorphisms

f'RHom,,p, (p M, OF)
~ RHom, ;ip, (p [ M.fOY)
~ RHom, ;15 (p [~ M, RHom,p,(pDx .y, OP)2d]
~ RHom,,p,(p, ]i_l./\/l, oy)zd],

where the first isomorphism follows from the dual projection formula and
the second one from (2.4). O

We say that an Ox-module F is quasi-good if for any relatively compact
open subset U, F is an increasing sequence of coherent Ox|;-submodules.
A Dx-module is called quasi-good if it is quasi-good as an Ox-module. We
denote by D(blfgood(DX) the full triangulated subcategory of D®(Dyx) con-
sisting of objects with quasi-good cohomology. The direct image of a Dx-
module N is defined by

foN = RE(Dy x & A).

PROPOSITION 2.4.2. Suppose that f : X — Y 1s smooth and proper and

let N € Dg p ood(DPx)- Then we have natural isomorphisms

2.7 Rf. (QX PIN) QY ® pvf N

mDx nDy

2.8) Rf.RHom,p, () N, OY)[d] ~ RHom,,p, (p, f . N, OF).

Proor. We shall first find the morphisms and then show that they are
isomorphisms.
(i), We have the morphisms

f_IQY f®D plDYHX — th f®D pIDYHX[ - 2d]
P Y P Y

~ Qg( ® p!DX_>Y ® plDY<—X[ d]
mDx pf Dy

~ RHOWLP!DX(/)!DYHX, ‘QX) ® [);IDY\—X
pf Dy

— ,ng,
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where the first isomorphism follows from Proposition 2.4.9 of [16], the
second one follows from (2.3), and the third one from Proposition 4.19 of [7].
(i), We have the morphisms

Q) % pf N =~ Qt ® pRf.(Dy_x ®N)
Py

L L
~ QL @ Rf.(pDy.x @ pN)
»Dy »Dx
1y L L
~Rf(fQy ® (pDy_x @ pN))
nf Dy nDx

~ Rf.((f QL & p.DyhX) ® pN)
pf Dy

L
— Rf(Qy @ pN),
»Dx
where the second isomorphism follows since f is smooth and the last arrow
follows from (i),.

(i), Let us prove (2.7). Let U € Op°(Ys,). We have the chain of iso-
morphisms

L L
RI(U; Q% @ pf.N)~RI(Y;p'RIy(Qy @ pf.N))
pDy T pDy T
L
~ RIY; THom(Cy, 2) © f . N)
Y
L
~ RI'(Y; Rf*(THom(Cf,1<U)7 20 © N
~ RI'X;p 'RI; I(U)(QX p,N))

~ RI(f1(U); 2% ® nN)

I)w X

~ RI(U; Rf.(Q, ® PN,

/Jw X

where the third isomorphism follows from Theorem 7.3 of [9].
(ii), We have the isomorphisms

floy ~ RHOWL/,,DX(,DlDXaY, YI2d]

NPIDYHX ® Ox[d]

/)l
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where the first isomorphism follows from (2.4) and the second one from
Proposition 4.19 of [7].
(ii), We have the morphisms

Rf.RHom,p,(p N, O)[d]

L L
— Rf*RHOWLp! 1Dy (/)!(DYHX %N), p!DYHX p%x O%)[d]
L
~ Rf*RHompyfflpy(p!(DyHX 5@ j\/’),f'o‘;)
' X
L
~ RHom,p,(Rf.p(Dy_x g@ N), OF)
X

L

~ RHom,p,(pRf.(Dy_x g@ N), 0F)
X

~ RHomp!DX(/)]z* Ny OV)Z)7

where the first isomorphism follows from (ii), and the third one follows
since f is smooth.

(ii), Let us prove (2.8). Let U € Op°(Ys,). We have the chain of iso-
morphisms

RI(U; RHom,p, (p, f « N, OF) ~RHom,,p, (p, f . N, Ry OF)
~ RHomDY(]_’*N,p‘lRFU(’)V;)
~ RHomp, (f . ', D'Cyy ® Oy)
-1y w
~ RHomp, (N, 'D'Cy ® Ox)ld]
~ RHomp, (N, D'f 1Cy & Ox)ld]
~ RHomDX(N7pilRFf,l(U)o}x({)[d]
~ RHOmp!DX(p] N, RFf*l(U) VXV)[d]
~ RI(f 1 (U); RHom,,py (py N, O9)Id]
~ RI'(U; Rf.RHom,p, (py N, Oy)ld],

where the fourth isomorphism follows from Theorem 7.3 of [9] and the fifth
one follows since f is smooth. |

REMARK 2.4.3. There are similar isomorphisms for Oy, F € Db_(Cy),
namely (with the same hypothesis as above)

29)  f'RHom,p, (n M, 0% p) ~ RHom,p, (p f ' M, Oy 1 pI2d],

(210) RHOWL(PI‘f* N; O‘;'F) ~ Rf*RHompyD)((N7 O;V(‘f,lp)[d]
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The proof is the same as the one for (2.6) and (2.8). We only considered the
case F' = Cy to lighten notations.

2.5 — The sheaves Dbﬁg[<+ and Cp .

Let E be a n-dimensional real vector space, and let ¢ : £ — P its pro-
jective compactification. If there is no risk of confusion we will identify £
with its image ¥(&). Let us denote by j : P — E+ the natural morphism of
sites, i.e. j(U) = U for each U € OpEi+).

DEFINITION 2.5.1. We denote by DbE the sheaf on K, ¢+ defined as
Sollows: DbE = j. Db

Then DbE is a sheaf on B, +, that is, it belongs to Mod+ (Cg,, ). More-
overDbE extends toan exactfunctoron Modg._. z+(Cg),i.e. Hom(:, DbE +)1s
exact on ModR_cyW(CE) In factlet F' € Modg_, i+ (Cp). We have

Hom(F, Dbgw) ~ Hom(F,j,Dbb) ~ Hom(j ' F, Dbl,),

and DbfD is exact on Mod-.(Cp) since it is quasi-injective.
Let us consider THom(¥', Dbg) := I'(P; T Hom( jilF ,Dbp)).

REMARK 2.5.2. It is isomorphic to THom(F, Dbg) :=
I'(P; THom(y,F, Dbp)) introduced in [10]. In fact one can check easily
that i\F ~j 'F.

We have the chain of isomorphisms
Hom(F, Db, ) ~ Hom( jLF, DbY)
~ I'(P; THom(j 'F, Dbp))
~ THom(F', Dbg).

It follows that for any U € Op(E, z+) we have
r(U; Dby, ) = I'(P; THom( jYCy, Dbp)) ~ THom(Cy, Dby).

Hence the sections of Db} B (U) are tempered along the boundary of U and
at infinity. Denote by D(E) the Weyl algebra on E. Then Db By isa D(¥s,)-
module.
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DEFINITION 2.6.3. We denote by CZfR‘f the sheaf on E, ¢+ defined as
follows: Ci™" .= j*C;Tg” .
RF

Then CZ?RY is a sheaf on E, g, that is, it belongs to Modg+(Cg,,).
Moreover if V is an open subanalytic l.c.t. cone then RI'(V; C;:f) is con-
centrated in degree zero. In fact we have

Hom(Cy, CE"?RY) ~ Hom(Cy, . ;flgv) ~ Hom(Cy, C;’f‘g),
and Clof‘gv is I'(V; -)-acyclic. Let F' € D]’[’%_CA.R+ (Cg) and consider the functor

w 1 W
F & Cy :=RI Py 'F & Cy).

w
REMARK 254. It is isomorphic to F @ C := RI(P;ilF & C3) in-
troduced in [10].

We have the chain of isomorphisms
00,WY -—1 00,W
Hom(F, CER_) ~Hom(; ' F, CP‘E)
~ I(P;D'(j'F) @ Cg & CF)
w
~ D'F ® Cy.
It follows that for any U € Op(E, +) L.c.t. we have
FW:CE™) = T CXY) ~ TPy Cr . 8 CF) = Cr 8 CF
( ’ E‘RJr)— ( ) P‘E)— ( 7‘/ﬁﬁE® P)—/ﬁ® E -

Hence the sections of CZ?[;Y(U ) are Whitney functions U with rapid decay at

infinity. Denote by D(¥) the Weyl algebra on E. Then C%O_[j‘f is a D(E,)-
module. )

2.6 — Laplace transform.

Let E be a n-dimensional complex vector space, let E be the complex
conjugate of .

DEFINITION 2.6.1. We define the conic sheaves of tempered and Whitney
holomorphic functions by the complexes
¢ = t
OER+ = RHomD(Em)(O(E‘sa),DbEW),
gw = RHomD@w)(O(Esa),CZf{:‘f).
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It follows from the definition that for any F' € D.’?{_C .’W(‘CE)
RHom(F, O, ) ~ THom(F, Op),
RHom(F, 0} ) ~ D'F & Op.

Let E be a n-dimensional complex vector space, let £* the dual vector
space. Let 71 : E— P and iy : E* — P* denote the projective compactifi-
cations of £ and E*. Set i:E x E— P x P*. Let j; : P—Ey+ and
Jz2 1 P*— K7, denote the natural morphisms of sites. We still denote by
p1, p2 the projections from P x P* to P and P* respectively. We also still
denote by " and V the Fourier-Sato transforms on P and P* with kernels
Ciw and Cj4) respectively.

LEMMA 2.6.2. Let G € D*(Cp.)). Then
(Rj2.G)" ~ Rj1.(GY).
Proor. (i) Let F e D% _

@.11) i (F") =~ (iyF)".

R+(CE). Then we have the isomorphism [10]

Then, keeping in mind that i, F' ~ j;[lF, k =1,2 we have
RHom(F, (j2.3)") ~ RHom(iz(F"), G)
~ RHom((iy,F)",G)
~ RHom(F,j1.(G")),

where the first and third isomorphisms follow by adjunction and the second
one follows from (2.11). O

Set S=P x P*\ (£ x E*) and let Opyp:(*S) be the sheaf of mer-
omorphic functions whose poles are contained in S. Let us consider the
Dpyp--modules

L
L = [Dpxpe” ™) @ Opyep(x3),

PxP*

' wy)y &
L' = (Dpup-e™) @ Opyp:(*3S).

PxpP*

L
L is an holonomic Dp, p--module satisfying L ~ L ® Opy,p-(xS). As an
Opyp-(* S)-module it is invertible with inverse £/. "
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LeEmMa 2.6.3.  There 1s a natural morphism

RIianQp, p. — @, p. ® L.

1 Opxp+

Proor. The proof is similar to that of Lemma 3.1.2 of [10]. We divide
the proof in several steps. Set Z =P x P* for short and let U =
{(907?/) € P x P*v Re<x7y>< - ]‘}'

(i) By Lemma 3.1.2 (i) of [10] there is a natural arrow
2.12) pL — pp*RIyO, — ROy,

(ii) There is a natural isomorphism

(2.13) ‘QZ ® /).E QZ ® /)[OZ(*S) ® ,D;L—> RFZ\SQZ ® /)IE

v v v

where the second isomorphism follows from the isomorphism

T Hom(G, 2) é‘@ Oz(* 8) = THom(G @ Sol(O( * S)), 2z) (G € D%_(Cy))
of [3, 9]. Oz
(iii) There is a natural arrow

L
RFi(A«>QtZ % RFUOtZ — RFZ\S.QtZ
nYz
induced by the multiplication.
Composing (i) and (iii) we obtain

L
RT a8 ® pL — RI 7582,

nYz

By adjunction we obtain
RIjunQy; — RHom,0,(p.L',RI 752}
~ R 5@, & pL.
Oz
where the isomorphism follows using the p,Oz( * S)-module structure of

RI Z\SQtZ and since (as an Oz( * S)-module) £ is invertible with inverse £'.
Then (ii) implies the required morphism. |

(Dp.). Set LoN =pi.(L & ps'AD.

Opyxp+

LeEmmA 2.6.4. Let N € D?
There is a momohzsm

2.14) % & p(LoA) — (@ & pN)T-nl

mDp pDpx

q—good
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ProoF. The required morphism is the composition of the following
morphisms

L L L
Q0 g p(LoN) ~ Rpr(QL p. @ pL @ p2'N))
PP P

\Dpxp+ Opxp*

L L
~ Rp1(@Qp.p ® pL) ® pp2 ' N)

2 Opxp+ P Dpypr

L
— Rpl*Rri(A’)(QlthP*p 29 ,D!ZQAN)

\Dpxp

L
~ Rp1.RI ianpy(Qp. ® P N[ —n].
p

"\ 2p*

The first isomorphism follows from (2.7), the third arrow from Lemma 2.6.3
and the last isomorphism from (2.5). O

LEmMA 2.6.5.  There is a natural morphism
RHomy,op,p. (L, Opyprigep-) = (Opypepyicar-

ProOF. The proof is similar to that of Lemma 3.1.2 of [10]. We divide
the proof in several steps. Set Z =P x P* for short and let
U={@,y) € PxP*, Re(x,y)< —1}.

(i) There is a natural isomorphism
RHomy,o0,(pL,O0y) ~RHom,o,(p L, RHom,o0,(pOz(x S), 0y))
= RHom,,0,(pL, OVZV\Z\S)

where the second isomorphism follows from the isomorphism

RHomo,(Oy(+8),G ® Og) ~ (Sol(O( +9) ® G) ® Oy (G € D’,_(Cy)) of
[3, 9].
(ii) There is a natural arrow

L
RHomy,0,(p.L, Oz = (pL ® Oyns)7\s
nYz
! L W
= (pL @ Ozpgia),
Oz

where the isomorphism follows from the p,Oz(*S)-module structure of
Oy s and the fact that £'|g = 0.
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(iii) We have an arrow
L L
(PL' @ Oppiay — (pp ' TyOy @ OF 7 iy
»Oz »Oz

- (Og‘z\s)i(A’)a

where the first arrow follows from Lemma 3.1.2 of [10] and the second one is
induced by the multiplication.
Composing (i)-(iii) and using the fact that there are natural arrows
induced by the distinguished triangle (2.2)
O‘gxP*\ExP* —Opypes

4 W
OPXP*\EXE’* _>OP><P*|P><E‘*’

we obtain the required morphism. O

LEMMA 2.6.6. Let N € Dg_good(Dp* ). Set Lo N = p1 (L ®0,,,. P2 N).
There is a morphism

2.15)  RHomy,p,(p(L o N),Opp) — RHomy,p,. (0 N, Op. ) [n].

Proor. The required morphism is the composition of the following
morphisms

RHomp!pP(pg(ﬁ oN), Og‘E)[ —n]

L
= Rpl*RHom/’!DPxP“ (p!(ﬁ ® ﬁilN)’ngPﬂExP*)

PP
= Rpl*RHomp!DPxP* (p!lﬁil'/v’ RHomplonP* (P[ﬁ, ngP*\E‘xP*))
- Rpl*(RHomp!DPxP‘ (plﬁil'/v’ ngP*\PxE*))i(A’)
~ Rp1.(p2 ' RHom,p,. (0 N, O. 15 Dicar,

where the first isomorphism follows from (2.10), the fourth arrow from
Lemma 2.6.5 and the last isomorphism from (2.9). O

THEOREM 2.6.7. The Laplace transform induces quasi-isomorphisms
of D(E,)-modules

O, [n] =~ O

*
Rt

WA ~ (W
OF), n] =~ O, .

Proor. Let(-),, be the canonical functor sending algebraic D-modules
to analytic D-modules on P. With the notations of Lemma 2.6.2, set
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N = (i2.Dg-)qy and remark that £ =~ (i.Dgyg-e”“¥),,. Then N o L ~
(11 +(Dg- o Dy e Y, ~ (21 +Dg)an- The last isomorphism is compatible
with the isomorphism between Weyl algebras induced by the Fourier
transform, we refer to [15] for more details. We omit the functor ( - ), to
lighten notations.

(i) The Laplace transform induces a morphism of D(¥,)-modules

(2.16) O [—n]l— O .
R+ Rt
First remark that (2.14) and the equivalence between left and right D-
modules define a morphism
RHom,p,. (pig D+, Op.) [ — n] — RHom,,p,(pi1 . Dig, Op).
Then the morphism (2.16) is constructed as follows
(9”%[ —n] ~ (Rjz.RHomp,. (pyiz . Di-, Op.)) ‘[ — 0]
~ Rj1.(RHomyp,. (piz . Dg-, 0p.))"[ — ]
- le*RH()m/)!DP(p!@;l *DE; OtP)

1]
OERJr .

~

The second isomorphism follows from Lemma 2.6.2 and the third

morphism follows from Lemma 2.6.4. By adjunction we obtain a

morphism Oﬁ;* — OtEﬁ [#]. In a similar manner one can construct the
Rt R

morphism Of. — Op" .
RT™

(i) It is enough to check the isomorphism RI'(U:; (’)fEAR+ [n]) ~
RI(U; (’)tE* ) on a basis for the topology of E,,. Hence we may assume
Rt

that U is R -connected and then that U is an open subanalytic cone of E.
We have the isomorphisms

RI(U; Ofﬁ<+ [7]) ~ RHom(Cy, OtEA‘)+ [n])
~ VT ¢
~ RHom(Cy[ — n], OERJ
~ RHom(Cf'[n], O, ,)
~ RHom(‘CU,(’)Z«* )
R™
~ RI(U; 0. )
R
where a denotes the antipodal map. The third isomorphism follows from

Lemma 3.7.10 of [8] and the fourth one is given by the Laplace isomorphism
of Theorem 5.2.1 of [10].
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(iii) Similarly, let U be an open subanalytic l.c.t. cone of E. Then
Cy =~ D'Cg. We have the isomorphisms
RI(U; Ogg [n]) ~ RHom(D’Cﬁ,OgQ+ Nn]
RHom((D’Cﬁ)V[ —n], ng)
~ RHom(D'(C3[n), OF )

1

1

o] @ O
RHom(D'Cy, OF. )
Rt
~ RI(U; 0. ).
RT

1

The third isomorphism follows from Proposition 3.7.12 of [8] and the fifth
one is given by the Laplace isomorphism of Theorem 5.2.1 of [10].

Moreover these two isomorphisms are linear over the Weyl algebra
D(E,). O

REMARK 2.6.8. In [10] the isomorphism O, ~ O u[n]is established in
the category Mod+(Cg-) and it is D(E*)-linear (it was also later proven in
[1] with other techniques). Applying the functor p~! to the isomorphism of
Theorem 2.6.7 we can recover this result.
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