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The Schur Multiplier of a Generalized
Baumslag-Solitar Group

DEREK J. S. ROBINSON

ABSTRACT - The structure of the Schur multiplier of an arbitrary generalized
Baumslag-Solitar group is determined and applications to central extensions are
described.

1. Introduction and Results.

A generalized Bauwmslag-Solitar group, or GBS-group, is the funda-
mental group of a finite connected graph of groups with infinite cyclic
vertex and edge groups. In detail let I” be a finite connected graph —
multiple edges and loops are allowed — with vertex set V(") and edge set
E(I'). For each edge e we choose endpoints e™ and ¢, and hence a direction
for the edge. Infinite cyclic groups (g,) and (u,) are assigned to each
vertex x and edge e. Injective homomorphisms (u,) — (g.-) and
(ue) — (ge-) are defined by the assignments

2y g(eﬂ:(e)and Up — gteu:(e)’

where w'(e), v (e) € Z" = Z\{0}. Thus we have a weight function

w: EN)—= 7" x7f
where w(e) = (w (e),w"(e)). The weighted graph (I', w) is called a GBS-
graph.

The GBS-group determined by the weighted graph (I", w) is the fun-
damental group

G = 7'[1(1_'7 a))
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To obtain a presentation of G choose a maximal subtree T of I". Then G has
generators

gu, (@ € V(I),and t,, (e € E(N\E(T)),
with defining relations
g @ = g7 @ forec E(T),
{( 9o e = g2 @ for e € E(N\E(T).

It is known that up to isomorphism G is independent of the choice of T
for this and other basic properties of graphs of groups see [1], [3], [10]. If
I' consists of a single loop with weight (n,m), then n;(I", w) is a Baum-
slag-Solitar group

BS(m,n) = (t,g | (") =g").

It is easy to see that GBS-groups are torsion-free. They are ob-
viously finitely presented, and in fact every finitely generated sub-
group of a GBS-group is either free or a GBS-group ([6], 2.7: see also
[4], 1.2), so such groups are coherent, i.e., all finitely generated sub-
groups are finitely presented. By an important result of Kropholler
([7]D) the non-cyclic GBS-groups are exactly the finitely generated
groups of cohomological dimension 2 which have an infinite cyclic
subgroup commensurable with its conjugates. It is therefore natural to
enquire about homology and cohomology of GBS-groups in dimensions
1 and 2.

Here we are concerned with integral homology: of course H1(G) ~ G,
the abelianization, while Hz(G) = M(G) is the Schur multiplier of G. Our
principal result describes the structure of the Schur multiplier of an ar-
bitrary GBS-group.

THEOREM 1. Let G be a generalized Baumslag-Solitar group. Then
M(G) is free abelian of rank ry(G) — 1 where ro(G) 1s the torsion-free rank
Of Gab-

COROLLARY 1. The Euler characteristic of a GBS-group is 0.
This follows since the homology groups of a GBS-group G in dimensions

0, 1, 2 have torsion-free ranks 1, 7y(G), r(G) — 1 respectively and the
alternating sum of these is zero.
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We remark that associated with any GBS-group there is a complex
K(I', w) defined in [4]. It can be shown that the Euler characteristic of this
complex is zero and this observation is the basis for a topological — but not
necessarily shorter — treatment of Theorem 1. Details will appear else-
where ([5]).

T-dependence.

The structure of G, and hence 74(G), can be found from the abelian
presentation of G, arising from the standard presentation of the GBS-
group G by the usual method of Smith normal form. However, this is a
lengthy process and, as only 7(G) is required in order to compute M(G), it
is worthwhile to give a simpler method.

Let G = m(I",w) be a GBS-group and let T be the chosen maximal
subtree of I'". Suppose that e = (x, y) € E(I")\E(T) where x # y. Now there
is a unique path in the tree T from « to y, say * = ay, %1,...,%, = y. By
reading along this path, we obtain a relation g2 = ¢ where p;(e) and
pz(e) are the respective products of the left and right weight values of the
edges in the path from x to y. If the vector (w(e),w"(e)) is a rational
multiple of (p;(e), p2(e)), then e is said to be T-dependent, and otherwise e is
T-independent. If e is a loop, then by convention pi(e) = 1 = pa(e) and e is
T-dependent precisely when w(e) = w*(e).

The definition of T-dependence may be restated as follows.

LeEmMmA 1. With the above notation, a non-tree edge e = (x,y) of a
GBS-graph is T-dependent if and only if

w (e) _ p1(e)
wte)  pae)’

If every non-tree edge of a GBS-graph is T-dependent, the GBS-graph
is said to be tree-dependent. The torsion-free rank of the abelianization of a
GBS-group can be computed from the following result.

THEOREM 2. Let G =n1(I',w) be a generalized Bauwmslag-Solitar
group. Then

ro(G@) = |ED)| = V(D) + 1+ (I, w)

where e(I", w) = 1 if (I', w) 1s tree-dependent and otherwise equals 0.
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(A variant of this result with a different proof appears in [8], Theorem
1.1). We note that, as a consequence of Theorem 2, 4(G) can be found by
simply inspecting the graph of the GBS-group G. Notice also that &(I", w)
depends only on the GBS-graph (I',w), not on the choice of maximal
subtree. Thus the property of tree-dependence is independent of the
maximal subtree selected.

We remark that the invariant ¢ is closely related to the centre of a GBS-
group and is an important tool in the theory of GBS-groups: it is the
subject of an ongoing investigation.

As is well known, knowledge of the structure of the Schur multiplier
of a group allows one to draw conclusions about central extensions by
the group. As a consequence of Theorem 1 one can determine when all
central extensions by a GBS-group G split, i.e., they are direct products.
It is shown in Corollary 4 below that every central extension by a
generalized Baumslag-Solitar group G splits if and only if G is in-
finite cyclic.

2. Proof of Theorem 2.

Let G =m(I",w) be a GBS-group with 7" a maximal subtree of I
Then G has an abelian presentation with generators g,, f,, where
x € V(I'), e € E(N\E(T), subject to the defining relations g2 © = g‘e": ©
(e e EN). Put Gy = (g, | ® € V(IN); then Gy ~ (T, w) and ro(Gy) < 1
since each pair of generators of Gy is linearly dependent. Since Gy has
fewer relations than generators, it is infinite and 7(Gy) = 1. Of course,
the stable elements t,, are linearly independent modulo the torsion

subgroup of Ggp. Therefore
70(G) = [E(I\E(T)| + ¢,

where ¢ =1 if each vertex generator has infinite order modulo G’ and
otherwise ¢ = 0. If some non-tree edge e is T-independent, then, in the
notation of Lemma 1, the relations g2 @ = g;":(e) and g9 = gfi(e) are
independent, which forces each vertex generator to have finite order
modulo G’; hence ¢ = 0. On the other hand, if all such edges are T-de-
pendent, i.e., (I',w) is tree-dependent, then all vertex generators have

infinite order and ¢ = 1. Since
|[EO\ED)| = |[E(D)| - (V)| -1) = |EW)| - VU] +1,

the result follows on setting (1", ) = e. O
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3. Proof of Theorem 1.

Let G = my(I', w) be a GBS-group with 7" a maximal subtree of I'. We
recall the following inequality, which is valid for any finitely presented
group H with n generators and r relators:

n—1r < ryH)— dMH)),

where d(X) is the minimal number of generators of a group X, (see, for
example, [9], p.550). In the present situation we have n = |V(I)|+
|[E(M\E(T)| and r = |E(IN)|, so n — r = 1. Thus d(M(G)) < r9(G) — 1 and it
suffices to prove that ro(M(G)) > 7y(G) — 1. The proof is by induction on
|E(I")|, which may be assumed positive.

(i) We can assume that ro(G) > 1, so that I" is not a tree.
For if v(G) =1, then d(M(G)) =0. Note that if I is a tree, then
ro(G) = 1 since each pair of vertex generators is linearly independent.

(i) Case: I' has a single non-tree edge.

Let e = (x,y) be the edge which is not in 7. Now 7y(G) < 2 by The-
orem 2, so 7o(G) = 2 and ¢(I", w) = 1; thus e must be T-dependent. Apply
the five-term homology sequence for the exact sequence G’ — G — Gy
to get

MG — M(Gw) — G'/IG',G] — Gap — Gap — 1.

Note that (M (G4)) = 1 since M(Gyp) =~ Gap A Ggp.

We claim that G’/[G’,G] is finite. To see this write £t =t, and let
w(e) = (h,k), so that (gf)Y =gt Also (g.)N(g,) = (g =g}) where
m,n € 7*. By T-dependence (&,k) is a rational multiple of (m,n), say
ih = jm and ik = jn, with i,j € 7*. Then

[gy,t]i’k = [g;k, tl = g;ikg;h = g;jngim = 1mod [G',G].

Next for any vertex generator g, we have g, = g, for some r,s € /", and
hence l

lg:,t]" = lg),t] = gy, 1] mod [G', G].

Finally, [gu, g,]lG’, G] has finite order for any vertex generators g,, g,. It
follows that G’ /[G’, G] is periodic, so it is finite.

Returning to the exact homology sequence above, we conclude that
M(G) must be infinite, so that »/(M(G)) > 1 = ro(G) — 1, as required.
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(iii) From now on we assume that I' has at least two non-tree edges.
Let e = (x,y) be one of the non-tree edges and let the unique path in 7
from « to y be

(21, %2), (02, 23), - - -, (X1, Tk),
where & = x; and y = x. Define subgroups Gi = (t¢, g, - - -, 9u,) and
Ge = (tr, 9. | x € V), f € EU\ED), [ #e).

Then G; =mn(I';,w), 1 =1,2, where I'y,I's are subgraphs of I' with
V() ={x1,...,25}, V(') =V({') and respective edge sets
{e,(xj,xj11) |7=1,2,...,k =1} and E(I")\{e}, with restricted weight
functions. Furthermore

G:Gl*UGz

where U = (gu,Guys - - -, Jn,)- Since U ~ m(Ty,w), with Ty the path
(@1, %2), (22,23), . .., (¥k_1, %K), We have ro(U) = 1 and M(U) = 0 by ().
Next we form the Mayer-Vietoris sequence for the generalized free
product G = Gy #y Gs, (2], p. 51),
0=MU) — MG ®©MGz) — MG) — Uy —
() (Gap © (G2)ap — Gap — 1.

At this point we must distinguish two cases.

(iv) Case: the graph I’ has a non-tree edge e which is T-dependent.

Apply the Mayer-Vietoris sequence above for the edge e. Since 7’1 has
just one non-tree edge e and it is T-dependent in Iy, we conclude that
r0(G1) = 2 and M(Gy) ~ Z by (ii). Also UG /G is infinite, so the image of
(G1)qp in the exact sequence () has infinite projection into (G)4p. Therefore

10(@) < 19(G1) + 10(G2) — 1 =79(G2) + 1

and 79(Gz) > r9(G) — 1. By induction on |E(I")| the result is true for Gg, so
we have

1 (M(G) > ro(M(G1) & M(Gz)) > 1+ (r(G) — 2) = 7(G) — 1,

as required.
We are now left with the situation:

) Case: all non-tree edges in I are T-independent.

Choose any non-tree edge e and apply the sequence (x) in (iii) for this
edge. Since e is T-independent, 19(G1) = 1 and M(G1) = 0. Also UG /G is
finite because e is T-independent. By (iii) there is non-tree edge f # e and
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t =t; € Gs. Since f is T-independent, ry((t, U)) =1 and also UG}/G} is
finite. Consequently the image of Uy in (G1)ap @ (G1)gp is finite. Since Uy,
is infinite, it follows from the sequence (x) that the cokernel of the map
M(Gy1) ® M(G2) — M(G) is infinite.

By induction hypothesis the result holds for G, so we conclude that

1o(M(Q)) > ro(M(G1)) + ro(M(G2)) + 1 = (rp(G2) — 1) + 1 = 19(G2),

since M(G;) = 0. Finally, the image of U, in the sequence (x) being finite,
we obtain

10(G) = 10((G1)ap © (G2)ap) = 10(G1) + 10(G2) = 1+ 19(Go).
Hence 7y(G2) = 7(G) — 1 and ry(M(G)) > r(G) — 1, as required. O

COROLLARY 2. The GBS-group mi(I", w) has trivial Schur multiplier if
and only if I is either a tree or else a tree with one further edge and I is
not tree-dependent.

Proor. By the theorem M(G) = 0 if and only if 7¢(G) = 1. This con-
dition requires there to be at most one non-tree edge and by Theorem 2 it
must be T-independent. |

COROLLARY 3. FEvery GBS-group has deficiency 1.

Proor. Recall that the deficiency def(G) of group G is equal to
sup{n — r} where n and r are the respective numbers of generators and
relations in an arbitrary finite presentation. If G is a GBS-group, then
1 < def(G) < 1(G) — dM(G)) = 1. O

ExampLE. Consider the GBS-group G arising from the following
GBS-graph,

a y/.
P TRy '
r 2 ZC.“" ., 5 3
p 4 4 .

where the maximal subtree chosen is the path x,y,z, % and the stable ele-
ments are 7, s,t as indicated. Then G has a presentation with generators

T7S,t,gm,gy7gz;gu
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and relations
() =02 6=9,% 0,=05 £ =9, (gD =92, (9" =g,

All non-tree edges with the exception of (y,x) are T-dependent.
Therefore (I',w) is not tree-dependent, &(I",w)=0 and 7|(G)=
|[ED)| — VD) +1=38. Thus M(G) = 7. & 7.

4. Applications to Central Extensions.

We will now apply our results to yield information about central ex-
tensions by GBS-groups. Let G be a GBS-group and C an abelian group
regarded as a trivial G-module. Denote by F' the periodic subgroup of Gg;;
thus Gg ~ F @ 7"% where F is finite. By the Universal Coefficients
Theorem

H%(G,C) ~ Ext (G, C) ® Hom(M(G),C) ~ Ext (F,C) & Dr C"@-1,

First we determine when all central extensions of C by G are direct
products, i.e., when H*(G,C) = 0.

THEOREM 3. Let G be a generalized Baumslag-Solitar group and let
C+#1 be an abelian group regarded as a trivial G-module. Then
H*G,C) =0 if and only if 7(G) =1 and C is divisible by all primes
pe n(Gab)-

ProoF. With the notation used above, H?(G,C) = 0 if and only if
Ext (F,C) = 0 and ry(G) = 1. Since F is finite and Ext (Z,,C) ~ C/C", it
follows that Ext (#,C) = 0if and only if C = C? for all p € n(Gyp). (For the
elementary properties of Ext used here see [9], 7.2). O

COROLLARY 4. The following conditions on a generalized Bawmslag-
Solitar group G are equivalent

@) H*G,7)=0;

(i) Gup ~ Z;
(i) H*(G,C) = 0 for all abelian groups C.

Proor. Clearly condition (i) implies that n(Gy) is empty and so (ii)
holds. Also (ii) implies (iii), while trivially (iii) implies (). O
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For example, if G = BS(m, n), then Go ~ 7. © 7y, 80 that G has the
property of Corollary 4 if and only if |m — n| = 1.

There are corresponding results for homology, which can be proved in
an analogous way by using the Universal Coefficients Theorem for

homology,
Hy(G,C) ~ Tor(Gy, C) & (M(G) @ C),

and elementary properties of Tor, (see [9], 7.1).

THEOREM 4. Let G be a generalized Baumslag-Solitar group and
let C#1 an abelian group regarded as a trivial G-module. Then
Hy(G,C)=01if and only if ro(G) =1 and C, =1 for all primes p € (G ).

COROLLARY 5. The following conditions on a generalized Bawmslag-
Solitar group G are equivalent:

() HxG,0Q/7)=0;
() Gap ~ 73
(i) Hs(G,C) =0 for all abelian groups C.
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