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A Note on Minimal Galois Embeddings of Abelian Surfaces

Hisao YOSHIHARA

ABSTRACT - We show that the least number N such that an abelian surface has a
Galois embedding in PV is seven and then we give examples of such surfaces.

1. Introduction.

This is a continuation of our previous paper [7]. The least number N
such that an abelian surface can be embedded in PV is four, and in that case
the abelian surface has a special structure, see for example [3]. Similarly it
might have some interest to study the least number N such that an abelian
surface A can be Galois-embedded in PV. Moreover, in that case we want to
know the structure of A. In this short note we give the answer to the
problem. Before stating it, we recall from [7] some of the definitions and
properties of Galois embeddings of algebraic varieties.

Let k be the ground field of our discussions, which is assumed to be
algebraic closed. Let V be a nonsingular projective algebraic variety of
dimension »n and D a very ample divisor. We denote this by a pair (V, D).
Let f =fp : V—P" be the embedding of V associated with the complete
linear system |D|, where N + 1 = dim H°(V, O(D)). Suppose that W is a
linear subvariety of PN such that dimW =N —n —1 and W N fV)=40.
Then consider the projection W, my : PN -—>W, with center W, where W,
is an n-dimensional linear subvariety not meeting W. The composition
7 = mw - f is a surjective morphism from V to Wy = P". Let K = k(V) and
Ky = kE(Wy) be the function fields of V' and Wy respectively. The covering
map 7 induces a finite extension of fields 7n*: Ky—K of degree
d = deg f(V) = D", which is the self-intersection number of D. It is easy to
see that the structure of this extension does not depend on the choice of W,

(*) Indirizzo dell’A.: Department of Mathematics, Faculty of Science, Niigata
University, Niigata 950-2181, Japan.
E-mail: yosihara@math.sc.niigata-u.ac.jp



2 Hisao Yoshihara

but only on W, hence we denote by Ky the Galois closure of this extension
and by Gw = Gal(Kw/Ko) the Galois group of Ky /Kj. Note that Gy is
isomorphic to the monodromy group of the covering = : V—W,.

DEFINITION 1. In the above situation we call Gy the Galois group at W.
If the extension K /K is Galois, we call f and W a Galois embedding and a
Galois subspace for the embedding, respectively.

DEFINITION 2. A nonsingular projective algebraic variety V is said to
have a Galois embedding if there exist a very ample divisor D such that the
embedding associated with the complete linear system |D| has a Galois
subspace. In this case the pair (V, D) is said to define a Galois embedding.

In this note we use the following notation.

e Z,, : the cyclic group of order m

e D,, : the dihedral group of order 2m

e |G| : the order of a group G

p:exp (Zn\/—_l/G)

Aut(V) : the automorphism group of a variety V
(a1, ...,an) : the subgroup generated by as,...,a,
1, : the unit matrix of degree two

We shall make use of the following criterion (cf. [7, Theorem 2.2]).

THEOREM A. Let V and D be as above. The pair (V, D) defines a Galois
embedding if and only if the following conditions hold:

(1) There exists a subgroup G of Aut(V) such that |G| = D"

(2) There exists a G-invariant linear subspace L of H'(V,O(D)) of
dimension n + 1 such that, for any o € G, the restriction o*|;, is a multiple
of the identity.

(3) The linear system L has no base points.

The original form of the study of the Galois embedding is given in [5] or
[6]. We have applied the above method to abelian surfaces A over k = C
and obtained some results.

2. Statement of Theorem.

Let A be an abelian surface defined over k¥ = C and G be a finite sub-
group of Aut(A). Fix a covering morphism C2— A. An element g € G has
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a representation ¢ on the universal covering C? such that
gz = M(g)z + t(g), where M(g) € GL@2,C), z € C2 and t(g) € 2, We call
M(g) and t(g) the matrix and translation part of the representation g, re-
spectively. Put Gy = {g € G | M(g) = 12} and H = {M(g) | g € G}. Then,
we have the following exact sequence of groups

1—Go—G—H—1.

Clearly B = A/Gy is also an abelian surface and H =~ /G| is a subgroup of
Aut(B).

Hereafter we assume that (4, D) defines a Galois embedding in PN and
let G be the Galois group. Then G is a subgroup of Aut(4) and B/H is
isomorphic to A/G = P?. With the notation above, we have:

THEOREM B. [7, Theorem 3.7] If an abelian surface A has a Galois

embedding, then H is isomorphic to D3, Dy or a semidirect product Zs x K,
where K =2 Dy or Z,, X Z,, (m =3, 4, 6)

Now, the answer to the question in the introduction is given as follows:

THEOREM C. Suppose that (A, D) defines a Galois embedding. Then

(1) The least number N 1is seven, 1.e., there exists an abelian surface A
such that it can be embedded into PT with a Galois subspace, and no
abelian surface embedded in PN (N < 6) has a Galois subspace.

(2) The abelian surface B = A/Gy is isomorphic to the self-product
E x E of an elliptic curve, such that H = G/Gy acts on B and H = D4 or
Z2 X D4.

REMARK 1. The minimal Galois embedding for an elliptic curve E
is given as follows. If E can be Galois-embedded in %, then E must
have an automorphism of order three with a fixed point. In fact, the
elliptic curve is unique and is defined by Y2Z = 4X3 + Z3. The centers
of the projections are (1:0:0),(0: v—=3:1) and (0: —v/—3:1). How-
ever, note that every elliptic curve has a Galois embedding in I?,
where the group is isomorphie to Zs x Zy (further, if the j-invariant is
1728, then it has another projection center whose Galois group is
isomorphic to Zy).

In what follows we shall give the proof of Theorem C and some examples.
In particular, there is an example where B is the Jacobian of a curve. Indeed,



4 Hisao Yoshihara

let J(C) be the Jacobian of the normalization C of the curve y? =
(@ 4+ ax® +1), a # +2, and let A be an abelian surface which is an etale
double covering q : A—J(C). Then we shall show that (4, ¢*(C + C")) gives
a minimal Galois embedding, where ' is a translated of C.

3. Proof.

By Theorem B we have |H| = 2¢3°, where (a, b) = (3,0), (4, 0),(5,0),(1,1),
(1,2) (3,2). We consider the possible values of |G| = D? = 2m. Since A can be
embedded in P! by the complete linear system |D|, we have m — 1 > 4 by
[3]. In view of Theorem B we have m # 5, hence m > 6. Suppose that m = 6.
Then, from Theorem B again we infer that H =~ D3 and |G| = 2. Every two
dimensional complex crystallographic group G with X/G = P? has been
classified in [4]. Referring to it, we see that A can be expressed as A = C? /Q
such that Q is the period matrix

Q_flpszpzw_flpZIOwO
\1 p o po) \1 pJ)\01 0 o)
where w is a complex number with Jw > 0.
Define four vectors as follows:

o (1 _ (7 _ (o) _ _ (o) _
1 = 1 , Vg = , V3 = = V1, V4 = = V2.
p w P

Let £4 be the lattice in C2 generated by v1,v2,v3 and vy4. Let g; be a gen-
erator of Gy whose representationis g1z = z + ¢, where z, e € (2, Since 912
is the identity on A, we have 2e € £4. Let Lp be the lattice generated by £4
and e. Then B = C%/Lp = A/(gy) is also an abelian surface on which the
group H acts. As shown in [4], H is generated by g2 and g3, whose matrix
parts are

M=M= (§ o) and My =M = ()

respectively. Since 2e € L4, the vector e can be expressed as
4

Z 0,

i=1

where n; =0 or 1 (1 <7 <4). Since Gy is a normal subgroup of G and
|Go| =2, g1 commutes with each element of G. Therefore, we infer that

e =

DO —
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M;e —e € L4 (1 =2,3). Indeed we have
Moe — e = {—(2n1 + n2)v1 — @ng +ngvs}/2 € La.
Thus we have

(1) ( — N2V1 — 7242)3)/2 S ﬁA.
Similarly, considering M3ze — e, we have
@) {—=n2v1 + (N1 — n2)ve — ngvs + (N3 — N4)v4}/2 € Ly.

From (1) we get ny = n4 = 0, hence from (2) we get n; = ng = 0. Since
e¢ L4, this is a contradiction. Thus we have m > 7. From Theorem B we
infer |G| # 14, hence we have m > 8. We conclude that the least number m
is 8 by the examples in the next section.

REMARK 2. Referring to [4, Theorem 1], we see that in the case (i)
H =~ Dy the dimension of the moduli space is 1, but in the case (ii)
H = Z5x D4 the dimension is zero.

4. Examples.
When we make examples, the following lemma is useful.

Lemma 3. If M(g) — 12 is a nonsingular matrix for g € G, then we can
assume t(g) = 0.

Proor. We consider tGt~! instead of G, where 7 is a translation
=z+4{ If M(g)—1y 1is nonsingular, then by putting (=
(M(g) — 12)t(g), we get t(zgr™!) = 0. O

In case m = 8 we have H =~ Dy or Zy x D4 by Theorem B. We shall give
examples of both. If (i) H = Dy, then |Gy| = 2. Since Gy is a normal sub-
group of G and |Gy| = 2, we infer that G = Gy x H. Such examples are
given in Examples 4 and 5. On the other hand, if H =~ Z;x D4, we have
G =2 H. Such an example is given in Example 7.

ExamPLE 4. Let A be the abelian surface with the period matrix

1 0 o O ~
(0 10 w) such that Jw > 0.
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Let £4 be the lattice generated by the column vectors of the period matrix.
Let us consider the automorphisms gi, g2 and g3 of A, whose representa-
tions on CZ are as follows:

1 n1y + ngw
z+2(n2+n4w>’
- 01 o1
we = (1) ()
— (0 -1,

where (ny,n2,n3,n4) = (0,0,1,1),(1,1,0,0),(1,1,1,1),

<Zi i Zz) € L4 and (281> € L.
We have g1 = g2 = g5* = id, 929392 = 93 and gig1 = ¢19; (i = 2,3) on A.
Putting G = (g1,92,93), we have Go=(g1) and G =Gy x H where
H = (M(g2), M(g3)). Clearly H = D,. The group G is a subgroup of Aut(A)
and A/G =~ 2. The very ample divisor D is given by 7*(L), where
n:A—A/G= P2 and L is a line in P? (cf. [7, Lemma 3.5]). We infer from
Theorem A that (4, D) defines a Galois embedding.

By [7, Corollary 3.8], if A has a Galois embedding, then the abelian
surface B = A/Gy is isomorphic to £ x E for some elliptic curve E. On the
other hand, £ x E can be a Jacobian of a curve for some E (cf. [2]). So one
may ask what type of genus 2 curve can give the Jacobian whose double
covering has a minimal Galois embedding. Let us consider this question in
the next example.

12

EXAMPLE 5. Let I’ be the curve defined by %? = x(x* + ax® + 1),
where we assume @ # + 2 (cf. [1, Theorem 4.8]). This curve has a singular
point at co. Let C be the normalization of I". The genus of C is two. Let o
and 7 be the birational transformations of I" defined by

o) = —x, o(y) =iy and t(x) =1/x, (y) =y/a*

respectively. Clearly we have ¢* = 1> = id and tot = ¢~ !. Let H be the
group generated by ¢ and 7. Then we have H = D,4. This group acts on C.
Let C(x, %) be the function field of C, where y*> = x(x* 4+ ax® + 1). Clearly
the invariant field of C(x,y) by o is C(x?). Let 9; and 9» be a basis of
holomorphic 1-forms on C induced from dx/y and xdx/y respectively.
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We have
" (%) =1, 6" () = —ids and (%) = —S, 7 (S) = —.

Let J(C) be the Jacobian of C. Taking a base point P € C, the Abel-Jacobi
map jp is given as
Q Q

jp: C—J(C) such that jp(Q) = (/791,/192> (modulo the lattice),
P P

where @ € C. If P is a fixed point of g, then we have
(@) Q

/ﬂ:/ﬂ&

P P

for Q € C, where 4 = & or Jy. Similarly if P’ is a fixed point of 7, then we
have

Q) Q
/&:/fw,
P P

where @ € C. Note that if jp : C — J(C) is defined with a base point P, and
jp : C — J(C) is defined with a base point P’, then jp =t - jp, where tis a
translation in J(C). Assume that P is a fixed point of . Then, letting ¢ and T
be the representations of o and 7 on C? respectively, we obtain that they can
be expressed as 6z = M(o)z and 7z = M(1)z + v, where z € 2% pe C?and

M(o) = (5 _‘2) and M(1) = (_(1) ‘01>.

Put H = (M(0), M(z)). Then we have H = Dy4. Note that the curve jp(C) is
fixed by o and C/ (o) is isomorphic to a smooth rational curve. We infer from
the above arguments that J(C)/H is isomorphic to P and C/{c) is a line.
Letp: J(C)— J(C)/H = P2 be the quotient morphism. Then p*(L) can be
expressed as C + C’, where L is the line and ' is a translation of C on J(C).
Let A be an abelian surface such that ¢ : A — J(C) is an etale double
covering given as follows. Express J(C) = (2 /Land A = C? /Lo, where L
and £, are lattices satisfying |£ : £y| = 2. Take an element ¢ € £\ £ so
that p(z) =z + ¢ is a translation of order two on A. Then we have
L =Ly, £). Since 2¢ € Ly, we have M(2¢) = 2M(¢) € Ly, where M € H.
Hence we infer that ¢ and t induce automorphisms on A. We use the same
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letter H to denote the group consisting of the elements which are induced
from H. Let G be the automorphism group on A generated by H and p. Then
putz=p-q:A—A/G = P2 Since deg (1) = 16 > 10, we see that 7* (L) is
very ample (cf. [7, Lemma 3.5]). From Theorem A we infer that (4, =*(L))
defines a Galois embedding in P”.

REMARK 6. Note that ¢*(C) = C is irreducible. Because, if not so, then
¢*(C) can be written as C; + Cs. We have (¢*(C))* = 4 and C?=C:=2.
Since C; is ample, we have (Cy,Cz) > 1. This is a contradiction. Similarly
q*(C") = (" is also irreducible. The divisor C + C’ gives the minimal Galois
embedding of A. If L is the image of C, then C + C' = n*(L).

ExaMpLE 7. Let A be the abelian surface with period matrix

10 i (1+9)/2
010 A+i)/2)

This abelian surface has the automorphisms g;, g» and gs, whose repre-
sentations on CZ are as follows:

~ o -1 0 €11
i = (o v) ()
~ N 01 €21
o= (o) (i)
—_ (10,

g3 - 0 —i )

where the following vectors belong to the lattice generated by the column
vectors of the period matrix:

0 €21 + €22 e11 — €12 — 2eg;
2e12 )7 \ea tex)’ e11 + e ’
((1 - Z:)en ) (621 - ’6:622>
(1 —1ez )’ 622 + 621 )
We have g1% = go® = g3* = id, 19201 = 9205, 919391 = g3 and g2 9392 = g3~
Putting G = (g1, 92,93), we see that G is isomorphic to the semidirect
product Z2 x Dy and G is a subgroup of Aut(A) and A/G = P2, The very
ample divisor D is given by 7*(L), where 7: A —A/G =~ P? and L is a

line in P2 We infer from Theorem A that (A,D) defines a Galois em-
bedding.
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REMARK 8. The abelian surface A in Example 7 is isogenous to
x B, where E; = C/(1, 7). (In fact, we can show that A is isomorphic to
x KE;. ) Thanks to [2], this abelian surface cannot be a Jacobian of a

curve.
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