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Quadratic Integral Solutions to Double Pell Equations

FRANCESCO VENEZIANO (*)

ABSTRACT - We study the quadratic integral points—that is, (S-)integral points
defined over any extension of degree two of the base field—on a curve defined in
P3 by a system of two Pell equations. Such points belong to three families ex-
plicitly described, or belong to a finite set whose cardinality may be explicitly
bounded in terms of the base field, the equations defining the curve and the set S.
We exploit the peculiar geometry of the curve to adapt the proof of a theorem of
Vojta, which in this case does not apply.

1. Introduction

Let C be an irreducible curve defined over a number field k. We know,
depending on the genus, the general structure of C(Q); on the other
hand, of course C(Q) is always infinite, so it is natural to ask what hap-
pens if we consider algebraic points up to some fixed degree over Q.

Abramovich and Harris in [AH91], and also Silverman and Vojta in
[HS91, Voj91, Vo0j92] were among the first to study the set of points
P € C(Q) such that [k(P) : k] < d, in particular whether it is infinite or
not.

In this paper we deal with the analogous problem for integral points,
sticking to the special case of d = 2. This case was already studied in
generality by Corvaja and Zannier in [CZ04, Corollary 1] using Schmidt’s
Subspace Theorem.

We will further specialise the problem to curves defined by a double
Pell equation, such as, for example,

Y2 =20%+1
2 =382+ 1.

1)
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Double equations of this kind are historically relevant, being among the
first curves of genus 1 ever studied.

Of course, by Siegel’s theorem on integral points on curves, there are
only finitely many solutions in 7 to (1), but it may be easily seen that there
are infinitely many solutions in algebraic integers of degree 2 over Q: in
fact it is classically known that each Pell equation x*> — dy? = 1 has in-
finitely many integral solutions when d is a positive integer not a square, so
one can solve the first equation to find infinitely many (x,,¥,) such that
y2 = 2x2 + 1, and then set z, = /322 + 1; in this way we can actually
find three infinite families of solutions. We will fully describe the set of
quadratic integral points on these curves and give a geometrical meaning
to the families just mentioned.

Going back to the general context, Abramovich and Harris conjectured
that the set of P € C(Q) such that [k(P) : k] < d is infinite (up to a finite
extension of the basefield k) if and only if there exists some non constant
morphism ¢ : C — X of degree at most d, where X is either P; or an elliptic
curve E with |E(k)| = co.

Note that this condition is obviously sufficient; if ¢ is defined over k the
preimage through ¢ of a rational point in X is a point of degree at most d in C.

While the general conjecture was proved false by Dabarre and Fahlaoui
in [DF93], Abramovich and Harris managed to prove it in some cases as,
for example, when d = 2, 3.

The first step in their proofs was to consider the d-fold symmetric
product of the curve, C?; this is a variety whose set of points may be
identified with the set of all unordered d-tuples of points of C. Points of
degree at most d on C naturally correspond to k-rational points on C?, so
the said authors could work on the variety C” and apply results by Falt-
ings after mapping C in an abelian variety.

If we consider only points of degree 2 over the base field, the existence of
infinitely many quadratic rational points is surely necessary to have in-
finitely many quadratic integral points, but it is not sufficient, as we shall see.

In [CZ04] Corvaja and Zannier prove a theorem on integral points on
surfaces and apply it to C® to get the following theorem:

THEOREM 1. Let C be a projective non-singular curve defined over a
number field k, and C=C\ {Q1,...,Q,} be an open affine subset, for

() See for instance [Wei07] or [Mor69] for a discussion of some classical cases.
(3 For an account on this problem see [EE93].
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distinct Q; € C(k). Then

1. If » > 5 then C contains only finitely-many quadratic-integral
points over k;

2. Ifr = 4 there exist finitely many rational maps y : C — Py of degree
2 such that all but a finite number of the quadratic-integral points on C
over k are sent to P1(k) by at least one of these maps.

As it happens for the structure of the k-integral points, what matters in
this problem is the number of points at infinity.

2. Setting and statement

As mentioned above, this paper will study quadratic integral points on
some special curves in P of genus 1 and with 4 points at infinity, defined by
a double Pell-like equation; let then a, b, ¢, d be algebraic integers such that
abed # 0 and ad — be # 0, and let C be the affine curve in A® defined by

@ Y =ax’+c
22 = ba® 4 d.
Let C be its projective completion, defined by homogeneous equations

Y% = aX? + cW?
72 = bX2 + dW2.

Let us indicate with Py, Py, P3, Py the four points at infinity of C \ C,
which, in the coordinates (X : Y : Z : W) are the points

Pi:(1:vVa:vb:0)
Py:(1:va:—Vb:0)
Py:(1:—va:Vb:0)
Py:(1:—Va:—Vb:0).
Let & be a number field containing /a, v/b, ¢ and d, and let S C M, a finite

set of absolute values of k containing all the archimedean ones and all the
primes in cd(bc — ad); let s be the cardinality of S.

THEOREM 2. The set of quadratic S-integral points on C is the union of:

o Three families consisting of the preimages through the three
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maps C — P
P 1 @, 9,2) — @, y)

(@, y,2)— (x,2)
(@,y,2)— (y,2)

of the S-integral points of Py;

o A finite set of cardinality at most 223355+3;

e A finite and effectively computable set whose cardinality is at
most 3 - 212VHH=D+1 " yphere H is the class number of Os.

REMARK 3. The three families of quadratic points are indeed easy to
spot. If for example the first of the two Pell equations defining C has in-
tegral solutions (x,,¥,), then (x,,¥,, £+1/bx% + d) are quadratic integral
points on C. Similarly if (x,,2,) are integral solutions to the second equa-
tion, then we have a second family (x,, £+/ax? + ¢, 2,), and if (y,,2,) are

2 _
integral solutions to by? — az? = bc — ad, we get (i\ / y”a C, Yns zn> for a

subsequence of (¥, zy).

REMARK 4. We also note that this theorem allows for a bound on the
number of exceptional solutions outside the three infinite families, while
Theorem 1 does not.

While the Subspace theorem is not effective, there is a semi-effective
version due to Evertse which provides an explicit bound for the number of
exceptional hyperplanes; it is not possible, however, to use it in the proof of
Theorem 1 to get such a bound for the quadratic integral points. This is
because, in the proof of Theorem 1, the Subspace theorem is applied to a
surface, and each exceptional hyperplane for the Subspace Theorem gives
an exceptional curve on this surface which may contain points corre-
sponding to quadratic integral points; but even if we can bound the number
of such curves, they are not effectively computable and so it is not possible
to bound the number of points on them.

REMARK 5. We finally remark that we can not expect in general a
bound for the finite sets of points which is uniform in the coefficients
a,b, ¢, d; for example it is known® that there is a constant C > 0 such that
for infinitely many positive integers A, the number of positive integer
solutions to the equation X3 + Y = A exceeds C+/log A.

() This result is essentially due to Mahler in [Mah35] and improved by
Silverman in [Sil83].
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3. Sketch of the proof

To study quadratic integral points we proceed as [AH91] and [CZ04]
and consider the symmetric square of the affine curve C, which is defined
as the quotient of the product C x C by the involution which exchanges the
couple (P, @) with the couple (), P). This quotient is an irreducible surface
which can be identified with the set of unordered couples of points, and the
quotient map is

cxctc?

(P,Q)—{P,Q}.

Consider a point P defined on a field of degree 2 over k, and let P’ be its
conjugate. Then the point {P,P'} on C? is fixed by every Galois auto-
morphism of Q/k, and hence is defined over k. If furthermore P is an in-
tegral point so is the point {P, P'}. 4

The special geometry of curves defined by double Pell equations carries
to their symmetric square and allows one to study quadratic integral points
directly and to give an explicit description of the maps mentioned in
Theorem 1; for the proof we will mimic the proof of a theorem by Vojta

([Voj87]):

THEOREM 6 (Vojta). Let V a projective, nonsingular variety over a
number field k. Let r be the rank of the group of k-rational points of Pic’(V),
p the rank of the Niwron-Severi group of V and D a divisor with at least
dimV + » + p + 1 distinct irreducible components, all defined over k. Then
all sets of quasi-S-integral points on V' \ |D| are degenerate.

REMARK 7. This theorem has been improved later by Vojta himself,
removing the assumptions on the Pic’, in [V0j96] and also by Noguchi and
Winkelmann in [NWO02].

While this theorem does not apply to our case, the proof adapts well
because on the curve C the difference of any two points at infinity is torsion
in the Picard group.

The first step of the proof, following the strategy already illustrated,
will be to study instead the structure of the set of integral points on the
surface C® obtained by taking the symmetric square of the original curve.

(*) See, for example, [Ser88] for more on the symmetric product.
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We will then follow the proof of Theorem 6 and build three functions
o, B,y without zeroes and poles on C®. These functions, up to constant
factors, take integral points of the symmetric square to S-units.

We will then find a relation among «, 3, y, so that taking them as co-
ordinates gives a map from C® to the subvariety of G3, defined by this
relation; it will turn out that this relation is linear.

This means that the functions o, 8,y take integral points of C® to so-
lutions of the S-unit equation, which is the object of the following theorem.

THEOREM 8 (Evertse, [Eve95]). Letk be a number field, let S be a finite
set of places of k containing all the archimedean ones, let s = |S| and let
Q... an € Q. Let Alaq,. .., a; 03) be the number of non degenerate
solutions x1, ..., x, € Og to the equation

(3) a1y + ...+ ayx, =1,

where a solution (x1,...,%,) is called degenerate if there is a proper van-
ishing subsum in the left hand side of (3). Then

4
Alay, ..., ay; OF) < 2557,

Using this theorem we will then proceed to bound the number of non
degenerate solutions and to examine degenerate solutions, which come
from special subvarieties.

Wewill showthat three of these special subvarieties are curves of genus 1,
hence each gives only a finite number of quadratic integral points, while the
other three have genus 0 and give three families of quadratic integral points.

The strategy outlined here would also work for any variety such that
the difference of any two components of the divisor at infinity is torsion in
the Picard group.

4. Proof Theorem 2

Three functions on C
Let us consider the functions
Fe Y+vaX W
W Y —aX
Z+VbX AW
W Z-VX
VY —aZ  (bc — ad)W
w VOY + \JaZ

h
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They are functions on the curve C defined over k.
By explicit computation one has

e N
C2Vaf  2Vbg
fP+ce be—ad+h?
T 2v/bh
z_gz+d_bc—ad—h2
2 2yah

so we have that
k(f) = k(x,y), k(g) = k(x, 2), k(h) = k(y, 2),

and k(C) has degree 2 over each of them.
The divisors of the three functions are

()=Ps+Py—P,— P,
(@) =P +Py—P1—P3
(h) = P1+ Py — Py — Ps.

These three functions are in k[C]*, as we can see by their explicit expres-
sions and the expressions for their inverses, or by observing that their di-
visors are supported on the points at infinity.

By direct computation using the first and then the second definition of
f,9,h one immediately checks that they satisfy the linear relations

(4a) Vof —vag=h
(4b) ﬂ_M:h
f g '

Three functions on C?

Let us now consider the Cartesian product C x C given by equations

Yy =ax’+c
Z=bx®+d
y”? = ax”? +c

2% =bx”? +d,
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and let us indicate by f,¢’, ' the functions corresponding to f, g,k in the
primed variables. Let C® be the symmetric product of C obtained from
C x C as a quotient by the action of 7 /27 that acts swapping the two co-
ordinates.

The ring of regular functions over C? is A = k[C x C]*/?”, the subring
of k[C x C] consisting of the functions invariant for this action, and the
points of C® can be thought as unordered couples of points on C.

cxC-2c®
kle,y,z, @' y',2']1 2 A.

Let us denote by 7 the quotient map from C x C to C®.

Let P be a quadratic integral point on C, and let P’ be its conjugate.

The pair (P, P’) is a quadratic integral point on C x C, and the unordered
couple {P, P'} is an integral point on C® which is fixed by any Galois au-
tomorphism over k because any such morphism either fixes both P, P’ or
swaps them.

The point {P, P'} is therefore defined over k.

Let us now define three functions

= (y — Vax)y' — Vax )z — Vbr)@ — Vor')/cd

ﬁ”’gg
p= C(;Cc,hh, = (y—vax)y' —vax'\Vby + Vax)(Vby' + Vaz')/c(be ~ ad)
d(ad — bc) , . )
= ggii = & VoOE Vb \(Vby + Vaa)(Vby' + vaz')/d(ad — be)

é_ﬁzgg (y + Vax)y + Vax)z + Vo) + Vo) ed

1 ff’hh/ B / , . . l i
E clbc —ad) Y+ Vax)y' +vax\(Vby - Vaz) Vby — Vaz)/c(be - ad)
1_
Y

=T = (g ghh;) 5=+ Vbn)(@ + Vb )(Vby —vaz)(Vby' — vaz')/d(ad — be).

We clearly see that they belong to k[C®], and so do their inverses; the
functions o, 5, y are the three regular and nonvanishing functions that we
need to follow Vojta’s strategy and view C® as a subvariety of an.

The functions o, f and y are defined on a surface, so they must be al-
gebraically dependent. Our next step is to find a relation between them.
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Multiplying together equation (4a) for the primed and unprimed vari-
ables one gets

(5) hh' = bff' + agg' — Vab (f'g +fi);

doing the same for equation (4b) gives

c%b d2 1 1
6 hh’——+ cdx/ab(——l——).
© I g
If we now multiply (6) by =—=— 99 and subtract it from (5), after some tidying

cd
up and using the definitions for o, f,y we obtain

o+pf+y=1

Computing degrees

From what we have said until now we have the mappings

) (a.8.7)

cxchce® 2 HCGE

where H is the subvariety of G defined by X +Y + Z = 1.
The corresponding homomorphisms between the rings of regular
functions are

1
' XYZ

]—m[x,y,; L ACKCxCl
[Z—1-X-Y]

k[X’Y’Z XYQ-X-Y)| 2

(2)( .y

To find the degree of the map C H we must find the degree

[6(C?) : k(a, B, )]

One finds directly that (ff’ - y so that [k(ff",99") : k(o, B, )] =
and from ﬁ
fPoc_g—d
vaf Vg

P —of* _(99) — dg?
Valffihf - Vbgg)g
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follows that [k(f.f",9,9) : k(ff',99")] <4, so by our previous remarks
we have

[k(C x C) : k(at, B, )] = [k(f.f",9,9) : ko, B, )] =
= [k(faflvgag/) : k(ﬁlvggl)] : [k(ff/agg/) : k(OC,ﬁ, V)] <8.

Obviously [k(C x C) : k(C®)] = 2, as there are two ordered pairs for a
generic unordered couple; therefore we can conclude that the degree of the
map given by o, £, y between C® and H is at most four.
If P is an S-integral point on C® the Values oc(P) B(P), y(P) will be S-
1
(P) pP)’ y(P)

The point P will then provide a solution in O of the equation

integers, and so will be their inverses —

X1+ a2 +a3=1.

Non degenerate solutions

Theorem 8 tells us that there are only finitely-many non degenerate
solutions, and that we can bound their number. If we apply the theorem
with n =3 we obtain that the number of non degenerate triples
(o, B, 7) € H is at most 2353's — 928355

We already bounded in the previous paragraph the degree of the
map (o, f,7), which is at most four. For every integral point on C® w
have two quadratic integral points on C, hence the number of quadratlc
integral points on C corresponding to non degenerate solutions is at
most 22835s+3.

Degenerate solutions
The degenerate solutions to o+ 4y =1 are those with a subsum

equal to 0, that is those for which one of the three functions «, 5, y is equal to
1; let us then define

W,:a=1, Wp:p=1, W,:y=1

the subsets of C? thus obtained.
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Using the definition of o, ff, y we see that, for example,

x=1, B=-y
o cbc —ad) _ d(ad —bc)
199’ = cd, f'hi - 99’ ki
/ng/ 2 ; ng’
=g =c ==
Y = ¢, 99’ g

c

and similarly for the other two cases, so we see that W,, Wy, W, are com-
posed of two subvarieties each, and

W, =W, uW;
Wp=W, UW,
W, =W, UW],
where
W, ff =cg99 =d Wy iff' = —c.99' =—d

W, ff'=—c,hh/ =ad —bc W, :ff"=c,hl/ =bc—ad
W, :99 =—d,hl =bc—ad W] :g9 =d,hi/ = da — be.
These six subvarieties give all degenerate solutions; to understand them
better we use the following simple lemma:
LEMMA 9. Let P = ((x,y,%), (@', y',2")) € C x C. Then

o fl(P)=xc=>ax=Fo andy =+ ¥;
e gf(P)=td=x=F2 andz = +2;
e W/(P)=+(bc—ad)=z=F2 andy =+

Proor. For example, if ff’ = ¢ then

,_(f,)z—C_Cz/fz—C_C—fZ_
TS T adf e

and similarly for the other five cases. |

If we define six subvarieties of C x C
Viiw==xoy=Fy,z2=F7
Vyi x=F2,y==%y,2=7F7
VEiiw=5oy=Fy,z=+7,
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then the lemma tells us that each of them corresponds through 7 to the
similarly named subvariety Wj:yz of C® (we denote by nyz any of the six

varieties V-, V7, V", V.5, V", Vr, and we do the same with W,-, ). In short
we have that

R +
”|V§y.z Ve = Wy

Note also that V¥  ~ C through the projection on the first component of

2,y ,2
C x C, so that these six curves all have genus one.

) +
Points on W, ,

Consider for example
7Z|Vj : V;r - W;r
((90, y) Z), (90, —?/7 _Z)) = {(90, ya z)y (907 _ya _Z)}

A generic point in W has two preimages, obtained by exchanging the
order of the pair; the points which have just one primage are those such
that y = z = 0, but we see from the defining equations (2) of C that this can
never happen because by? — az? = bc — ad # 0. The map 7|y is therefore
an unramified covering of W, and the Riemann-Hurwitz formula tells us
that

0=2g(V,) — 2 = 2Cg(W,)) — 2)
gW) =1.

The same is true for W;r and W, because there is no point on C where two
of «, %,z both vanish.

We have thus shown that the three subvarieties W, . are all curves of
genus 1, so they carry only a finite number of integral points, which in turn
correspond to a finite number of quadratic integral points on C.

We might also argue the finiteness of quadratic integral points coming
from the curves W, . as follows: let K = k(,/z) be a quadratic extension of
k, we may suppose ¢ € Og; let P = (x9,¥0,%70) be a K-integral point on C,
and P’ = (xg, ¥, 2;) its conjugate. Suppose that (P, P') belongs to V,}; if it is
so, after enlarging S to an S’ so that Og has trivial class group, we can
write xg = t,yo = u\/¢, 20 = vy/¢ for some t,u,v € Og.

Substituting back into the equations for C we get beu? — aev? = be — ad,
so ¢ divides bc — ad; different ¢ differing only by a square factor give the
same extension, and given that Og/ (Og/)2 is finite we see that K must
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belong to a finite set of extensions of k, whose cardinality may be bounded
in terms of the cardinality of S'.

We know, by Siegel’s theorem, that there are only finitely many in-
tegral points on C defined over a fixed number field; since C has four points
at infinity, this number may be bounded effectively, as done in [CZ03], in
terms of the degree of K and the cardinality of the extension of S’ to K,
which in turn are both bounded in terms of k and |S'|.

The computations involved in this bound are quite heavy, but again the
special structure of the curve C provides us with a simpler argument:
equation (4a) gives the unit equation

ff Yo p) - fg VY (py =1,

()
so the number of solutions may be easily bounded using again Theorem 8.
For a fixed K and extension S” of the set of absolute values S’, there are at
most 2352'18"l = 211208'] golutions; the number of extensions K is at most
|O0% /(O )| = 2/5'; the functions f /h and g /h have degree two, as we can see
computing their divisors, so each solution gives at most two points. Com-
bining all, we have that the number of quadratic integral points P such that
(P, P)) lies on any of the W, _ is at most 3- ouZLS|+1 — g . QU2L(s+H -1+
where H is the class number of Og.

I thank the anonymous referee for suggestions about this bound.

We should also remark that, since the relevant curve has genus 1, it is in
fact possible, as is well known, to bound the height of the solutions them-
selves; tha same can be done on equation (7), using effective results on two-
term unit equations (derived from Baker’s theory of linear forms in loga-
rithms). So the quadratic integral points arising from W, . are, in fact,
effectively computable (in contrast with those arising from the “non de-
generate solutions”).

Points on ij v

Reasoning as we did before, we consider, for example
7'E|V; 2V, =W,
((90, y7 z)? ( — &, ?/7 Z)) g {(9(/', % 2)7 ( — &, y’ Z)}

This is again a map of degree 2.
In this case however, we see that it is ramified at points where x = 0,
and there are 4 such points on C, namely (0, ++/c, +v/d), each of them of
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course ramified of index 2. Therefore this time applying the Riemann-
Hurwitz formula we obtain

0=29(V,)—2=229gW, —2)+4

gW,) = 0;

as W, has genus 0, it may contain infinitely many integral points.
The composition of the maps

7Tlyy—
c — Vo — W 2 Chy?— a2 =be — ad)
(@,y,2)— ((x,y,2), (—x,y,2)—{(r,y,2),(—2,9,2)} — Y, 2)

gives a map of degree two from C to a curve of genus 0, that takes quadratic
integral points arising from W to integral points; this map together with
the same compositions for Wy* and W, that is,

C — {2 =ba®+d}
(®,y,2) — (%, 2),

and

C — {yf=ax®>+c}
@, y,2) (@, y),

are the maps in Theorem 1.
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