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Finite Groups with Weakly s-Semipermutable Subgroups

CHANGWEN L1

ABSTRACT - Suppose G is a finite group and H is a subgroup of G. H is said to be s-
semipermutable in G if HG, = G,H for any Sylow p-subgroup G, of G with
(p, |H|) = 1; H is called weakly s-semipermutable in G if there is a subgroup T' of
G such that G = HT and H N T is s-semipermutable in G. We investigate the
influence of weakly s-semipermutable subgroups on the structure of finite
groups. Some recent results are generalized and unified.

1. Introduction.

All groups considered in this paper will be finite. We use conventional
notions and notation, as in Huppert [1]. G denotes always a group, |G| is
the order of G, n(G) denotes the set of all primes dividing |G| and G, is a
Sylow p-subgroup of G for some p € n(G). Let F be a class of groups. We
call F a formation provided that (i) if G € F and H < G, then G/H € F, and
@) if G/M and G/N are in F, then G/(M N N) is in F for any normal
subgroups M, N of G. A formation F is said to be saturated if G/&(G) € F
implies that G € F. In this paper, U, A will denote the class of all super-
solvable groups and the class of all nilpotent groups, respectively. As well-
known results, ¢/, N are saturated formations.

Two subgroups H and K of G are said to be permutable if HK = KH.
A subgroup H of G is said to be s-permutable (or s-quasinormal, 7-
quasinormal) in G if H permutes with every Sylow subgroup of G [2].
Asaad, Ramadan and Shaalan proved in [3]: Suppose G is a solvable
group with a normal subgroup H such that G/H is supersolvable. If all

(*) Indirizzo dell’A.: School of Mathematical Science, Xuzhou Normal University,
Xuzhou, 221116, China.

E-mail: lewxz@xznu.edu.cn

The project is supported by the Natural Science Foundation of China
(N0:11071229) and the Natural Science Foundation of the Jiangsu Higher Educa-
tion Institutions (No:10KJD110004).



74 Changwen Li

maximal subgroups of any Sylow subgroup of F'(H) are s-permutable in
G, then G is supersolvable. Later Asaad in [4] extended the result using
formation theory: Let F be a saturated formation containing &. Suppose
that G is a solvable group with a normal subgroup H such that G/H € F.
If all maximal subgroups of all Sylow subgroups of F(H) are s-permu-
table in G, then G € F. As a generalization of s-permutable subgroup,
the concept of s-semipermutable subgroup is introduced. A subgroup H
of G is said to be s-semipermutable in G if HG, = G,H for any Sylow p-
subgroup G, of G with (p,|H|) = 1. Q. Zhang and L. Wang [5] obtained
the following: Let F be a saturated formation containing ¢/. Suppose that
G is a group with a solvable normal subgroup H such that G/H € F. If all
maximal subgroups of all Sylow subgroups of F'(H) are s-semipermutable
in G, then G € F. In recent years, it has been of interest to use sup-
plementation properties of subgroups to characterize properties of a
group. For example, Y. Wang [6] introduced the concept of c-supple-
mented subgroups and obtained the similar result in [7]: Let F be a
saturated formation containing U. Suppose that G is a group with a
solvable normal subgroup H such that G/H € F. If all maximal sub-
groups of all Sylow subgroups of F(H) are c-supplemented in G, then
GeF.

There is no obvious general relationship between s-semipermutable
subgroup and c-supplemented subgroup. Hence it is meaningful to unify
and generalize the two concepts and relate results. Recall that H is c-
supplemented in G if there exists a subgroup K such that G = HK; and
H N Ky < Hg, where H is the maximal normal subgroup of G contained in
H. In this case, writing K = H;K; we have G = HK and H N K = Hg; of
course, H N K is s-semipermutable in G. On the basis of this observation,
we introduce a new embedding property:

DEFINITION 1.1. A subgroup H of a group G is called weakly s-semi-
permutable in G ifthere is a subgroup T of G such thatG = HT and HN T
is s-semipermutable in G.

In the present paper, we study the influence of weakly s-semi-
permutable subgroups on the structure of some groups. In particular, we
give some new characterizations of supersolvability and p-nilpotency of a
group (and, more general, a group belonging to a given formation of
finite groups) by using the weakly s-semipermutability of some primary
subgroups. As application, we unify and generalize a series of known
results.



Finite Groups with Weakly s-Semipermutable Subgroups 75
2. Preliminaries.

Lemma 2.1. Suppose that H is an s-semipermutable subgroup of a
group G and N is a normal subgroup of G. Then

(a) H is s-semipermutable in K whenever H < K < G.

(b) If H is p-group for some prime p € n(G), then HN /N 1is s-semi-
permutable in G/N.

(¢) If H < 0,(GQ), then H is s-permutable in G.

Proor. (a)is[5, Property 1], (b)is[5, Property 2], and (¢) is [5, Lemma 3].

LEMMA 2.2.  Let U be a weakly s-semipermutable subgroup of a group G
and N a normal subgroup of G. Then

(a) If U < H <G, then H is weakly s-semipermutable in H.

(b) Suppose that U is a p-group for some prime p. If N < U, then U/N
is weakly s-semipermutable in G/N.

(¢) Suppose U is a p-group for some prime p and N is a p’-subgroup,
then UN /N 1is weakly s-semipermutable in G/N.

Proor. By the hypotheses, there is a subgroup K of G such that
G = UK and U N K is s-semipermutable in G.

(@) H=HNUK=UHNK) and UN(HNK)=UNK is s-semipermu-
table in H by Lemma 2.1(a). Hence U is weakly s-semipermutable in H.

(b) G/IN=UK/N=U/N-NK/N and (U/N)N(KN/N)=(UNKN)/N=
(UNK)N/N is s-semipermutable in G/H by Lemma 2.1(b). Hence U/N is
weakly s-semipermutable in G/N.

(¢) Since (|G:K|,|N)=1, N <K. It is easy to see that G/N=
UN/N-KN/N =UN/N -K/N and (UN/N)N(K/N)=(UNNK)/N =
(UNK)N /N is s-semipermutable in G/N by Lemma 2.1(b). Hence UN /N is
weakly s-semipermutable in G/N.

Lemma 2.3 ([8], Lemma 2.6). Let H be a solvable normal subgroup of a
group G(H # 1). If every minimal novrmal subgroup of G which is contained
m H is not contained in &(G), then the Fitting subgroup F(H) of H s the
direct product of minimal normal subgroups of G which are contained in H.

LemMA 2.4 ([7], Lemma 2.8). Let M be a maximal subgroup of G, P a
normal p-subgroup of G such that G = PM, where p a prime. Then P N\ M is
a normal subgroup of G.
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LEmma 2.5 ([9], Lemma 2.16). Let F be a saturated formation con-
taining U. Suppose that G is a group with a normal subgroup N such that
G/N € F. If N is cyclic, then G € F.

LemMA 2.6 ([9], Lemma 2.20). Let A be a p'-automorphisms of a p-
group P, where p is an odd prime. Assume that every subgroup of P with
prime order is A-invariant. Then A is cyclic.

Lemma 2.7 ([1], IT1, 5.2 and IV, 5.4). Suppose G is a group which is not
nilpotent but whose proper subgroups are all nilpotent. Then

(@) G has anormal Sylow p-subgroup P for some prime p and G = PQ,
where Q is a non-normal cyclic q-subgroup for some prime q # p.

(b) P/D(P) is a minimal normal subgroup of G/ D(P).

(¢c) If P is non-abelian and p > 2, then the exponent of P is p; If P is
non-abelian and p = 2, then the exponent of P is 4.

(d) If P is abelian, then the exponent of P is p.

(e) @(P) < Z(P).

Lemma 2.8 ([8], Lemma 3.12). Let P be a Sylow p-subgroup of a group
G, where p is the smallest prime dividing |G|. If G is Ay-free and |P|<p?,
then G is p-nilpotent.

3. Results.

THEOREM 3.1. Let F be a saturated formation containing U. A group
G € Fif and only if there is a normal subgroup E of G such that G/E € F
and every cyclic subgroup (x) of any noncyclic Sylow subgroup of E with
prime order or order 4 (if the Sylow 2-subgroup is non-abelian ) is weakly
s-semipermutable in G.

Proor. We need only to prove the sufficiency part since the necessity
part is evident. Suppose that the assertion is false and let (G,E) be a
counterexample for which |G||£| is minimal. Then

(1) E is solvable.

Let K be any proper subgroup of E. Then |K| < |G| and K/K € U. Let
(x) be any cyclic subgroup of any noncyclic Sylow subgroup of K with
prime order or order 4 (if the Sylow 2- subgroup is non-abelian ). It is clear
that (x) is also a cyclic subgroup of a noncyclic Sylow subgroup of £ with
prime order or order 4. By the hypothesis, (x) is weakly s-semipermutable
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in G. By Lemma 2.2, (x) is weakly s-semipermutable in K. This shows that
the hypothesis still holds for (4, K). By the choice of G, K is supersolvable.
By [10, Theorem 3.11.9], £ is solvable.

(2) G” is a p-group,where G” is the F-residual of G. G¥ /®&(G”) is a chief
factor of G and exp(G”) = p or exp(G”) = 4 (if p = 2 and G is non-abelian).

Since G/E € F, G < E. Let M be a maximal subgroup of G such that
G* ¢ M (that is, M is an F-abnormal maximal subgroup of G). Then
G = ME. We claim that the hypothesis holds for (F,M). In fact,
M/MNE=ME/E =G/E € F and by the similar argument as above, we
can prove that the hypothesis holds for (¥, M). By the choice of G, M € F.
Thus (2) holds by [10, Theorem 3.4.2].

(8) {(x) is s-permutable in G for any element x € G”.

Let x € G”. Then the order of x is p or 4 by step (2). By the hypothesis,
() is weakly s-semipermutable in G. Then there is a group 7" of G such that
G = ()T and (x) N T is s-semipermutable in G. It follows that G = (x)T
and G = G7 NG =G N {x)T = (x)(G" NT). Since G¥ /d(G”) is abelian,
(GT NTYDGT)/D(GT) aG/D(GT). Since G7 /B(G”) is a chief factor of G,
GFNT <DGT) or G =GT NDHDGH) =G NT. If GFNT < DGF),
(x) = G¥ <G. In this case, (x) is s-permutable in G. Now assume that
G" =G NT. Then T =G and (x) = (x) N T is s-semipermutable in G.
Since (x) < G < 0,(G), (x) is s-permutable in G by Lemma 2.1.

@) |GT /d(GT)| = p.

Assume that |G7 /®(G”)| # p and let L/®(G”) be any cyclic subgroup
of G¥ /®(G7). Let x € L\®(G”). Then L = (x)®(G”). Since (x) is s-per-
mutable in G by step (3), L/®(G7) is s-permutable in G/P(G”). It follows
from [9, Lemma 2.11] that G /®&(G”) has a maximal subgroup which is
normal in G/®(G”). But this is impossible since G* /®(G”) is a chief factor
of G. Thus |G” /®(G7)| = p.

(5) The final contradiction.

Since (G/D(G7))/(GT | D(GT)) ~ G/GT € F, G/D(GT) € F by Lemma
2.5. As ®(G7) < &(G) and F is a saturated formation, we have G € F. The
final contradiction completes the proof.

COROLLARY 3.2 [14], Theorem 3.4). Let F be a saturated formation
containing U, the class of all supersolvable groups. If every cyclic
subgroup of G¥ with prime order or order 4 is c-normal in G, then G € F.

COROLLARY 3.3 ([15], Theorem 4.2). If every cyclic subgroup of a
group G with prime order or order 4 is c-normal i G, then G 1is
supersolvable.
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COROLLARY 3.4 ([16], Theorem 4.1). If every cyclic subgroup of GY
with prime order or order 4 is c-supplemented in G, then G is super-
solvable.

COROLLARY 3.5 ([17], Theorem 1). Let F be a saturated formation
containing U, the class of all supersolvable groups. If there is a normal
subgroup H of G such that G/H € F and every cyclic subgroup of H with
prime order or order 4 is s-permutable in G, then G € F.

COROLLARY 3.6 ([21], Theorem 3.9). Let F be a saturated formation
containing U, the class of all supersolvable groups. Then G € F if and
only if there is a normal subgroup H of G such that G/H € F and the
subgroups prime order or order 4 of H with are c-normal in G.

COROLLARY 3.7 ([19], Theorem 3.1). Let G be a group and N a normal
subgroup of a group G such that G/N 1is supersolvable. If every minimal
subgroup of E is c-supplemented in G and if every cyclic subgroup of order
4 of N is c-normal in G, then G is supersolvable.

THEOREM 3.8. Let F be a saturated formation containing U. A group
G € F if and only if there is a solvable normal subgroup H of G such that
G/H € F and every cyclic subgroup (x) of any noncyclic Sylow subgroup
of F(H) with prime order or order 4 (if the Sylow 2-subgroup is non-abe-
lian) is weakly s-semipermutable in G.

Proor. Tt is clear that the condition is necessary. We only need to
prove that it is sufficient. Suppose that the assertion is false and let (G, H)
be a counterexample for which |G||H| is minimal. Let p be the smallest
prime divisor of |F(H)| and P the Sylow p-subgroup of F'(H). Then P < G.
Now we proceed with our proof as follows:

(1) F(H) # H and Cy(F(H)) < F(H).

If F(H) = H, then G € F by Theorem 3.1, a contradiction. Obviously,
Cy(F(H)) < F(H) since H is solvable.

(2) Let V/P=F(H/P) and Q be a Sylow g-subgroup of V, where
q||lV/P|. Then q # p and either @ < F(H) or p > q and Cy(P) = 1.

Since V' /P is nilpotent, QP /P char V /P and so QP < H. Then, it is easy
to see that p # q. By Theorem 3.1, PQ is supersolvable. If ¢ > p, then
Q < PQ and so Q < F(H). Now assume that p > q. Then p > 2. Since p is
the minimal prime divisor of |F'(H)|, F(H) is a ¢’-group. Let R be a Sylow -



Finite Groups with Weakly s-Semipermutable Subgroups 79

subgroup of F(H) where r # p. Then r # ¢q and so [R, @] < P. Assume that
for some x € ) , we have x € Cy(P). Since V /P is nilpotent, [R, (x)] =
[R, (x), (x)] = 1 by [11, Chapter 5, Theorem 3.6]. Hence « € Cy(¥'(H)). By
(1), Cy(F(H)) < F(H) and so Cy(P) = 1.

@) p>2. If p=2, then by (2), we see that F(H/P) = F(H)/P and
21 |F(H/P)|. This implies that if (x)P/P is an arbitrary minimal subgroup
of F(H)/P, then |x| = r, where r # 2. By Lemma 2.2, every minimal sub-
group of F'(H/P) is weakly s-semipermutable in G/P. Hence (G/P,H/P)
satisfies the hypothesis. The minimal choice of (G,H) implies that
G/P € F. Hence by Theorem 3.1, G € F, a contradiction. Thus, (3) holds.

(4) Final contradiction. Let V/P = F(H/P) and @ be a Sylow g-sub-
group of V, where ¢q||V/P|. Then by (2), either @ < F(H) or p > q and
Cq(P) = 1. In the second case, Q is cyclic by (3) and Lemma 2.6. Hence
every Sylow subgroup of F'(H/P) either is cyclic or is contained in F(H).
Moreover by (2), pt |F'(H/P)|. Let K/P be a cyclic subgroup of a non-cyclic
Sylow subgroup of F(H/P) with prime order. Then it is easy to see that
K/P = (x)P/P, where (x) is a cyclic subgroup of some non-cyclic Sylow
subgroup of F'(H) with prime order. By hypothesis, (x) is weakly s-semi-
permutable in G. Hence (x)P/P is weakly s-semipermutable in G/P by
Lemma 2.2. This shows that (G/P,H/P) satisfies the hypothesis. The
minimal choice of (G,H) implies that G/P € F. Therefore, G € F by
Theorem 3.1. The final contradiction completes the proof.

COROLLARY 3.9 ([22], Theorem 3). Let G be a group and E a solvable
normal subgroup of G such that G/E is supersolvable. If all minimal
subgroups and all cyclic subgroups with order 4 of F(E) are c-normal in
G, then G 1is supersolvable.

COROLLARY 3.10 ([23], Theorem 2). Let F be a saturated formation
containing U. Suppose that G is a group with a solvable normal subgroup
H such that G/H € F. If all minimal subgroups and all cyclic subgroups
with order 4 of F(H) is c-normal in G, then G € F.

COROLLARY 3.11 ([24], Theorem 3). Let F be a saturated formation
containing U. A group G € F if and only if there is a solvable normal
subgroup H of G such that G/H € F and the subgroups of prime order or
order 4 of F(H) is c-normal in G.

COROLLARY 3.12 ([7], Theorem 4.1). Let F be a saturated formation
containing U. Suppose that G is a group with a solvable normal subgroup
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H such that G/H € F. If all minimal subgroups and all cyclic subgroups
with order 4 of F(H) is c-supplemented in G, then G € F.

COROLLARY 3.13 ([5], Theorem 4). Let F be a saturated formation
containing U. Suppose that G is a group with a solvable normal subgroup
H such that G/H € F. If all minimal subgroups and all cyclic subgroups
with order 4 of F(H) is s-semipermutable in G, then G € F.

CoOROLLARY 3.14 ([27], Corollary 1). Suppose G is a solvable group
with a normal subgroup H such that G/H is supersolvable. If every
subgroup of F(H) of prime order or order 4 is s-permutable in G, then G is
supersolvable.

COROLLARY 3.15 ([27], Theorem 1). A group G € F if and only if there
is a solvable normal subgroup H of G such that G/H € F and the
subgroups of prime order or order 4 of F(H) is s-permutable in G.

THEOREM 3.16.  Suppose G is a group. If every subgroup of G with prime
order is contained in Z..(G) and every cyclic subgroup of G with order 4 is
weakly s-semipermutable in G or lies in Z(G), then G is nilpotent.

ProOF. Suppose that the theorem is false, and let G be a counter-
example of minimal order. Let H be an arbitrary proper subgroup of G
and (x) be a cyclic subgroup of H with prime order or order 4, then
() < Zo(G)NH < Zy(H). By Lemma 2.2, (x) is weakly s-semipermutable
in H. Thus H satisfies the hypotheses of the theorem in any case. The
minimal choice of G implies that H is nilpotent, thus G is a group which is not
nilpotent but whose proper subgroups are all nilpotent. By Lemmas 2.7,
G = PQ, where P is normal in G for some p € 7(G) and @ is non-normal
cyclic. Then we have:

(1)p = 2and every element with order 4 is weakly s-semipermutable in G.

If p > 2, by Lemma 2.7, exp(P) = p. Thus P < Z.(G) by hypotheses.
Therefore, G/Z.(G) is nilpotent. It follows that G is nilpotent, a contra-
diction. If every element with order 4 of G lies in Z.(G), then P < Z .(G),
we have the same contradiction. Thus (1) holds.

(2) For every x € P\®(P), we have o(x) = 4.

Ifnot, there exists x € P\@(P)and o(x) = 2. Denote M = (x)G < P.Then
MD(P)/P(P) <« G/P(P),we have that P = MD(P) = M < Z(G) as P/ d(P) is
a minimal normal subgroup of G/®(P) by Lemma 2.7, a contradiction.
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(3) Final contradiction.

By (2), every element « in P\@(P) is order 4. Then x is weakly s-semi-
permutable in G. Thus there is a subgroup 7 of G such that G = ()T and
(x) N T is semipermutable in G. Hence P=PNG=Pn ()T =(x)(PNT).
Since P/®(P) is abelian, we have (PN T)®(P)/Dd(P)JIG/P(P). Since
P/®(P) is the minimal normal subgroup of G/®(P), PNT <&d(P) or
P=PnToP)=PnT. If PNT < §(P), then (x) = P, a contraction
with Lemma 2.7(d). Therefore P =P N7T. Then T'= G and so (x) is s-
semipermutable in G. Since (x) < 0,(G) = P, (x) is permutable in G by
Lemma 2.1. We have (x)Q is a proper subgroup of G and so
()@ = (x) x Q. Therefore x € Ng(Q), and it follows that P < Ng(Q) and
G = P x @, the final contradiction.

THEOREM 3.17.  Let F be a saturated formation such that N C F. Let
G be a group such that every cyclic subgroup of G with order 4 is weakly
s-semipermutable in G. Then G € F if and only if every subgroup of G*
with prime order lies in the F-hypercenter Z £(G) of G.

Proor. IfG € F,then Zx(G) = G and we are done. So we only need to
prove that the converse is true. Assume the converse is false and let G be a
counterexample of minimal order. Then G¢ F. Let x be an element with
prime order of G¥. Then x € Z+(G) N G” which is contained in Z(G”) by
[12, IV, 6.10]. By Lemma 2.2, every cyclic subgroup of G* with order 4 is
weakly s-semipermutable in G*. Theorem 3.16 implies that G* is nilpotent.
IfG7 < &(G),then G/P(G) € F,hence G € F since F is saturated. Thisis a
contradiction. So there exists a maximal subgroup of G, say M, such that
G = MG” = MF(G). By [13, Theorem 3.5], we may choose M to be an F-
critical maximal subgroup. Since G/Mg¢ F, it follows that Z(G) < M.
Moreover, a G-chief factor A/B below Z£(G) is actually an M-chief factor
and Auty(A/B) is isomorphic to Autg(A/B) because F(G) centralizes A/B.
Consequently Z(G) is contained in Zx(M). By [12, IV, 1.17], M¥ < G”.
Hence M satisfies the hypotheses of the theorem. The minimal choice of G
implies that M € F. By [10, Theorem 3.4.2], G has the following properties:

(a) G” is a p-group, for some prime p.

(b) G /®(G”) is a minimal normal subgroup of G/®(G7).

(e) If G” is abelian, then G is an elementary abelian p-group.
(d) If p > 2, then exp(G”) = p; if p = 2, then exp(G”) = 2 or 4.

If G is abelian, then G” is an elementary abelian subgroup by (c).
Hence, by hypothesis, we have that G < Z#(G). It follows that G € F.
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This contradiction shows that G” is nonabelian. If exp(G”) = p, then
G7 < Z£(G) by hypothesis and consequently G € F, a contradiction again.
Thus, G” is a non-abelian 2-group and exp(G”) = 4.

Let « be an arbitrary element of G*\®(G”). Then || = 4. Indeed,
suppose that there exists an element x € G\ ®(G”) such that |x| = 2. Let
T = (). Then T < G¥ and T®(G”)/H(GF) is normal in G/D(GT). Since
G7 /®(G7) is a chief factor of G, G¥ = T, which contradicts the fact that
exp(G”) = 4. Now we will prove (x) is s-permutable in G. By hypothesis,
(x) is weakly s-semipermutable in G. Hence there exists a subgroup K of G
such that G = (x)K and (x) N K is s-semipermutable in G. It follows that
G"=G"nNnG=G"n{x)K = (x)(G" NK). Since G7/P(G”) is abelian,
(GF NK)D(GT)/D(GT) <« G/D(GT). Since G7 /D(G”) is a chief factor of G,
G"NK < &(G%) or GF = (GT NnK)D(GT) =G NK. If G NK < &(G7),
(x) = G¥ <« G. In this case, (x) is s-permutable in G. Now assume that
G =G" NK. Then K =G and (x) is s-semipermutable in G. Since
(x) < GT < 0p(@), (x) is s-permutable in G by Lemma 2.1.

Thus for any q € n(G), ¢ # 2, (x) is normalized by any Sylow g-subgroup
Q of M. So @ acts on (x) by conjugation. But the automorphism group of a
cyclic group of order 4 is a cyclic group of order 2, so @ acts trivially on (x)
and @ centralizes (x). Thus (x) is centralized by O?(M), it implies that G* is
centralized by O?(M). Hence O*(M) < G as G = MG” . Tt follows that G/Mg
is a 2-group. Therefore, G/Mg € F since N'C F, a final contradiction.
This completes the proof of Theorem 3.17.

COROLLARY 3.18 ([14], Theorem 3.2). Let F be a saturated formation
such that N' C F. Let G be a group such that every cyclic subgroup of G¥
with order 4 is c-normal in G. Then G € F if and only if every subgroup of
G7 with prime order lies in the F-hypercenter Zz(G) of G.

COROLLARY 3.19 ([18], Theorem 4.4). Let F be a saturated formation
such that N C F. Let G be a group such that every cyclic subgroup of G
with order 4 is c-supplemented in G. Then G € F if and only if every
subgroup of GT with prime order lies in the F-hypercenter Zz(G) of G.

COROLLARY 3.20 ([19], Theorem 2.5). Suppose that p is a prime and
K = GV be the nilpotent residual of G. Then G is p-nilpotent if every
minimal subgroup of K is contained in Z.(G) and every cyclic (z) of K
with order 4 is c-supplemented in G.

COROLLARY 3.21 ([20], Theorem 2.4). Let G be a finite group and
K = GV be the nilpotent residual of G. Then G is nilpotent if and only if
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every minimal subgroup (x) of K lies in the hypercenter Z..(G) of G and
every cyclic element of P with order 4 is c-normal in G.

THEOREM 3.22. Let p be the smallest prime dividing the order of a
group G and N a normal subgroup of G such that G/N is p-nilpotent. If G
is Ay-free and every subgroup of N with ovder p? is weakly s-semi-
permutable in G, then G is p-nilpotent.

Proor. Assume that the Theorem is false and let G be a counter-
example of minimal order. Then:

(1) Every proper subgroup of G is p-nilpotent.

By Lemma 2.8, we see that [N|, > p?. Let L be a proper subgroup of G.
Since L/(LNN)=LN/N<G/N, L/(LNN) is p-nilpotent. If |L ON|p<p2,
then L is p-nilpotent by Lemma 2.8. If |L. N N, > p?, then every subgroup of
L N N of order p? is weakly s-semipermutable in L by Lemma 2.2. Hence L is
p-nilpotent by the choice of G. This shows that G is a minimal non-p-nilpotent
group.

(2) G has the following properties: (i) G = PQ, where P = GV is a
normal Sylow p-subgroup of G and @ is a non-normal cyclic Sylow ¢-sub-
group of G; (ii) P/®(P) is a minimal normal subgroup of G/®(P); (i) If
p > 2, then the exponent of P is p; if p = 2, then the exponent of P is 2 or 4;
(iv) (P) < Z(P); (v) p® dividing the order of P; (vi) P < N.

By Step (1) and [1, Theorem IV. 5.4], G is a minimal non-nilpotent
group. Hence (i)-(iv) follow directly from Lemma 2.7. (v) follows from
Lemma 2.8. (vi) is clear since P = G is the p-nilpotent residual of G and
G/N is p-nilpotent.

(3) If H is a subgroup of P of order p?, then H is s-permutable in G.

Let H be a subgroup of P of order p?. By the hypothesis, H is weakly s-
semipermutable in G. Then there is a subgroup 7 of G such that G = HT and
HNT is s-semipermutable in G. Hence P=PNG=PNHT=HPnNT).
Since P/®(P) is abelian, we have (P N T)D(P)/d(P) <« G/ P(P). By step (2)
(), PNT<®/P) or P=FPnNT)dP)=PnT. If PNT < P(P), then
H = P <aQG. In this case, H is s-permutable in G. f P=PN7T,then T =G
and so H is s-semipermutablein G. Since H < P = 0,(G), H is s-permutable
in G by Lemma 2.1.

(4) There exists a subgroup H of P such that |H| = p? which is not
contained in @(P).

If #(P) =1, then it is clear. Hence we may assume that @(P) # 1. If
|P| = p3, then clearly P has a maximal subgroup of order p?. Since P is not
cyclic by Burnside’s Theorem [11, Theorem 4.3, P.252], P has at least two
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different maximal subgroups P; and Ps. If P; and Ps are all contained in
@(P), then P = P1Py < &(P), a contradiction. Hence, we can assume that
|P| > p?. Letx € P\ ®(P) and a € ®&(P) where |a| = p. Since &(P) < Z(P),
(x){a) < G. By Step (2), we see that |x| = p or 4. If || = 4, we can choose
H = (x). If |x| = p, then |[(x)(a)|<p? If |(x){a)| = p, then (x) = (a), a
contradiction. Hence |(x)(a)| = p?. Therefore (4) holds.

(5) Fiinal contradiction.

By Step (2), G =[P]Q. By Step (4), there exists a subgroup H of P
with order p? such that H £ &(P). Then by (3), H is s-permutable in G.
Hence HQ=QH. Then H=H@NP)=HQNP<HQ. 1t follows
that @ < Ng(H). On the other hand, since P/P(P) is abelian,
Ho(P)/D(P) <« P/d(P). This implies that HO(P)/®(P) <« G/ D(P). However,
since P/®(P) is chief factor of G, we obtain that H®(P) = P and conse-
quently H = P, a contradiction.

THEOREM 3.23. Let F be a saturated formation containing U, the
class of all supersolvable groups. Suppose that G is a group with a sol-
vable normal subgroup H such that G/H € F. If all maximal subgroups
of all Sylow subgroups of F(H) are weakly s-semipermutable in G, then
GelF.

ProoF. Assume that the assertion is false and let (G, H) be a counter
example with |G||H| is minimal. Let P be an arbitrary Sylow p-subgroup of
F(H). Clearly P <« G. We proceed the proof by the following steps.

1) PNna(G)=1.

If PNd(G) #1, then PN &(G) = R <G. Obviously, (G/R)/(H/R) =
G/H € F and F(H/R) = F(H)/R. Let P;/R be a maximal subgroup of
the Sylow p-subgroup P/R. Then P; is a maximal subgroup of the Sylow
p-subgroup P. By hypothesis, P; is weakly s-semipermutable in G. Hence
Py /R is weakly s-semipermutable in G/R by Lemma 2.2. Let M;/R be a
maximal subgroup of the Sylow g-subgroup of F'(H)/R, where p # q. It is
clear that M; = Q1 R, where Q; is a maximal subgroup of the Sylow g¢-
subgroup of F(H). Then @; is weakly s-semipermutable in G by hy-
pothesis. Hence M;/R is weakly s-semipermutable in G/R by Lemma
2.2. Now we have proved that (G/R, H/R) satisfies the hypotheses of the
theorem. Therefore G/R € F by minimal choice of (G,H). Since
R < ®(G) and F is a saturated formation, we have that G € F, a con-
tradiction. Thus (1) holds.

@ P=Ry xRy x---xR,, where R;(: =1,2,---,m) is some normal
subgroup of G of order p.
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Since P<G and PN&(G)=1, P=Ry xRs x---xR,, where
R;(i=1,2,-- - m is an abelian minimal normal subgroup of G by Lemma
2.3. We now prove that |R;| = p. Since B; € &(G), there exists a maximal
subgroup M of G such that G = R;M and B; "M = 1. Let M, be a Sylow p-
subgroup of M and G, = M,R;. Then G, is a Sylow p-subgroup of G. Let
G1 be a maximal subgroup of G, containing M, and P; = G; N P. Then
|P:P1|=|P:GiNP|=|PGy:Gi| = |Gp : G1| = p and so P; is a maximal
subgroup of P. We also have that P1M, = (G: N P)M, = G1 N PM,, =
G1NGp =Gy and Py NM, = PNGyNM = PN M,. By hypothesis, P; is
weakly s-semipermutable in G. Hence there exists a subgroup 7' of G such
that G = P1T and Py N T is s-semipermutable in . By Lemma 2.1(c),
P, N Tis s-permutablein G. Then, for an arbitrary Sylow g-subgroup G, of G
with ¢ #p, (P1NT)Gy = Gy(P1NT). Hence PrNT = P1NnTYP NGy =
PNP1NT)G, «(P1NT)Gy. 1t follows that Gy < Ng(P1NT). On the other
hand,PNT <«Tand PN T < P since P is abelian. Hence PN T < PT = G and
consequently Py N T = Gy NP N T «Gy. It follows that Py N T <GP = Gy.
This shows that both G, and G, are contained in Ng(P; N 7). The arbitrary
choice of q implies that P1NT <G and so Py NT < (P1)g. Assume that
P1 n T<(P1)G and let N = (Pl)GT Then G = PlT = Pl(Pl)GT = PlN and
PiNN =P;NP)¢T = (P1)g(P1NT) = (P1)g. This shows that there al-
ways exists a subgroup K of G such that G = P1K and P N K = (P1)g.

Since P is abelian, P1(P N M) < P. Thus Py(PNM) =Por P1(PNM) =
P,. If P\(PNM)=P, then G=PM =P,(PNM)M =P;M and so
P=PNnPM=PPNM)=P,(PNGiNM)=Py(PiNM)= Py, a con-
tradiction. Hence P1(PNM) = P; and so PNM < Pq. Since PNM <G
by Lemma 2.4, PN M < (P1)q = P1NK.

Assume that K <G. Let K; be a maximal subgroup of G containing K.
Then P N K; < G by Lemma 2.4. Hence (P N K7)M is a subgroup of G. Since
M<G, (PNKy)M =G or (PNKy)M =M. If (PN Ky)M = G = PM, then
P=PNn(PNK)M =PnNnK)PNM)=PnK; since PNM < (Py)g =
PN K < PnK;. It follows that P < K; and hence G=PK < PK; = K3, a
contradiction. If (PNK;)M =M, then PNK; <M and so P1NK <
PNK<PNKi=PNnKinM<PNnM<P;iNnK. Hence P1NK= PNK.
Since G = PK = P1K,|G: P|=|PK : P|=|K: (PNK)|=|K:(P1NnK)| =
|P1K : P1| = |G : P1], which is impossible. Thus K = G. It follows that
PN K =P;=(P1)g <G. Consequently, PN R; «G. But since G, = R;M), =
R;G1 and G is a maximal subgroup of G, containing M,,, we have B; £ Py =
G1 N P. The minimal normality of R; implies that P N R; = 1. Hence
|RZ| = ‘RZ : (P ﬁRi)| = |RiP1 : P1| = |Ri(PﬁG1) : P1| = |(PﬂRiG1) : P1| =
|P NGy : P1| = |P: P1| = p. Therefore R; is a cyclic group of order p.
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(3) Final contradiction.

Let R; C H and Cy = Cy(R;). We claim that the hypothesis holds
for (G/R;,Cy/R;). Indeed, since G/Cq(R;) < Aut(R;) is abelian,
G/Cs(R;) € F. Consequently, G/Cy=G/(HNCzR;)) € F. Besides,
since R; <Z(Cy) and F(H)<Cy,, we have F(H)=F(Cy). Thus
F(Cy/R;) = F(H)/R;. Let P/R; be a Sylow p-subgroup of F(H)/R;,
where P is a Sylow p-subgroup of F(H) and G;/R; is a maximal
subgroup of P/R;. Then P; is a maximal subgroup of P. By hypoth-
esis, P; is weakly s-semipermutable in G. Hence P;/R; is weakly s-
semipermutable in G/R; by Lemma 2.2. Now assume that QR;/R; is
the Sylow g-subgroup of F(H)/R;, where q # p and @ is the Sylow g¢-
subgroup of F(H). Then every maximal subgroup of QR;/R; is of the
form of Q1R;/R;, where @; is a maximal subgroup of Q. By hypoth-
esis and Lemma 2.2, we see that Q;R;/R; is weakly s-semipermutable
in G/R;. This shows that (G/R;,Cy/R;) satisfies the condition of the
theorem. The minimal choice of (G,H) implies that G € F by Lemma
2.5. The final contradiction completes the proof.

COROLLARY 3.24 ([5], Theorem 2). Let F be a saturated formation
containing U, the class of all supersolvable groups. Suppose that G is a
group with a solvable normal subgroup H such that G/H € F. If all
maximal subgroups of all Sylow subgroups of F(H) are s-semipermutable
wm G, then G € F.

COROLLARY 3.25 ([4], Theorem 1.4). Let F be a saturated formation
containing U. Suppose that G is a solvable group with a normal subgroup
H such that G/H € F. If all maximal subgroups of all Sylow subgroups of
F(H) are s-permutable in G, then G € F.

COROLLARY 3.26 ([23], Theorem 1). Let F be a saturated formation
containing U, the class of all supersolvable groups. Suppose that G is a
group with a solvable normal subgroup H such that G/H € F. If all
maximal subgroups of all Sylow subgroups of F(H) are c-normal in G,
then G € F.

COROLLARY 3.27 ([7], Theorem 4.5). Let F be a saturated formation
containing U, the class of all supersolvable groups. Suppose that G is a
group with a solvable normal subgroup H such that G/H € F. If all
maximal subgroups of all Sylow subgroups of F(H) are c-supplemented in
G, then G € F.



Finite Groups with Weakly s-Semipermutable Subgroups 87

COROLLARY 3.28 ([25], Theorem 1.6). Let F be a saturated formation
containing U, the class of all supersolvable groups. Suppose that G is a
group with a solvable normal subgroup H such that G/H € F. If all
maximal subgroups of all Sylow subgroups of F(H) are complemented in
G, then G € F.

COROLLARY 3.29 ([22], Theorem 2). Let G be a group and E a solvable
normal subgroup of G such that G/E is supersolvable. If all maximal
subgroups of the Sylow subgroups of F(E) are c-normal in G, then G is
supersolvable.

COROLLARY 3.30 ([28], Theorem 1.2). Suppose that G is a solvable
group with a normal subgroup H such that G/H is supersolvable. If all
maximal subgroups of every Sylow subgroup of F(H) are complement in
G, then G s supersolvable.
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