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On Riemann-Type Definition for the Wide Denjoy Integral

PI10TR SWOROWSKI

ABSTRACT - We give variational and Riemann-type definitions for some Lusin-type
A-continuous integrals being extensions of the wide Denjoy integral.

1. Introduction

Arnaud Denjoy [2, 3] considered transfinite sequences of expanding
extensions of the Lebesgue integral and, as a result, obtained two in-
tegrals: D,- and D-integral, both having the property of recovering an
everywhere differentiable function from its derivative. (The D-integral has
been independently introduced by Khintchine [10].) Nowadays these in-
tegrals are also referred to as restricted and wide Denjoy integrals (or
Denjoy—Perron and Denjoy—Khintchine integrals), respectively. Nikolai
Lusin [14] described the constructive integrals of Denjoy in terms of
generalized primitives. This gave rise to a series of descriptive definitions
of integrals. A descriptive definition of integral (Lusin-type definition)
refers to some generalized absolute continuity property and uses differ-
entiation (often as well generalized) as a link between an integral (primi-
tive) and an integrand. Thus, Lusin-type definitions can be seen as ex-
tensions of the fundamental integral’s definition due to Newton.

It turned out later on, that the restricted Denjoy integral allows also a
Riemann-type definition; it is the definition proposed independently by
Jaroslav Kurzweil [11] and Ralph Henstock [6, 7], and known as the gen-
eralized Riemann integral or Kurzweil-Henstock integral. The idea of
defining wide Denjoy integral in terms of Riemann sums has been sug-
gested by Henstock in 1968 [8]; see also [9]. What Henstock proposed was
an integration with respect to a mix of so-called composite and ordinary
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differential bases. No correct/complete characterization has been given
however, actually until nowadays.

In order to encompass integration of some generalized derivatives (as,
for example, approximate derivatives) and integration in the wide Denjoy
sense, several generalized continuous counterparts of Denjoy integral
were considered. Among others, we should mention here works by Ridder,
Kubota, Sarkhel and Kar, and Gordon (see the references in [20]). As a
natural consequence of Henstock’s concept, these integrals (as well as the
wide Denjoy integral itself) were sought for Riemann-type definitions.
There are three essential contributions related to this topic: [19, 13, 5]
given in chronological order. The first work related was the work by Lee
and Soedijono [19], where an attempt to provide a Riemann-type definition
for the so-called Kubota integral (an approximately continuous variant of
wide Denjoy integral) was made. That attempt was not successful as the
authors used incorrect characterization of primitives for Kubota integral
(see the paper by Ene [5] for detailed comments). Nevertheless, the de-
finition offered does characterize an approximately continuous Lusin-type
integral, however not the Kubota integral but the so-called T, D-integral
(defined in [18]). Their attitude was developed by Vasile Ene [5], who
considered similar integrals for a wide class of local systems 4 (including
the density local system system as a particular case). Ene defined with
respect to 4, integrals of Ward-, variational-, and Riemann-type, proved
that the two former are equivalent and included in the latter (under some
suitable, not very restrictive, assumptions on 4), and that all of them cover
the 4-continuous analogue of wide Denjoy integral, but, despite being very
close to, did not arrive to a complete connection between the three in-
tegrals. In the meantime, Lee and Lee [13] switched the quantifiers in the
definition from [19] and thus obtained a correct Riemann-type definition of
the Kubota integral.

The primary aim of this work is to summarize the so-far theory on
Riemann-type definitions for wide Denjoy and generalized wide Denjoy
integrals. We include some new results being a completion to the theory. It
is intended to be relatively self-complete, thus several proofs published
earlier are repeated (explicitly or inexplicitly) here.

2. Preliminaries

Most of, we keep our language of [20, 21, 22] and (when it makes no
confusion) adopt some notations of [5]. |£] will stand for the Lebesgue
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outer measure of a set £ C R. We will write (a, b) for the closed interval
with endpointsin a, b € R;i.e., (a,b) = [a,b]lifa < b, (a,b) = [b,alifa > b.

2.1 — Divistions

A tagged interval is a pair (I,x) where I is a nondegenerate compact
subinterval of the real line and «x is an endpoint of I. Any positive function
o0 defined on some A C R we call a gauge. We say tagged interval (I, x) is
o-fine if I C (x — d(x),x + J(x)). By a division we mean a finite collection
of tagged intervals (, ) in which intervals I are pairwise nonoverlapping.
It is said to be in an interval [a, b], if I C [a, b] for all (I, x) from this di-
vision. A division is called a partition of [a, b] if the union of intervals [ is
the whole [a,b]. If f:[a,b] — R and [c,d] = I C [a, b], by f[I] we mean
f(d) — f(c). This shall not lead to a confusion with the image of 7 under f,
which is to be denoted standardly as (/). If P is a division in [a, b], then
we denote

oP.f)= Y f@ll, fIPl= Y fU

x)eP x)eP

A division is J-fine if all its members are such.

2.2 — Local systems

By a local system [25] (or a simple system of sets [23, 24]) we mean
a family 4 = {4(x)},.r such that each A(x) is a nonvoid collection of sub-
sets of R with the following properties:

() {w} ¢ A@);
(ii) if S € A(x), then x € S;
(iii) if S € 4(x) and R D S, then R € A(x);
(iv) if S € 4(x) and 6 > 0, then (x — d,x + ) NS € A(x).

Every S belonging to 4(x) we call a path leading to x. A function C on
A C R such that C(x) € A(x) for each x € A, we call a 4-choice on A. Given
C, we say a tagged interval ((x, y),x) is C-fine if y € C(x).

We say that a local system 4 is filtering down, if for each x € R and
each two paths S1,S2 € 4(x) one has S; NSy € A(x). We say that a local
system 4 is bilateral if (x —d,2) NS # () and (x,x + ) NS # () for each
xeR, S e Ax), o> 0.
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We say that A satisfies the intersection condition (abbr. 1C), if for every
choice C, there exists a gauge J such that if

0<y — x< min{d(x), 6z},

then
Cx) NC(y) Nlx,y] # 0.

As the most significant examples of local systems let us mention the local
system A, which consists of neighbourhoods in the Euclidean topology and
the density local system 4,, defined as follows:

A € 4p(x) < x € A and some measurable B C A has density one at x.

Among others, the dyadic local system A4 [1], the proximal density local
system Ay, [17], and the Z-density local system [15]. All of them are bi-
lateral and (except 4,,) satisfy IC.

Given 4, we say that a function f: R — R is Ad-continuous at x € R, if
for each ¢ > 0 there exists an S € A4(x) such that

fl@) —e<f®O)<flx)+e

foreacht € S. Wesay f: R — R is 4-continuous if it is 4-continuous at each
xeR.

LemMaA 1 ([25]). If a bilateral local system A satisfies |C, then each A-
continuous function f: R — R is Darboux Baire one.

Despite the proximal density local system 4, fails to have IC, each
Apro-continuous function f:R — R is Darboux [17, Theorem 4.1] and
Baire one.

We say that f is A-differentiable at x to a number g, if for each ¢ > 0
there exists an S € 4(x) such that

f@®) —f@)
g—8< ﬁ <

gt+e
for eacht € S,t # x. With the aid of filtering down property, one shows that
the number g, if exists, is unique.

For functions defined on an [a, b], at a and b the definitions of A-con-
tinuity and A-differentiability are to be understood ‘relatively’ to [a, b].
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2.3 — Composite A-gauges

A sequence of sets {E;};°, = {E;}; with E = | J;2, E; we call an E-form.
If, moreover, all E; are closed (measurable) we say the E-form is closed
(measurable). Given two E-forms {E;}; and {F}},, we write {E;}; = {F}},
if for each i there is a j such that E; C F;. Beware that the superset F
need not be unique, as F’s are not assumed to be disjoint. We write
Is{E;}; for the set of all « such that for some i, x € E; and « is isolated
from either side of E;.

Consider a local system 4, a 4-choice C defined on a set A C [a, b], and
an [a, b]-form {£;},. On each E; define a gauge J;. We call the sequence
{0i}; related to {E;};. Consider a tagged interval ((x,y),x). We say it is
{0i};-fine if for some i, x,y € E; and it is J;-fine. We say ((x,y),x) is
(C,{0:};)fime if it is either {J;};-fine or C-fine. We say a division Pis {d;};-
fine, C-fine, or (C, {5i}i)—fine if all its members are such. We shall refer to
pairs (C,{d;};) as to composite 4-gauges and (as for {d;};) call them re-
lated to {£;};.

The proof of the theorem below is a slight modification of the result due
to Henstock [8, Exercise 43.9] who proved it for 4 = 4,.

THEOREM 2 ([5, Lemma 4.2]). Let an [a, bl-form {E;}, be closed and a
local system A be bilateral. For each interval [a,b], each A-choice C on
Is{E;};, and each sequence of gauges {0;}; related to {E;}; there exists a
(C,{0:};)-fine partition of [a, bl

Notice that for the above result the assumption of {£;}, being closed is
essential. Indeed, note that for the [0, 7]-form {Q N[0,7],[0,7]\ Q} and
any {01, 02} there is no {d1, d2}-fine partition of [0, ].

2.4 — Lusin-type integrals

Let F:E — R. If a subset A C F is nonvoid, then we set wp(4) =
sup F(A) —inf F(A). We will say that F' satisfies the condition N, if
|F(N)| = 0 for each N C E, |[N| = 0. The F is said to be an AC-function, if
for every ¢ > 0 there exists an # > 0 such that for any pairwise non-
overlapping intervals [ay, b1],. .., [ay, b,], with both endpoints in £,

STi-ap<y = D |Fb) - Fla)|<e.
i=1

i=1
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The F is said to be a VB-function, if there is a number M > 0 such that for
any pairwise nonoverlapping intervals [a1, 1], .. ., [@y, b, ], With both end-
points in K,

> F(b) - Flay)| <M.

i=1

The lower bound for all such M’s we call the variation of F.

A function F on E is said to be an ACG- and a VBG-function, if there
exists an E-form {&;}; such that for each ¢, F'| E; is an AC- and a VB-
function respectively. The F is said to be respectively an [ACG]- and a
[VBG]-function if, moreover, the form {£;}, above is assumed to be closed.

First of all we recall wide Denjoy integral, then four its Lusin-type 4-
continuous counterparts.

DEFINITION 3. We call a function f:[a,b] — R, Denjoy integrable in
the wide sense (abbr. D-integrable), if there exists a continuous ACG-
function F:[a,b] — R such that ng(ac) = f(x) for almost all x € [a,b]. The
mtegral of f is defined as F'(b) — F(a).

Here and on, ng(x) denotes the approximate derivative (i.e., 4,,-deri-
vative) of F' at x.
Consider the following four classes of functions defined on some [a, b]:

e L1: [ACG]-functions,
e Lo: [VBG]-functions satisfying N,
e [3: measurable ACG-functions,
e L4: measurable VBG-functions satisfying V.
Clearly, £1 C Lo, L3 C L4. For each 7, the class £; is a linear space. For
1= 1,8 it is evident, while for ¢ = 2 it was justified by Sarkhel and Kar
[18, Corollary 3.1.1 and Theorem 3.6], for : = 4 by Ene [4, Corollary 2]. It
is well known [16, Chapter VII, (4.3)] that each member of L£; is ap-
proximately differentiable almost everywhere.

Let F be a linear space of Baire one Darboux functions defined
on [a,b].

DEFINITION 4. We call a function f:[a,b] — R, F;-integrable,
1=1,2,3,4, if there exists a function F € F; = L; N F, on [a, b], such that
ng(x) = f(x) for almost all x € [a,b]. The F;-integral of f is defined as
F(b) — F(a).
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The F;-integral is uniquely defined since £; is a linear space and since
the lemma below holds.

LEMMA 5 ([12, Theorem 1]). Assumne that an F: R — R satisfies N and
is Baire one Darboux. If F'(x) > 0 at almost every point x € R at which F is
differentiable (in the usual sense), then F is nondecreasing.

From now on, we assume the local system 4 considered is filtering down
and such that every A-continuous function f:[a,b] — R is Darboux Baire
one. This can follow from bilaterality and IC (Lemma 1). We confine then
our attention to F being the class of all 4-continuous functions. We set 7
instead of F; in this case.

Due to the Banach—Zarecki theorem [16, Chapter VII, (6.8)], the
conditions defining classes £;, 1 =1,2,3,4, are equivalent among con-
tinuous functions, and so F¢-integrals, i = 1,2,3, 4, for 4 = 4, are exactly
the wide Denjoy integral. In [20] the author gave a complete chart of
connections between F¢-integrals for A4 = A,,. For some results in gen-
eral case see [21].

3. Riemann-type definitions

We seek for Riemann-type definitions for all F#-integrals. First we
make a review of definitions existing [5, 13, 19] in the literature.

DEFINITION 6 (AH-integral of [19] if 4= 4,,). We say a function
f:la,b] — R is LS s-integrable to a number I, if to each ¢ > 0 we can find a
closed [a, bl-form {E;}; such that for any closed [a, bl-form {D;}; - {E;};
there is a A-choice C on Is{D;}; and a sequence of gauges {J;}; related to
{D;}; such that

1) lo(r, f) —I|<e

holds for each (C,{d;};)-fine partition n of [a, b].

DEFINITION 7 (AH-integral of [13] if 4= 4,,). We say a function
f:la,b] — Ris LL4-integrable to a number I, if there is a closed [a, b]-form
{E}; such that to each ¢ > 0 and to each closed [, bl-form {D;}; = {E;};, a
4-choice C on 1s{D;}; and a sequence of gauges {9;}; related to {D;}; can be
found so that (1) holds for each (C, {5j}j)-ﬁne partition 7 of [a, b].
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By Theorem 2 both definitions are correct; i.e., the number I is unique.
Following Vasile Ene [5], they can be reformulated removing the refine-
ment >~ so that the essential ingredient is better seen.

DEFINITION 6'. We say a function f:[a,b] — R is LS s-integrable to a
number I, if to each ¢ > 0 we can find a closed [a, bl-form {E;}; such that
Sfor any countable A > Is{E;}, there are a A-choice C on A and a sequence
of gauges {5;}; related to {E;}; such that (1) holds for each (C,{d;};)-fine
partition © of [a, b].

A PROOF THAT DEFINITIONS 6 AND 6’ ARE EQUIVALENT. (<) Assume f is
integrable in the sense of Definition 6. For ¢ > 0 pick accordingly [a, b]-
form {E;}, and for any countable A D Is{E;}, fix suitable 4-choice C4 on A
and gauges 5;4 on E;. Then consider any {D;}; » {E}; and define a suitable
composite 4-gauge by taking Cre(p,), and putting d(y) = 5 y) aty € D for
any i with D; C E; (i being the same for all y € D;), A = Is{D;},. Each
(Crs(pyy,» {9;};)-fine partition is then (Cis(n),, {o2},)-fine.

(=) Straightforward. Let f be integrable in the sense of Definition 6.
For ¢ > 0 pick a suitable {£;},. Then consider any countable A D Is{E;},
and refine {E;}; by adding |J {{x}} to {£;},. The composite 4-gauge found

xeA
for the refined [a, b]-form gflits Definition 6’ for the set A. O

A similar justification shows that instead of Definition 7 the following
one can be used.

DEFINITION 7. An f:[a,b] — R is LL-integrable to a number I, if
there is a closed [a,bl-form {E;}; with the following property: for each
& > 0 and each countable A O Is{E;}; we are able to pick a 4-choice C on A
and a sequence of gauges {0;}; related to {E;}; such that (1) holds for each
(C,{6};)-fine partition = of [a, b].

If the condition from Definition 7 or 7’ holds, we say f is integrable
using {E;};. Vasile Ene used a bit different condition than that of Defi-
nition 6'. In his version the sequence {J;}; does not depend on A.

DEFINITION 8 ([S1S2R]- or [SR]-integral of [5]). We say a function
f:la,b] — R is E ;-integradble to a number I, if to each ¢ > 0 we can find a
closed [a, bl-form {E;}; and a sequence of gauges {d;}; related to {E;}, such
that for any countable A O Is{E;}; there is a A-choice C on A such that (1)
holds for each (C,{d;};)-fine partition = of [a, b].
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Clearly, if an f is Es-integrable then it is LS -integrable. In fact, the
converse is also true; i.e., the dependence of {J;}; on A is not essential. We
shall prove it later on.

3.1 — A Saks-Henstock lemma issue

Lee and Soedijono [19] made a serious use of Saks—Henstock type
lemma for their integral (LS 4-integral in our terms), however did not prove
it leaving the reader only with a claim that it is easy to do. Since it is ap-
parently impossible to prove a Saks—Henstock lemma in the most routine
way which refers to the so-called filtering property of integration base, this
has met some criticism in [5]. We show here that Saks—Henstock lemmas
for the above defined integrals (LS s-integral in particular) are indeed easy
to prove, however proofs require a bit of different argument that makes
use of a Cauchy criterion for LS s-integrability. This idea of proving Saks—
Henstock lemma is not original and can be found e.g. in the proof of [23,
Lemma 4.4, chapter 3]. It refers to the argument used to show integrability
on a subinterval.

In the next two lemmas, as we consider integration on a figure rather
than on a single interval, for the sake of completeness we give full proofs
despite they pattern single interval case proofs from [5]. A definition of
integrability on a figure; i.e., a union of finitely many compact intervals, is
the same as for an interval.

LEmMmA 9. A function [ defined on a figure S = Iy, where I, are

nonoverlapping intervals, is E -integrable if and onl; if for each ¢ > 0
there are a closed S-form {E;}; and a related sequence of gauges {0;}; with
the following property: for each A O Is{E;}; there is a A-choice C4 on A
such that if partitions n; and e of S are respectively (CAI, {52}2) and
(Cay, {0i};)-fine, A1, Az D Is{E;};, then

|o(n1, f) — olme, )] <e.
Proor. We repeat the proof of [5, Lemma 7.2]. Only the sufficiency
requires a proof. For each n € IN we pick an S-form {E'i”)}i and a related

sequence of gauges {6?’)}1- suitable for ¢, = 1/n in the sense of the Cauchy-

like condition described in the lemma. Let C* be 4-choices on Is{E’E’“}i
suitable for &,, n € N. For each n € N fix some (C", {6}, )-fine partition
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" of S. Let m<n. Take 4-choices B and B" both on Is{E{" DE;M}M
suitable for respectively &,, and ¢,. We define another composite 4-gauge,
now related to the S-form {E{" N Ej(-")}i i

Blw) = B"(@)NB"@)  forx e Is{E" NE"},
0 j@) = min{o{" @), o (x)}  for x € B N E".

There exists a (B,{0; ;}; ;)-fine partition of S, say 7. It is both (8", {6{"},)-
fine and (8", {0{"},)-fine, so

lo(@™, f) —o(@", f)| < |o@™, f) —or, )| + o, [) — o(@", )] <ém + &n.

Therefore o(", ), n € N, is a Cauchy sequence. Denote I = lim o(z", f).

Let nowe¢ > 0. There is # with ¢, <¢ and there is m with |[I — a(nk,f)| <efor
all k > m. Let ng = max{m, n}. Consider any countable A D Is{E}"O)}j and
the 4-choice C4 found for A and ¢, according to the Cauchy condition and
take any (Ca, {0"};)-fine partition . We have

o', f) —=1| < |o(, f) — a(@™, ) + lo(@™, f) = I| <en, + e<2e.

It means f is £ s-integrable. O

Notice that for the above proof, a weaker property of 4 than being
filtering down could have been assumed: at each x, for every two
S1,Ss € A(x), « is a bilateral accumulation point of S; NSy; i.e., the prop-
erty that pointwise intersection 4N 4 is also a bilateral local system.

We will need the following enhancement of Lemma 9, which is a con-
sequence of the proof.

COROLLARY A.  Asswme that for each e > 0there is a closed S-form {E'};
and o related sequence of gauges {J;}; such that for each countable
A D Is{E%}, thereis a A-choice C4 on A such that for any partitions my and me
of S being respectively (Ca,,{0;};)- and (Ca,, {0;};)-fine, A1, As D Is{E%},,

lo(ry, ) — o(ne, )| <e.

Then, f is E s-integrable on S. Moreover, if nis a (Ca, {0;};)-fine partition of
S, A D Is{E%};,

<2e.

o, f)— / f
S
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Lemma 10.  Iff:[a,b]l — R is E s-integrable, then it is K ;~integrable on
each figure S C [a, b].

Proor. We repeat the proof of [5, Lemma T7.3(ii)]. Denote
n
S = |JJj, where the intervals J; are pairwise disjoint. Fix an ¢> 0
=1
and ]take an [a,bl-form {E;}, and a related sequence of gauges {J;},
found for ¢ and f on [a,b] in the sense described in Lemma 9. Con-
sider any countable subsets A,B D Is{&;}, NS of S. Extend A and B
to A" and B’ respectively by adding Is{E;}; \ S. Take choices C4 and
Cp on A’ and B’ according to the Cauchy condition for & Denote
Cy=CalS, C4=Cp|S and consider now a (Cj,{d;};)-fine partition
m of S and a (Cy,{d;};)-fine partition 7y of S. Fix moreover a
(CIS{Ei}i,{éi}i)—ﬁne partition p of [a,b]\ intS. The unions n; Up and
m2 U p are respectively (Car,{d;};)-fine and (Cp,{d;};)-fine partitions of
[a,b]. Thus, by the assumption,

lo(r1, f) — olnz, ) = |o(m Up, [) —a(me Up, [l <e.

It means, for f on S we have the Cauchy criterion of E  -integrability
fulfilled. O

From the above reasoning follows immediately

COROLLARY B. Let, for a given ¢ > 0, an [a,bl-form {E%};, a related
sequence of gauges {0;};, choices Cs, A D Is{E%}; countable, be as in
Corollary A for S =[a,b]. Let P = {(J;,;)}; be a (Ca,,{0;};)-fine divi-
sion, P' = {(J},4})}; @ (Ca,, {9}};)fine division with |JJ; = UJ; C [a,b].
Then |o(P, f) — o(P, )| <e. J J

X
Lemma 10 allows to define the indefinite integral F of f by F(x) = [ f,
x € [a,b]. We shall write F = [f. a
Thanks to Corollaries A and B we are able to conclude with a Saks—
Henstock lemma for E 4-integral.

LeEmMa 11 (Saks—Henstock lemma for ¥ sintegral). Let f:[a,b] — R
be E s -integrable, ¢ > 0. Let an [a,bl-form {E;}, and a related se-
quence of gauges {0;}; correspond to ¢ let a A-choice C4 correspond
to a fixed countable A O Is{E;};, in the sense of Definition 8. Then
for each (Ca,{d;};)-fine division P with all intervals in [a,b] the
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inequalities

) o(P.f) = FIPl<de, > |f@\| - FII|<8e

dx)eP

hold, where F = [f.

Proor. We will prove only the first inequality, as the second is its
straightforward consequence. Let P={(J},4;)}; be a (Ca,{d;},)-fine divi-
sion, P'={(J},¥)}; a (C, {:};)-fine division with JJ; =UJ} =S C[a,b].

If P and P’ were partitions of [a,b], then clearl;f \a(P,;”) —a(P, )<
lo(P, f) - ff| + {}f —o(P, f)|<2e Thus, by Corollary B, |a(P,f)—
a(P, )l <ge, evena if P and P’ are not partitions of [a, b]. So, with Cor-
ollary A we have that |o(P, f) — F[P]| <4e. O

Ene [5, Lemma 7.4] proved the statement of Lemma 11 only for {J;},-
fine divisions P. Reasoning similarly as above, equipped with Cauchy
criteria for LS - and LL - integrability, one obtains

LeEmma 12 (Saks—Henstock lemma for LS integral). Let f:[a,b] — R
be LS 4-integrable, ¢ > 0. Let an [a,bl-form {E;}; correspond to ¢ let a 4-
choice C and a sequence of gauges {0;}; correspond to a countable
A D Is{E;}; (in the sense of Definition 6). Then for each (C,{d;};)-fine
division P in [a, b] the inequalities (2) hold.

LeEmma 13 (Saks-Henstock lemma for LL s-integral). Let f:[a,b] — R
be LL s-integrable using {E;},, ¢ > 0. Let a sequence of gauges {J; };, related
to {E;};, and a 4-choice C on A correspond to a countable A D Is{E;}; (in
the sense of Definition 7). Then for each (C,{d;};)-fine division P the in-
equalities (2) hold.

Using Lemma 12 it is easy to prove that indefinite integrals in the LS,
and so in £ 4 and LL 4, sense are A4-continuous. Indeed, let ¢ > 0, x € [a, b].
Consider the set A = Is{£;}, U {x} and take its corresponding 4-choice C.
If y € C(x) € A(x), then according to Lemma 12,

|F(y)—F@)| <|f@)y—x)—F@)+F@)|+|f@] |y —w|<de + [f@)] |y — .

As C(x) could have been found arbitrarily close to x (condition (iv)), it follows
F' is A-continuous at .
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4. Relations between F f' and other type integrals

First we recall all that is known in this direction, making precise of what
has been said in the introduction. We begin with the following result of Lee
and Lee for the case of density local system.

THEOREM 14 ([13, Theorems 3.1&3.2]). For 4 = Ay, Fi- and LL-in-
tegrals are equivalent.

Let us remark that, despite being true, the proof of the above given in
[13] is not clear at one point, namely when it is claimed that each indefinite
LL s-integral is [ACG] (or, equivalently, that it satisfies A'); we mean here
[13, Lemma 3.5] left without a proof. We fill this gap in Lemma 25.

In an earlier paper [19], introducing the LSA—mteg'ral for A = A,
Soedijono and Lee claimed it is equivalent to F 1ap-1nteg'ral (so-called Ku-
bota integral). They proved that (1) each Kubota integrable function is
LS oy -integrable [19, Theorem 4.1] and claimed to prove [19, Theorem 4.2]
that (2) each indefinite LS4, -integral is an [ACG]-function. The proof
of (1) can be, without much effort, adapted to a proof that each F, T in-
tegrable function is LS4, -integrable; we shall do it for general 4 (Theorem
18). The proof of (2) contains serious gaps (e.g., the authors were not aware
of the fact that in case of approximately continuous, not continuous,
functions the Banach—Zarecki theorem is not true, i.e., that an approxi-
mately continuous [VBG]-function with A/ need not be [ACG]), so that what
can be found proven is only that each indefinite LS, -integral is a VBG-
function. We strengthen this result (as well as [5, Lemma 7.6]) in

LEMMA 15, Let f:[a,b] — R be LS s-integrable. Then F' = [ f is [VBG].

Proor. Let {E;}; be a closed [a, b]-form appropriate for ¢ = 1 in the
sense of Definition 6'. We intend to show F'is [VBG] on each E;. Consider an
arbitrary closed subset D C E;. Take a sequence of gauges {d; }; related to
{E}};, chosen for A = Is{E;},. By the Baire category theorem there is a

portionI N D # Qof D, I an open interval, such that | f| < nand J; > 1/n for
some 7 € N, both on the same dense subset £ of I N D. We can assume that
[I| <1/m. Consider any collection {[a;,b;]}; of nonoverlapping intervals

with both endpoints in 7 N D. For each j there is ¢; € E N I arbitrarily close
to [a;, b;]. It is possible to split {[a;, bj]}j into two families of disjoint in-
tervals, so we can assume that intervals (a;, ¢;) for distinet j do not overlap
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(and the same for (b;,¢;)). Thus both {((a;,¢;), ¢))}; and {((b;,¢;), ¢))}; are
{0;};-fine divisions. From Lemma 12,

STIRD) - F@apl < 3 IFb) - F@)l + 3 IF(e) — F(a)| <
J

J J

< Iy — ¢) — Fb) + Fep)|+
i
+ ) 1 — a)) = Fep) + Flap|+
7

+ D 1F el - (b — 6] + e — a;]) < 16+ 2n(b — a).
J

This proves F'is VB on I N D. We have shown that each closed subset of E;
contains a portion on which F' is VB. Then by the use of Cantor—Baire
stationary principle we get F' is [VBG] on E; and thus on [a, b]. O

The following obvious remark will allow us not to repeat the same ar-
gument several times later on.

REMARK 16. Let ¢ >0, f:[a,b] — R be any, F:[a,b] — R be 4-con-
tinuous, A C [a, b] countable. Then there is a A-choice C on A such that for
any C-fine division P,

ST @i+ > IR <
dx)eP I x)EP

Lemma 17 is well known from the theory of Kurzweil-Henstock in-
tegral.

LEmMA 17. Let F:[a,b] — R be absolutely continuous, F' = f almost
everywhere on [a,b). Then, given ¢ > 0, there exists a gauge o on [a, b] such
that for each J-fine division P,

S FUL - f@l|| <.
(L x)eP

THEOREM 18. Let f:[a,b] — R be ]—'é'—integmble. Then it s E 4-in-
tegrable with the same integral.

Proor. Let F' = [f. By assumption, F' is [VBG], 4-continuous, and
satisfies V. Let {D,, },, be a closed [a, b]-form such that F" is VB on each D,,.
Let ¢ > 0. Fix an n. Let {xim}i C D, be the set of discontinuities of the
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restriction F| D,,. Denote by w,(x) the oscillation of F|D,, at x € D,;i.e., the
upper limit of |F(y) — F(2)| as (y,2) — (x,%), ¥,z € D,,. There is I = I(n)
such that

. my ¢
(3) i;I w, () < TR
Let a closed [a, bl-form {E}}, = {D,}, contain {«{”},... {2} ne N,

and be such that no open interval with endpoints in £, C D,, contains any of
the points x(”) . (") . We define a composite 4-gauge related to {£}},..

Since Ek is closed we can decompose F' [ E; as G+ H, G,H:E;, — R,
where G is absolutely continuous, H a singular function (i.e., with H'(x) = 0
a.e. on E}). This is the classical Lebesgue decomposition theorem. From
Lemma 17, as G'(x) = f(x) at almost every x € K}, there is a gauge J; on £,
with the property that

> 16U~ f@)|Ti| < 2%

for every J-fine division {(Z;,x;)}; with all I; having both endpoints in £}
Notice that, as H satisfies N, it is a pure jump function, and so, for the
same { ([}, %;) };,
STIHI <2 oulyw),
i m

where {y,,},, is the set of all discontinuities of F'| £}, (or H) and wg(y»,)
denotes the oscillation of H at y,,. Each y,, is among x%) 15+ Where
E’k cD,.

The definition of {J;}, does not depend on A. For any countable
A D Is{E}}, we define C according to Remark 16.

Now, consider a (C,{d;},)-fine partition = of [a,b]. Denote m; =
{,x) € m: (,x) is J;-fine} and agree that each (I, x) belongs to at most
one 7. We get

Yo P —f@Il < Y |G~ f@lI||+ »_ |HUI|<

(I, x)eny, I x)emn, I x)emny,
&
< Z_k +2 Z CUH(ym)
m

Therefore, by (3),

@ > > IF-f@i < sz”Z 3 () <3e

k (xen, " i=I+1



190 Piotr Sworowski

If (I, x) € my, for no k, then it is C-fine. So, by the definition of C,

(5) > FUl-f@l||<e.
aw¢ | Jmu

Thus, taking into account (4) and (5), we get

Fb)—F@) — > f@ll||<4e. O

dxen

4.1 - Variational definitions

Thanks to Saks—Henstock lemmas, each of the integrals considered in
Section 3 allows an equivalent variational definition.

DEFINITION 19. We say a function f:[a,b] — R is variationally LS 4-
integrable if there is a function F:[a,b] — R (an indefinite integral of f)
such that to each ¢ > 0 we can find a closed [a, b]-form {E;}; such that for
any countable A C [a, blthere is a A-choice C on A and a sequence of gauges
{0:}; related to {E;}; such that

(6) > @l - FlIl <e

I x)eP

holds for each (C,{d;};)-fine division P in [a,b]

We say an f is variationally E s -integrable if there is a function
F:la,b] — R (an indefinite integral of f) such that to each ¢ > 0 we can
find a closed [a, bl-form {E;}; and a related sequence of gauges {J;}; with
the property that for each countable A C [a, b] there is a A-choice C on A
such that (6) holds for each (C, {5i}i)—ﬁne dwision P in [a,b].

We say an f is variationally LL4-integrable if there is a function
F:la,b] — R (an indefinite integral of f) and a closed [a,b]-form {E;};
such that to each ¢ > 0 and to each countable A C [a, b] there is a A-choice C
and a sequence of gauges {0;}; related to {E;}; such that (6) holds for each
(C,{6};)-fine division P in [a,b].

Ene introduced a variational version of E s-integral [5, section 9] and
called it [S1S2V]-integral. The difference between our definition (varia-
tional K s-integral) and that of Ene is that in the latter F is a priori 4-
continuous, whereas for variational equivalence only {J;},-fine divisions
are relevant. Here, we do not assume F' to be 4-continuous, however we are
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able to prove it since we included not only {J;},-fine, but also C-fine in-
tervals (I, «) in P for (6). Therefore our definition is stronger than that of
Ene. The opposite statement is easy to prove, as contribution of C-fine

intervals is negligible for > |f(x)||/| and for > |F[I]| in case of 4-
Lx)eP Ix)eP
continuous F' (Remark 16). Hence our variational £ s-integral and [S1S2V]-

integral of [5] are equivalent.
From definitions and Saks—Henstock lemmas 11-13, follows im-
mediately

COROLLARY 20. A function f:[a,b] — R is LL-integrable iff it is
variationally LL »-integrable. An f is LS s;-integrable iff it is variationally
LS s-integrable. An f is E s;-integrable iff it is variationally E 4-integrable.

As a result, all the three variational integrals are properly defined, i.e.,
b
the value [f = F(b) — F(a) is unique.

Yet be%ore accomplishing the proofs for characterizations of F3- and
F4-integrals, we introduce a generalization of Definition 19. It is to provide
variational characterizations for the F¢-integral. The generalization is
based on passing from closed [a, b]-forms to [a, b]-forms that need not be
closed.

DEFINITION 21. We say a functionf: [a, b] — R is weakly variationally
LS s-integrable if there is a function F': [a, b] — R (an indefinite integral of
f) such that to each ¢ > 0 we can find a measurable [a, bl-form {E;}; such
that for any countable set A C [a, b] there is a 4-choice C on A and a se-
quence of gauges {6 }; related to {E;}; such that (6) holds for each (C,{d;};)-
fine division P in [a, b].

We say a function f:[a,b] — R is weakly variationally E s-integr-
able if there is a function F:[a,b] — R (an indefinite integral of f) such
that to each & >0 we can find a measurable [a,bl-form {E;}; and a
related sequence of gauges {0;};, such that for any countable A C [a,b]
there is a A-choice C on A such that (6) holds for each (C,{d;};)-fine
division P i [a, b].

We say a function f:la,b] — R is weakly variationally LL 4-in-
tegrable if there is a function F:[a,b] — R (an indefinite integral of f)
and a measurable [a,bl-form {E;}; such that to each ¢ >0 and each
countable A C [a, b] there is a 4-choice C on A and a sequence of gauges
{6}; related to {E;}; such that (6) holds for each (C,{d;};)-fine division
P in [a,b].
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We conjecture that the assumption of measurability of {£;}, is not
essential, however as the definitions given suit our purpose, we do
not follow this question. The corollary below is a consequence of
Corollary 20.

COROLLARY 22. LS s-integrability implies weak variational LS 4-in-
tegrability, E j-integrability implies weak variational E -integrability,
LL j-integrability implies weak variational LL 4-integrability.

We aim to prove, in some contrary to the case with closed [a,b]-
forms, that all three integrals from Definition 21 yield the same integral,
namely the F-integral. First of all, we prove some properties of in-
definite integrals in the weak variational LS, sense and show that each
such integral is a primitive for fﬁ—integral. As a result, uniqueness of
the above definition shall follow. We start with a result analogous to
Lemma 15.

LEmma 23. Let f:[a,b] — R be weakly variationally LS s-integrable.
Then F = [ f is VBG and A-continuous.

Proor. Let {E;}; be an [a, b]-form appropriate for ¢ = 1 in the sense
of weak variational LS 4 -integrability of f. Take a sequence of gauges
{0;}; suitable for ¢e=1, A=0, and {E;},. Given i, set E;;=
{x € E;: 0;(x) > (b—a)/k,|f(®)| <k}, ke N. It is straightforward (see
the proof of Lemma 15) that for each collection {[a;, b;]}; of nonoverlap-
ping intervals with both endpoints in

b—a b—a
Ei,kﬂ{mTa(m‘Fl) % :|, =0, ,k*l,
the inequality
STIF®) - Flap| <1+b-a
J
. . b—a b—a
holds. This means F'is VB on E;; N |m % (m+1) 2 and so VBG

on [a, b]. 4-continuity of F' can be justified similarly as for LS s-integral. [J

LEMMA 24 [Lemma 5.2]. Let F:E — Rbe VB, |E| =0, |F(&)| > 0. Then
there exists a set Ey C E such that |F(Ey)| >0 and F| E, is strictly
monotone.
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LeEmma 25. Assume f:[a,b] — R is weakly variationally LS s-integr-
able. Then F = [ f satisfies N.

Proor. We follow the pattern of the proof of [5, Theorem 5.1(ii)]. We
know F'is VBG (Lemma 23). Let {E;}, be an [a, b]-form such that F' is VB
and continuous with respect to each E;. Suppose F' does not fulfil A/. Then,
there is an 7 such that |F'(Z)| > 0 for some nullset Z C E;. By Lemma 24 we
can assume F' | Z is strictly monotone. Moreover, we can assume f = 0 on Z.
For ¢ = |F(Z)|/2 there is a Z-form {Z}}, and a related sequence of gauges
{0k}, such that

Z |F(x) — F(x)| = Z [F(@) = F(y) — flo)a —y)| <e

(z.y)w)eP (.y)w)eP

holds for each {Jy},-fine division P. As F'| Z is continuous and it is pos-
sible to exclude from Z all points that are isolated in any Zj, we can claim
that the collection of intervals (F(x), F(y)) where ({(x,y),x) is J;-fine,
k € N, forms a Vitali cover of the image F'(Z). By the Vitali covering
lemma, we can pick a finite collection { (F(xj),F(yj»}j of such intervals
with the property that

FZ)
]Z|F<y;->—F<xj)| > 1

The division {({x;, ¥;), %;)}; is {Jx}-fine, so there should be

\F@)
2

|F(Z)|
2 )

> Py — Fla| >
J

a contradiction. O
COROLLARY 26. F4-, LS -, and E s-integrals are equivalent.

Proor. It follows from Theorem 18, Lemmas 15 and 25, Corollary 22,
the remark after Definition 8, and the fact that indefinite LS -integrals
F = [f are almost everywhere approximately differentiable to f (see the
subsection 4.3 below). O

This corollary formulates an answer to the query posed by Ene [5, p.
91]. It turns out all integrals defined in [5] are equivalents of F é’—integral
(strong [S1S2Dl-integral in the language therein).
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4.2 - Characterization for F{-integral

Lemma 27.  Let f be variationally LL 4-integrable using an [a, bl-form
{E;}; Then if F = [f, F'| E; is continuous for each i.

Proor. For an ¢ > 0 take an appropriate sequence of gauges {J;};
related to {E;},. Let x € E;. By definition, for y € E; with [x — y| <J;(x) and
le —y|<e/(|f(@)|+ 1) we get

[F(x) — F(y)| < |[F() — F(y) — fl)@ — )| + [f@)]lc —y|<e+e.

This means the restriction F'| £; is continuous. O

THEOREM 28. Anf:[a,b] — R is LL-integrable if and only if it is F7-
ntegrable. Moreover, both integrals coincide.

ProOF. (=) Since f is LL-integrable, it is LS -integrable, and so
weakly variationally LS s-integrable. By Lemmas 15 and 25, F = [f is a
[VBG]-function with condition N. By Lemma 27 and the Banach—Zarecki
theorem [16, Chapter VII, (6.8)], F" is an [ACG]-function. As will be shown
in the next subsection, /' is a.e. approximately differentiable to f, hence f is
Fi-integrable with the indefinite integral F'.

(<) This is a simplified version of the proof of Theorem 18 (we skip
functions H here). Let f be Fi-integrable. Then F = [f is a 4-con-
tinuous [ACG]-function. Let {E;}; be a closed [a, b]l-form such that F' is
AC on E;, i € N. Since for each i, (F|E;) (x) = ng(aﬂ) = f(x) at almost
every x € E;, by Lemma 17 there is a gauge J; on E; such that

20 3 |F(y) — F(x) — f(x)(y — x)| <e holds for each d;-fine division P
(x,y),0)eP

with all intervals (x,y) having both endpoints in £;. Choose a countable
A D Is{E;};, A Cla,b], and define C according to Remark 16. For any
(C,{d;};)-fine partition 7 of [a, b] we have thus

> @) —F@ —f@y -0l <Y 5+e=2

((xc,y) w)en

So, f is LL s-integrable to F'(b) — F(a). O

From the (<) part of the above proof it follows that in Definition 7/,
{0}, need not depend on A. Theorem 28 is a generalization of Theorem 14.
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4.3 - Characterizations for F{-integral

For the F{-integral it would be natural to expect a characterization
similar to that of Corollary 26, however with the integral defined with
[a, b]-forms that need not be closed. For non-closed [a, b]-forms com-
posite 4-gauges miss the partitioning property (the remark after
Theorem 2), so we must restrict ourselves to variational description
only.

LeEmMA 29 ([4, Theorem 2] and [22, Lemma 3.3]). LetF:E — Rbea VB-
Sfunction satisfying N and let FF = F* — F~ be the Jordan decomposition of
F. Then both F* and F~ also satisfy N.

THEOREM 30. Let f:[a,b] — R be F{-integrable. Then it is weakly
variationally LL 4~integrable with the same integral.

Proor. LetF = [f.Then F is VBG, 4-continuous, and satisfies . By
assumption, F' is Baire one and so measurable. Thus there exists a mea-
surable [a, b]-form {£;}, such that each F'IE; is VB [16, Chapter VII, (4.2)].
We can assume that each F'| E; is moreover continuous. We will show f is
weakly variationally LL s-integrable using {£;},. Take a countable set
A C[a,b] and ¢ > 0. Each restriction F | E; is almost everywhere differ-
entiable to f. Denote E; = {x € E;: (F | E;)(x) =f(x)}. We will define
gauges related to {E;}, and suitable for ¢. For & € E; we have two cases: (1)
rxekl, 2) xek;\E,. In the case (1) we define ¢J;(x) >0 so that
|[F(y) — Fx) — fe)y — x)| < ¢ —y| for all y € (x — J;(x),x + d;(x)) N K.
We pass to the case (2). By Lemma 29, F'| E; = Fl-+ — F; where both
Fr,F; :E; — R are nondecreasing and satisfy N. The images P; =
Fj (E;\E)) and P; =F;(E;\E)) are nullsets. There are open sets
Of D Pf, O; DP; with 2/|0f|<e and 2/|0;|<e. The preimages
(Fj)’l(Oj), (F;)*I(O;) areopenin E;. Atx € E; \ £ we define ;(x) > 0 as
tohave E; N (x — 0;(x), x + 0;(x)) C (Fj)fl(Oi*) N (F;)’l(O;). Finally, for a
countable A we define a A-choice C according to Remark 16. We have ac-
complished the construction of composite 4-gauge (C, {4;};).

Consider a (C, {d;};)-fine division 7 in [a, b]. Set

ne = {((x,y),®) € n: ((x,y),x) is C-fine},
m={({x,y)v)en:xecE;\E;}, 7 ={{xy),xv)en:axck;}, ieN.

As usual, we agree that each member of 7 belongs to only one of the above
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divisions. We have
Y. F@ - Fy) - f@)e—yl<e
((x,y) x)emne
and

Yo Y IF@-Fy) —f@@—yp| < e —a),

i ((xy)wer;

so in order to accomplish the proof it is enough to show the variational

equivalence condition holds for | Jz;. We have
i

Y F@-F@)-f@@-y|< Y [F@)-F@l+ Y |f@@—y).
() w)em; ((x,y) w)em (,y) w)em
Let ((x,y), ®)€ m;. As x € E;\E’, by definition of 6;, (x,y)NE; C (F;r)_l(Oj) N
F; )_I(Oi‘ ) and hence (F/(x), F/ (y)) c Of, (F; (), F; (x)) C O;. For this
reason, as the intervals (F/(y),F; (x)), ((x,y),x) € m;, and the intervals
(F; (@), F;(y), (x,y),2) € m;, are pairwise nonoverlapping, we have

ST F@-Fyl< > Ff@-Fipl+ Y. IF; @) - F; @)

((x,y) )em; ((2,y) 0)em; ((x,y) )em;
_ &
< 07| +10;7| <2 5.

By minimizing J; in accordance with the value of f, we can claim that

> @ -pl<g

((x.y) w)en;
So altogether,
Y. F@-F@)—-f@@-pl=)_ Y F@)-F@-f@@-y)
(@) e Jm i ((wy)w)en
¢
<3 Z 57 =3¢
This finishes the proof. O

Since in the proof above {J;}; did not depend on A, we get

COROLLARY 31. Let f:[a,b] — R be F f—integmble. Then it is weakly
variationally E »integrable with the same integral.
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THEOREM 32. The weak variational LS s~integral is properly defined;
1.e., each two indefinite integrals of the same function differ by an additive
constant.

Proor. Let f be weakly variationally LS s-integrable and let F' and G
be two indefinite integrals for f. From Lemmas 23 and 25 we know both #'
and G are VBG-functions that satisfy A'. Moreover, they are both 4-con-
tinuous, so Baire one and Darboux. As £, is a linear space and 4 is filtering
down, F' — G has all these properties as well. So, in order to show F' — G is
constant it is enough to prove that ng(m) = G;p(ac) = f(x) at almost every
x € [a,b]. Suppose, f(x) is not ng(x) almost everywhere. Then the set
Z ={x € la,b]: ng(x) #f(@)} has |Z] > 0. For each x € Z there is a
y(x) > 0 with the property: in each O € 4,,(x) there is a ¥ € O such that
|f@)(y —x) — F(y) + F(x)| > y@)|y — «|. Denote by Z, the set of x € Z
with y(x) > 1/n, n € N. For some n we have ¢ = |Z,| > 0. Take a measur-
able [a, b]-form {£};}, suitable for ¢/2n and f according to the definition of
weak variational LS s-integrability. We can assume F' is VB on each E; [16,
Chapter VII, (4.2)]. Take a related sequence of gauges {J;},. By the Le-
besgue density theorem, for almost every x € E;,7 € IN,the set E; € Ay (x).
Thus for almost every x € Z,, N E;,1 € N, in each neighborhood of « there is
a y € E; such that |f(x)(y — x) — F(y) + F(x)| > |y — x| /n. Such intervals
(x,y) form a Vitali cover of Z,, whence there are nonoverlapping (xy, y),
v € By, yi € B, N (g — 05, (), ) + 04, (), such that >~ |y, — o > &/2.
It stems from the above that k

Ekj F @i — ) — Fyp) + Fa)| > ya) §kj s — | > %

a contradiction since {((x,yx),%r)};, is a {0;};-fine division in [a, b]. So
F;lp(oc) = f(x) almost everywhere and Ggp(x) = f(x) almost everywhere as
well. O

COROLLARY 33. Let f:[a,b] — R be weakly variationally LS s-integr-
able, F = [ f. Then F,, = f almost everywhere.

COROLLARY 34. ]—"4"—, weak variational LS 4, weak variational E 4
and weak variational LL 4-integrals are equivalent.

Proor. Itfollows from Lemmas 23, 25, Theorem 30, and Corollaries 31
and 33. O
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There are two matters that make our results less concluding in a sense.
First of all, there is left open the problem if it is possible to define F4-
integral in the Riemann manner. We have noted that the Riemann-type
definition with all [a, b]-forms lacks sense as we do not have partitioning
property for such a rich ‘base’. Perhaps, however, we can restrict ourselves
to a subclass of the class of all [a, b]-forms with the resulting ‘base’ having
partitioning property and the integral being equivalent to F f -integral. The
second question we leave without any answer is a possible Riemann- or at
least variational-type definition for F3-integral.

The chart below shows all relationships between the integrals con-
sidered. All inclusions (implications) are proper (in general). The sign ‘=’
means the integrals are equivalent. For F3- and F3-integrals there is no
inclusion relation [21].

¢ Ea=vEs=LSy=vLSy =F

LLpo =vLLsy = F4 vwLLs = wvE4 = wvLSy = FJ

C
C FA

5. Wide Denjoy integral

We end up with a corollary related to the wide Denjoy integral. As all
our considerations work in the case when 4 = 4, is the local system of
neighborhoods in the natural topology, we can provide the reader with a
vast collection of alternative definitions for wide Denjoy integral.

COROLLARY 35. For any f:la,bl — R the following statements are
equivalent:

@) f is integrable in the wide Denjoy sense,
(ii) f is E 4 -integrable,
(iii) f @s LSy,-integrable,
@iv) f is LL4,-integrable,
) f is variationally E 4, -integrable,
(vi) f is variationally LS 4 -integrable,
(vil) f is variationally LL 4 -integrable,
(viii) f is weakly variationally E 4 -integrable,
(ix) f is weakly variationally LS 4, -integrable,
(x) fis weakly variationally LL 4, -integrable,
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All is up to the fact that F f.'e—integrals, 1 =1,2,4, are equivalent to the
wide Denjoy integral. The equivalence (i)<(v) and the implication (i)=-(ii)
were given by Ene [5, Theorem 11.1]. It seems, none of other character-
izations have been stated explicitly so far, however we are in no position to
claim priority here.
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