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Huppert’s Conjecture for Fis;

S. H. Aravi (*) - A. DANESHKAH (¥%) - H. P. TONG-VIET (¥*%)
T. P. WAKEFIELD (¥%*)

ABSTRACT - Let G denote a finite group and c¢d(G) the set of all irreducible character
degrees of G. Bertram Huppert conjectured that if H is a finite nonabelian
simple group such that ed(G) = cd(H), then G =2 H x A, where A is an abelian
group. Huppert verified the conjecture for many of the sporadic simple groups.
We illustrate the arguments by presenting the verification of Huppert’s Con-
jecture for Figs.

1. Introduction and Notation

Let G be a finite group, Irr(G) the set of irreducible characters of G, and
denote the set of character degrees of G by cd(G) = {y(1) : y € Irr(G)}.
When context allows, the set of character degrees will be referred to as the
set of degrees. In the late 1990s, Bertram Huppert posed a conjecture
which, if true, would sharpen the connection between the character degree
set of a nonabelian simple group and the structure of the group. In [4], he
conjectured the following.
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HupPERT'S CONJECTURE. Let G be a finite group and H a finite non-
abelian simple group such that the sets of character degrees of G and H are
the same. Then G = H x A, where A is an abelian group.

Huppert verifies the conjecture for the Suzuki groups, the family of
simple groups PSLa(q) for ¢ > 4, and many of the sporadic simple groups.
Huppert’s proofs rely upon the completion of the following five steps.

(1) Show G’ = G". Hence if G’ /M is a chief factor of G, then G' /M = S¥,
where S is a nonabelian simple group.

(2) Identify H as a chief factor G'/M of G.

(3) Show that if 6 € Irr(M) and 6(1) = 1, then 6 is stable under G/,
which implies [M,G'] = M.

(4) Show that M = 1.

(6) Show that G =G x Cg(G'). As G/G' = Cs(G') is abelian and
G’ = H, Huppert’s Conjecture is verified.

In addition to his work verifying his conjecture for many of the simple
groups of Lie type, Huppert also verified the conjecture for many of the
sporadic simple groups. Indeed, he demonstrated that his conjecture holds
for the Mathieu groups, Janko groups, and many other sporadic simple
groups in his preprints. The only sporadic simple groups not considered by
Huppert are the Conway groups, Fischer groups, Monster, and Baby
Monster. In [7], the authors establish Huppert’s Conjecture for the Mon-
ster and Baby Monster. The authors have examined the remaining Fischer
groups and Conway groups and have verified the conjecture for these fa-
milies of simple groups using arguments similar to those presented in this
paper. Thus, Huppert’s Conjecture has been verified for all twenty-six
sporadic simple groups.

If » is an integer then we denote by 7(n) the set of all prime divisors
of n. If G is a group, we will write n(G) instead of n(|G|) to denote the
set of all prime divisors of the order of G. If N 2 G and 6 € Irr(N),
then the inertia group of # in G is denoted by I;(0). The set of all
irreducible constituents of 0% is denoted by Irr(G|0). Other notation is
standard.

2. Preliminaries

In this section, we present some results that we will need for the proof
of the Huppert’s Conjecture.
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LEMMA 2.1 ([4, Lemma 2]). Suppose N <G and y € Irr(G).

(@) If yy = 01 + 02 + - - - + O, with 0; € Irr(N), then k divides |G/N|. In
particular, if y(1) is prime to |G/N| then yy € Irr(N).

) (Gallagher’s Theorem) If yy € Irr(N), then yy € Irr(G) for every
v € Irr(G/N).

LEmMA 2.2 ([4, Lemma 3]). Suppose NG and 0 < Irr(N). Let
I =1;00).

k
() If 0f = S o with ¢; € Irr(D), then goZG € Irr(G). In particular,

=1
o;(D|G : 1| € cd(G).
(b) If 0 extends to w € Irr(I), then (y/r)G € Irr(G) forall t € Irr(I/N). In
particular, 60(1)t(D)|G : I| € cd(G).
(¢) If p € Irr(I) such that py = el, then p = Oyto, where Oy is a character
of an rreducible projective representation of I of degree 0(1) while 1y is the
character of an irreducible projective representation of I/N of degree e.

The following lemma will be used to verify Step 1. This is [7, Lemma 3].

LeEmma 2.3. Let G/N be a solvable factor group of G, minimal with
respect to being nonabelian. Then two cases can occur.

(@) G/N 1is an r-group for some prime r. Hence there exists
v € Irr(G/N) such that w(1) = " > 1. If y € Irr(G) and r{xQ), then
2t € Irr(G) for all © € Irr(G/N).

(b) G/N 1is a Frobenius group with an elementary abelian Frobenius
kernel F/N. Then f = |G : F'| € cd(G) and |F/N| = r* for some prime r,
and F /N is an irreducible module for the cyclic group G/F, hence a is the
smallest integer such that r* = 1(modf). If y € Irr(F) then either
fw() € ed(G) or v* divides 1//(1)2. In the latter case, r divides y(1).

(1) If no proper multiple of f is in cd(G), then x(1) divides [ for all
1 E Irr(zG) such that r{yQQ), and if y € Irr(G) such that y(1){f, then
r* | ()",

2) If y € Irr(G) such that no proper multiple of x(1) is i cd(G), then
either f divides (1) or v* divides )((1)2. Moreover if y(1) is divisible by no
nontrivial proper character degree in G, then f = y(1) or r* | ;{(1)2.

Let y € Irr(G). We say that y is isolated in G if y(1) is divisible by no
proper nontrivial character degree of G, and no proper multiple of y(1) is a
character degree of G. In this situation, we also say that y(1) is an isolated
degree of G.
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The next two lemmas will be used to verify Steps 2 and 4. The first
lemma appears in [1, Theorems 2,3, 4].

LEmma 2.4. If S is a nonabelian simple group, then there exists a
nontrivial irreducible character 0 of S that extends to Aut(S). Moreover the
following holds:

(@) if S is an alternating group of degree at least T, then S has two
consecutive characters of degrees n(n — 3)/2 and (n — 1)(n — 2)/2 that both
extend to Aut(S).

(1) if S is a sporadic simple group or the Tits group, then S has two
nontrivial irreducible characters of coprime degrees which both extend to
Aut(S).

(127) if S is a simple group of Lie type then the Steinberg character Sts of
S of degree |S |p extends to Aut(S).

LemMa 2.5 ([1, Lemma 5]). Let N be a minimal normal subgroup of G
sothat N = S* where S is a nonabelian simple group. If 0 € Irr(S) extends
to Aut(S), then = Irr(N) extends to G.

The following Lemma will be used to verify Step 4.

LeEMMA 2.6 ([4, Lemma 6]).  Suppose that M 3G’ = G” and that for any
A€ Irr(M) with A1) =1, 29 = A for all g € G'. Then M' =[M,G'] and
|M /M| divides the order of the Schur multiplier of G' /M.

3. The sporadic simple group Fliss

LEmMA 3.1.  Let H be the sporadic simple group Figs.

(@) The following degrees are isolated degrees of H:
2B8.52.7.11 2°.312.17 318.13.23
216.5.13.23 312.17.23 312.5.11-17.
(it) Let 1# y() € ed(H). Then (11-17-23,7(1)) >1 and (x(1),
11-13-17) > 1.
(112) H has no proper power degrees nor consecutive degrees.

() If K is a maximal subgroup of H such that |H : K| divides some
character degree y(1) of H then one of the following cases holds.
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(a) K =2 Figy and y(1)/|H : K| is one of the numbers in the set A,
consisting of the following numbers:

23.83.7-11 2*.5.11-13 22.3%.7-11

3.52.7-13 38 32.5.11-13
2°.5.-13 2°.5.11 5-11-13
2-3.11-13 22.3*.13 2.3%.11.

(b) K 2= 04 (3) : Sz and x(1)/|H : K| is one of the numbers in the set As,
consisting of the following numbers:

26.3.13 22.32.5.13 5%.7-13
22.3.52.7 25.5.18 3%.5%.7
3.5 3313 3.7-13
2.5-13 3-5-13 25 .13.

(v) The outer automorphism group and the Schur multiplier of H are
trvial.

Proor. The list of maximal subgroups and their indices of the Fischer
group Fligg is given in Table 1. This table is taken from [6]. The other in-
formation can be found in [3]. O

LEMMA 3.2. Let L = Og (3) be the simple orthogonal group. The only
nontrivial degree of a proper irreducible projective representation of L
which divides one of the numbers in As is 520.

Proor. By [3], the Schur multiplier of L is elementary abelian of order
4. Let L be the full covering group of L. Then Z(L) = Zg. Hence Z(L)is non-
cyclic and hence L has no faithful irreducible characters. Thus if VAS Irr(f,),
then y must be an irreducible character of one of the following groups:
04(3),2-04(3),2" - O (3), or 2" - 0§ (3). We observe that if y is a nontrivial
proper projective irreducible character of L, then y is an ordinary character
of 2- 05(3),2"- 05 (3), or2” - Og (3). We have that Q4 (3) = 2 - O (3) and the
three double covers of L are isomorphic via the graph automorphism of
order 3 of L. Hence it suffices to find the faithful irreducible characters of
Q5 (3) which divide one of the numbers in A;. We see that the largest
number in Ay is 2496. Using [2], the faithful irreducible character degrees
of .Qg (3) which are less than 2496 are 520, 560 and 1456. However only 520
divides one of the numbers in Az. The proof is now complete. O
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4. Verifying Huppert’s Conjecture for F'igs

We assume that H = Fiz3 and G is a group such that ed(G) = cd(H). In
this section we will show that G = H x A, where A is an abelian group,
which confirms Huppert’s Conjecture for the sporadic simple group Figs.
We will follow five steps of Huppert’s method described in the introduc-
tion.

4.1 — Verifying Step 1

By way of contradiction, suppose that G’ # G”. Then there exists a
normal subgroup N <G such that G/N is solvable and minimal with respect
to being non-abelian. By Lemma 2.3, G/N is an r-group for some prime 7 or
G/N is a Frobenius group.

CASE 1. G/N is an r-group. Then there exists y € Irr(G/N) such that
w(1) =r® > 1. However by Lemma 3.1(4%¢), G has no nontrivial prime
power degrees. Hence this case cannot happen.

CasE 2. G/N is a Frobenius group with Frobenius kernel F/N,
|FF/N| =r"1<f =|G: F| € cd(G)and r* = 1(mod f). By Lemma 2.3(), if
x € Irr(G) such that y(1) is isolated then either f = y(1) or r | y(1). We
observe that there is no prime which divides all the isolated degrees listed
in Lemma 3.1(?). Thus f must be one of the isolated degrees in Lemma
3.1(7). Hence f is isolated in G. By Lemma 2.3(b) again, if y € Irr(G) with
7{ (1) then (1) | f. As f is isolated we deduce that » must divide every
nontrivial degree y(1) of G such that y(1) # f.

Assume first that f = 3'2.17-23. Then » must divide all of the re-
maining isolated degrees in Lemma 3.1(i). However (2!8.5%.7-11,
313.13.23) = 1, which is a contradiction. Hence f # 312 .17 - 23 so that
r € {3,17,23}. Suppose that » = 3. Then 2!8.5%.7.11 and 2! .5.13 - 23
are two isolated degrees of H, which are both coprime to =, so that f
must be equal to both of them by Lemma 2.3(b)(2), which is impossible.
Hence 7 #3. Assume next that »=17. Then 21¥.52.7.11 and
313 .13 .23 are isolated degrees of H, which are both relatively prime to
r =17, hence we obtain a contradiction as in the previous case. Finally,
assume 7 = 23. Then 2% . 52 . 7. 11 and 2° - 312 - 17 are isolated degrees of
H and both are coprime to » =23, which leads to a contradiction as
before. Thus G' = G”".
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4.2 — Verifying Step 2

Let M < G’ be a normal subgroup of G such that G’ /M is a chief factor
of G. As G is perfect, G’ /M is non-abelian so that G'/M = S* for some non-
abelian simple group S and some integer k& > 1.

CramM 1. k=1. By way of contradiction, assume that k > 2. By
Lemma 2.4, S possesses a nontrivial irreducible character 6, which is
extendible to Aut(S) and so by Lemma 2.5, 6 € Irr(G’/M) extends to
G/M, hence 0(1)’“ € cd(G), which contradicts Lemma 3.1(¢i7). This shows
that k = 1. Hence G'/M = S.

Cramm 2. S is not an alternating group of degree at least 7. By way of
contradiction, assume that S = A,,,n > 7. By Lemma 2.4, S has two non-
trivial irreducible characters 6;,62 with 6:(1) = n(n —3)/2, 6:(1) =
0:(1) + 1 = (n — 1)(n — 2)/2 and both 6; extend to Aut(S), so that G possesses
two consecutive nontrivial character degrees contradicting Lemma 3.1(217).

CramM 3. S is not a simple group of Lie type. If S is a simple group of
Lie type in characteristic p, and S # 2F4(2)’, then the Steinberg character
of S of degree |S|, extends to Aut(S) so that G possesses a nontrivial prime
power degree, which contradicts Lemma 3.1(217).

CramM4. S = Figg. By Claims 1, 2, and 3, S is a sporadic simple group or
the Tits group. We will eliminate all other possibilities for S and hence the
claim will follow. By Ito-Michler Theorem (see [4, Lemma 1]) we deduce that
every prime divisor of S must divide some character degree of S, and since
every character degree of S = G’ /M divides some character degree of H, we
obtain that every prime divisor of S is also a prime divisor of H, so that
7n(S) C n(H) = {2,3,5,7,11,13,17,23}. Hence we only need to consider the
simple groups in Table 2. For each sporadic simple group or the Tits group S
in Table 2, we exhibit a nontrivial irreducible character 0 of S such that
extends to Aut(S) and either (11-13-17,6(1)) =1 or (11-23 -17,60(1)) =1,
which contradicts Lemma 3.1(¢7). This finishes the proof of Step 2.

4.3 — Verifying Step 3

If 0 € Irr(M), 6(1) = 1, then I(0) = G’. Let 0 € Irr(M) and I = I5(0).
S

Assume that /<G’ and ¢/ =3 ei¢;, where ¢, € Irr(l),7=1,2,...,s. Let
i=1
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U/M be a maximal subgroup of G'/M containing I/M and let ¢t = |U : I|.
Then ¢,(1)|G’ : I is a character degree of G' by Lemma 2.2(a), so it divides
some character degree of G. Thus t¢,(1)|G’ : U| divides some character
degree of G and so the index |G’ : U| must divide some character degree of
H. By Lemma 3.1(7v), one of the following cases holds.

CASE. U/M = 2'Fig. Then for each i, t¢,(1) divides one of the num-
bers in A;. As U/M is perfect, the center of U/M lies in every maximal
subgroup of U/M and so the indices of maximal subgroups of U/M and
those of F'ige are the same. By inspecting the list of maximal subgroups of
Fligs in [3], the index of a maximal subgroup of U /M divides no number in

S
A; so that t=1 and hence I =U. Recall that ¢/ = e;¢;, wWhere
i=1
¢; € Irr(D),2 =1,2,...,s. Assume first that ¢; = 1 for some j. Then 0 ex-
tends to 0, € Irr(J). Hence by Gallagher’s Theorem, 6, is an irreducible
constituent of ¢ for any 7 € Irr(/M) and then 1(1)0y(1) = ©(1) divides one
of the numbers in .4;. However we can choose t € Irr(//M) = Irr(2 Fig)
with (1) = 2729376 and obviously this degree divides none of the numbers
in A;. Therefore e¢; > 1 for all .. We deduce that for each 1, ¢; is the degree
of a nontrivial proper irreducible projective representation of 2 Figs.
Moreover as ¢,(1) = ¢;0(1) = ¢;, each ¢; divides one of the numbers in A;. It
follows that for each 7, ¢; < 23 -3 .7-11 = 16632 and ¢; is the degree of a
nontrivial proper irreducible projective representation of 2'Fiige. Using [3],

S
we obtain e; € {3%-13,2-3%-11-13} for all i. As 0' =Y e;¢;, and
i1

¢;,(1) = e;, we deduce that |I/M| = ; ¢?. Let @ and b be the numbers of ¢/s
which equal 3% - 13 and 2 - 33 - 11 - 13, respectively. We have

218.39.52.7.11.13 =35.13%a +22 - 35 . 11% - 13%b = 132(3%a + 2% - 35 . 11%p),

which is impossible. Thus this case cannot happen.

CASE. U/M = 0¢(3): S3. Then for each 1, t¢,(1) divides one of the
numbers in As. Let M SW U such that W/M = O§(3). We have that
M3IINWETand MSINW <W. Assume W £ I. Then I s WI < U and
t=|U:1|=|U:WI|-|WI:I|. Now |WI :I| = |W : WnI|and hence t is
divisible by [W : WNI| and also as W/M = Og(3), t is divisible by the
index of some maximal subgroup of Og (3). Thus some index of maximal
subgroup of Of (3) divides one of the numbers in A;. However by in-
specting the list of maximal subgroups of Og (3) in [3], we see that this is
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impossible and thus W <1< U. Write 0" =fiu +fotto + - - - + fults,
where u; € Irr(W16). As W21, we obtain that for each ¢, x;(1) divides
one of the members in A,. If f; =1 for some j then 0 extends to
0y € Irr(W). Hence by Gallagher’s Theorem, 70, is an irreducible con-
stituent of 0% for any 7 € Irr(W/M) and then 7(1)0y(1) = 7(1) divides one
of the numbers in 4,. However we can choose 7€ Irr(W/M) with
7(1) = 716800 and obviously this degree divides none of the numbers in
Ag. Therefore f; > 1 for all 7. We deduce that for each ¢, f; is the degree
of a nontrivial proper irreducible projective representation of Og (3).
Moreover as y;(1) = f;0(1) = f;, each f; divides some of the numbers in
As, and so by Lemma 3.2, we obtain that f; = 520 = 22 . 5 - 13 for all . It
follows that

S
W/M| =2"-8%.5°.7.18=) fF=s-20.5" 13",
=1

which is impossible. Thus we conclude that 0 is G'-invariant.

4.4 — Verifying Step 4

M = 1. By Step 3 and Lemma 2.5, we have M’ = [G', M] and |M : M|
divides the order of the Schur multiplier of H, which is trivial so that
|M :M'| =1. Thus M = M'. If M is abelian then we are done. Hence we
assume that M = M’ is nonabelian. Let N < M be a normal subgroup of G’
such that M /N is a chief factor of G'. Then M /N = S* for some nonabelian
simple group S. By Lemma 2.4, there exists an irreducible character
7 € Irr(S) such that 7(1) > 1 and t extends to Aut(S). By Lemma 2.5, o+
extends to y € Irr(G’), and so by Gallagher’s Theorem, yf € Irr(G’) for all
p € Irr(G'/M). Let x € Irr(G’ /M) = Irr(Figs) such that y(1) is the largest
character degree of H. Then yw(1)y(1) = *(1)x(1) divides some character
degree of G, which is impossible. Hence M = 1.

4.5 - Verifying Step 5

G =G x Cq(@). 1t follows from Step 4 that G = H is a nonabelian
simple group. Let C = Cg(G’). Then G/C is an almost simple group with
socle G'. As Out(H) = 1, we deduce that G = G'C. As (' is simple, we have
G'NC=1sothatG = G x C =G x Ce(@). 1t follows that Cs(G') = G/G’
is abelian. The proof is now complete.
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TABLE 1. — Maximal subgroups of the Fischer group Figs.

Group Index
2 Fligg 3+.17-23
22 Us(2) - 2 37.5.13-17-23

(2% x 2148)(3 x Uy(2)) - 2
26+8 . (A7 x Ss)

211 -M23

0{(3): S5

Sz x 2(3)

Sq x Spe(2)

Sps(2)

S12

Ss(4) : 4

L»(23)

31*8 : 2146 . 3?2 A
33+1+3+3 . (2 % Lg(g))

3%.5.7-11-13-17
310.5.11-13-17
28.33.5.11-17
25.11-17
28.3%.5.11-17
26.38.5.11-13-17
22.38.11-13
28.38.13.17
28.311.7.11.13

2T.52.7-11-13-17
218.52.7.11-17

-23
-23
-23
-23
-23
-23
-23
-23
-23
215.312.52.7.13.
-23
-23

17

Group Character Degree Group Character Degree
M11 X9 32 -5 Jz X6 22 ~32
M12 X7 2- 33 CO3 X6 27 -7
Mgg X2 3.7 F’izz X571 39 -7-13
Mzg X3 32-5 HS X7 52 -7
M24 X7 22 . 32 -7 COl X2 22 -3-23
McL Y14 307 ZFy(2) X20 20.3
He 115 27. 72 Suz 113 210.8>
Coy X922 36.53
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