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Realization Theorems for Valuated p"-Socles

PATRICK W. KEEF

ABSTRACT - If n is a positive integer and p is a prime, then a valuated p"-socle is said
to be n-summable if it is isometric to a valuated direct sum of countable valuated
groups. The functions from w; to the cardinals that can appear as the Ulm
function of an nm-summable valuated p"-socle are characterized, as are the n-
summable valuated p™-socles that can appear as the p"-socle of some primary
abelian group. The second statement generalizes a classical result of Honda from
[9]. Assuming a particular consequence of the generalized continuum hypoth-
esis, a complete description is given of the n-summable groups that are uniquely
determined by their Ulm functions.

0. Terminology and introduction

Except where specifically noted, the term “group” will mean an abelian p-
group, where p is a prime fixed for the duration of the paper. Our terminology
and notation will be based upon [6]. A group is X-cyclic if it is isomorphic to a
direct sum of cyclic groups. We also make use of concepts related to valuated
groups and valuated vector spaces that can be found, for example, in [16] and
[7], and that we briefly review: Let O be the class of ordinals and
O = O U {00}, where we agree that o < oo for all o € O. Avaluation on a
group V is afunction | |}, : V' — O such that for every x,y € V, |x £yl >
min{|x|, |y} and |px|, > |x|,. As a result, for all o € Oy, V(o) =
{x € V : |x|, > o} is a subgroup of V with pV(«) C V(o + 1). We say V is o-
bounded if V(o) = {0}; the length of V is the least o such that V(x) = V(c0).

A homomorphism between two valuated groups is valuated if it does not
decrease values and an isometry if it is bijective and preserves values. If
{Vi}icr, is a collection of valuated groups, then the usual direct sum,
V = @ V;, has a natural valuation, where V(a) = @ Vi(a) for every o € O.

el iel
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If W is any subgroup of V, then restricting | |, to W turns W into a
valuated group with W(a) = W N V(x) for all o € O. A valuated group W
with pW = {0} is called a valuated vector space; so each W(x) will be a
subspace of W. We say a valuated vector space is free if it is isometric to a
valuated direct sum of cyclic groups (of order p). If V is a valuated group,
then its socle V[p] = {x € V : px = 0} is a valuated vector space, and V is
summable if V[p] is free. A group G is a valuated group using the height
function (also denoted by | |) as its valuation; in this case G(«) = p*G, and
G is said to be separable if it is w-bounded. If » is a fixed positive integer, it
follows that the p"-socle of G, written G[p"] = {x € G : p"x = 0}, can be
viewed as a valuated group.

In [4], an co-bounded valuated group V was defined to be a valuated p™-
socle if p"V = {0} and for every x € V[p" '] and every ordinal < |x|y,
there is a y € V with @ = py and f < |y|;.. It easily follows that an oo-
bounded valuated vector space is a valuated p-socle. The p"-socle of a re-
duced group G is always a valuated p"-socle, and if V = G[p"], then we will
say G is supported by V. A valuated p"-socle is realizable if it is supported
by some reduced group. [The parallel requirements that V be co-bounded
and that G be reduced are convenient, but not strictly speaking necessary.]

Let C be the class of all cardinals. If V is a valuated group, then the a-th
Ulm invariant of V is

fv(@) = r(V(e)lpl/V(e+ DIp)) € C.

We call fy : O — C the Ulm function of V. Another definition of the Ulm
function of a general valuated group is given in [10], and it is easy to verify
that these agree for valuated p™-socles. In general, when we say f : O — C
is a function, we mean that its support is contained in some ordinal J, and we
identify f with its restriction f : 0 — C.

A valuated p"-socle is said to be n-summable if it is isometric to the
valuated direct sum of a collection of countable valuated groups (each of
which will also be a valuated p™-socle). It was shown in [4] that the theory of
n-summable valuated p"-socles parallels the theory of dsc groups (.e.,
direct sums of countable groups - see Chapter XII of [6] for standard re-
sults on these groups). For example, the following is ([4], Theorem 2.7),
which parallels ([6], Theorem 78.4).

THEOREM 0.1. Suppose V and W are n-summable valuated p™-socles.
Then there is an isometry V = W iff their Ulm functions agree, i.e.,

v =fw.
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The parallel between n-summable valuated p™-socles and dsc groups
can be extended. A subgroup X of a valuated group V is nice if every coset
a + X has an element of maximal value. A nice composition series for V is
an ascending chain of nice subgroups {X; : ? < J} such that

(CH) Xo = {0}, X5 =V;
(C2) for all 1 <9, X;11/X; = Zp;
(C3) for all limit ordinals 1 < ¢, X, = | X;.

<A

A nice system for V is a collection N of nice subgroups of V such that

(SD {0} e N5

(S2) N is closed under group sums;

(S3) If S C V is countable, then S C N for some countable N € N.

If V is a valuated p"-socle, let Ay be the unique ordinal such that
VI = {lz]y : € V} C O is order-isomorphie to Ay U {oo}. The follow-
ing is ([4], Theorem 2.1), which parallels ([6], Theorem 81.9).

THEOREM 0.2. Suppose V is a valuated p"-socle and iy < w;. Then the
Sollowing are equivalent:

(a) V is n-summable;
(b) V has a nice system;
(¢) V has a nice composition series.

If Ay <w; and ¢: |V], — Ay U{oo} is an order-preserving bijection
and |x[}, = ¢(|x|;,) for every x € V, then V is also a valuated p"-socle using
| | and virtually anything that is true using one valuation (e.g., that V is n-
summable) is also true using the other. It therefore makes sense to restrict
our attention to those n-summable valuated p™-socles that are w;-bounded.
This leads to two of the main questions that are addressed in this paper:

(1) If f:w — C is a function, when does f = fy for some n-summable
valuated p"-socle V?

(2) If V is an w;-bounded n-summable valuated p"-socle, when is V realiz-
able?

Complete answers are given to both questions. For obvious reasons, a
function satisfying (1) will be called n-summable. Section 1 is a discussion
of n-summable functions, which are characterized in Theorem 1.10. This
combinatorial condition, which we describe later, can be viewed as a gen-
eralization of the classical notion of an admissible function (see [6], The-
orem 83.6).
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Section 2 is a consideration of question (2). In Theorem 2.11 it is
shown that V is realizable iff for every countable limit ordinal A and every
o</ we have

Y. fps< ( > fV(ﬂ))NU-

In—1<f<i+w a<f<i

Naturally, a group G is n-summable if G[p"] is n-summable as a val-
uated p"-socle. These groups are considered in [5], [13], [14] and [15]. An »-
summable group will always be summable (since a countable valuated
vector space is free), and so p®G = {0} (see, for example, [6], Theo-
rem 84.3). Therefore, any n-summable valuated p"-socle that is realizable
must be w;-bounded; this is another reason for restricting to the w;-
bounded case. It is known that a given valuated vector space is often
supported by different groups that are not isomorphic. This suggests a
third question.

(3) If V is an n-summable valuated p"-socle, when is V uniquely realizable,
in the sense that any two groups supported by V are isomorphic?

Since m-summable valuated p"-socles are classified by their Ulm
functions, the last question can be restated as follows:

(8") Describe the n-summable groups G that are uniquely determined by
their Ulm functions; that is, those that have the property that if G’ is an-
other n-summable group with f; = fi, then G is isomorphic to G'.

Assuming a natural statement regarding cardinal arithmetic that is a
consequence of the generalized continuum hypothesis, this question is
answered in Theorem 3.4. With this cardinality assumption, it is shown
that V is uniquely realizable iff V(w + n — 1) is countable; and in this case,
every group G supported by V will be a dsc group. In particular, when
n = 1, Corollary 3.5 states that these groups agree with those described in
([2], Theorem 2.6).

Theorem 2.11 (i.e., the solution to the above question (2)) is a gen-
eralization of the classical “Existence Theorem for Principal p-Groups”
from [9]; in fact, for » = 1, it reduces to precisely this result. However,
there are several important differences. First, it is fairly clear thatif n = 1,
then any function f : w; — C will satisfy (1); i.e., any such function is the
Ulm function of some free valuated vector space. On the other hand, if
n > 1, then f will be the Ulm function of an n-summable valuated p”-socle
iff it satisfies Theorem 1.10. Second, the proofs of our main results are
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considerably less complicated; i.e., a few pages in length, as opposed to the
over twenty pages needed to prove the Existence Theorem in [9]. And
third, we can apply our techniques to answer question (3) whenever our
condition on cardinal arithmetic holds; the latter question was not even
considered in [9].

1. Realizing Ulm Functions

In this section we give an explicit description of those functions from w;
to the cardinals that are n-summable, in that they can appear as the Ulm
function of an n-summable valuated p"-socle. By considering (valuated)
direct sums, it follows that the sum of a collection of n-summable functions
is n-summable.

If  is an ordinal, then o = q,(a) + 7,(2), where g,(«) is 0 or a limit and
ry(e) <m. We say o is an n-limit if g, (o) > 0 and r,(z) <n — 1, and other-
wise, we say o is m-isolated. An n-limit o is an n, w-limit if q,(x) has
countable cofinality; clearly, if o <, then it is an n, w-limit iff it is an »-
limit. Note that all ordinals are 1-isolated and o is 2-isolated iff it is isolated
in the usual sense of the term.

For a function f: O — C, we denote the support of f by supp(f), and
we further let supp;(f) = {f € supp(f) : § is n-isolated} and supp,(f) =
{p € supp(f) : f is an n-limit}. We begin with an elementary observation.

Lemma 1.1. If V is a wvaluated p"-socle, f=fy:O0—C and
B € suppy,(f), then q,(f) is a limit point of supp;(f).

ProOF. If § is n-isolated and <1 % Gw(p), then let « be the smallest
ordinal such that 6 <o € supp(f); so a < f. If «is an n-limit, thena =+ k
where u = q,(a) > 0 and k = r,(x)<n — 1. Let x € V(o)[p] — V(e + DI p]
and find y such that |y, =x and pfy=x. Since k+1<n and
ply = pr = 0, there is a z € V(5 + 1) such that pz = y. If o = |z|, > 6,
then o <u < o, and there is a 2’ € V(¢ + 1) such that pz’ = y. Therefore,
z—2 e V(@ )pl — V(e + Dpl,and so f(o') # 0. However, this contradicts
the choice of a. So o € supp;(f) and J <o < 4, proving the result. O

We will say f: O — Cis n-isolated if every o € supp(f) is n-isolated; in
particular, f will always be 1-isolated. The next elementary observation is
a description of the Ulm functions of the class of strongly n-summable
valuated p"-socles (see [4], Corollary 1.7).
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LEmma 1.2. If f: O — Cis n-isolated, then it is n-summable.

Proor. For an n-isolated ordinal f, let k =min{n,f+1} and
Vj = (x5) be a cyclic valuated p”-socle of order p* with |ly, = 0, when
f<n — 1, and otherwise, |ac/;|V/f =f — (n —1). We then let V be the valuated
direct sum of f(f) copies of Vj for all . It can easily be checked that f = fv,
so that f is n-summable, as required. O

In particular, any function f: O — C is l-summable. We will say
f: O — Cis an n, w-limit if it is the characteristic function of a set of the
form {y;},_, U {p}, where f is an n, w-limit ordinal, and y; for i<w is a
strictly ascending sequence of n-isolated ordinals with limit q(f).
Unsurprisingly, a countable valuated p”-socle V is an n, w-limit if fy is an
n, w-limit function. The following result gives a concrete picture of such
objects.

LemMa 1.3.  If f : O — Cisann, o-limit function, then fisn-summable.

PrOOF. Suppose, as above, f is the characteristic function of
{1i}ico U{L};set 4 = qu(P), k = 7,(p). Thereis clearly no loss of generality
in assuming y, > n — 1. Let W be generated by y and {x;}, _,, subject to the
relations p*1y = 0, and for i <w, p"a; = y. It is straightforward to check
that a valuation on W can be defined by the formulas: [p‘y|y = 4 + ¢ for
0<(<k, |pwly=y7—-m—-1)+¢ for 0<¢{<mn-—1, and if z=jy+
bxy, + -+ + Ly, , Where p" f 4y, ..., 4;, then

2|y = min{|jy|yw, |Gy, - - - [0ni, | }-

It can also be checked that if z € pW = (px; : i <w) and a<|z|y, then
there is a 2’ € W such that pz’ =z and o« < |2/|yy.

From this, it follows that V = W[p"]is a countable valuated p"-socle. It
also follows that there is a valuated decomposition

Vipl = (') @ <@<p”‘l(w1: - xi+l)>)-

<o

This implies that fiy =f, as required. O

If f: (’)—>Clsafunctlon and o < 8 < oo, thenletff— > f(y). We
a<<y<f
say f is countable if f f <N, a
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THEOREM 1.4. Suppose f : O — C 1s a countable function. Then the
Sfollowing are equivalent:

(@) f is n-summable;

(b) f isthe sum of a collection of n, w-limit functions and an n-isolated
Sfunction,

(c) If p € supp(f), then q,(p) is a limit point of supp;(f).

Proor. First, assuming (a), then (c) follows from Lemma 1.1.
Next, assuming (b), then (a) follows from Lemmas 1.2 and 1.3.
To complete the proof, suppose (¢) holds for f; we will then verify (b).

Let
I ={(p,y) : p €supp,(f) and y<f(p)},

k= |I| < Noand {(f;,7;)};, be alisting of /. For each j <r thereis a strictly
increasing sequence, {%},_,, = C; C supp,(f), with limit q,,(f,); we can
also obviously pick these so that if ¢.,(f;) = ¢.(8;), then C; = C;.

Let {Nj};., be disjoint infinite subsets of w. For each j<x, we in-
ductively define 7; C C; by the equation

Tj={ojp: L eNj} =ToU---UTj0).

Clearly, these sets are disjoint.

Claim: 7} is infinite. The first term is infinite, so it will suffice to show
that if j'<j, then {oj,:¢ € N;} N Ty is finite. If ¢,(8;) = qu(B;), then
C; = Cy and clearly

{aj’g:ZENj}ﬂTj/ - {O(N:fG/\/j}ﬂ{O(j/"g:ZE./\/j/}:@.

On the other hand, if q,,(8;) # ¢.(f;), then {w;, : £ € N;} N Ty C C; N Cy is
finite, since C; and C; have different suprema.

For every (;,7;) € I, let f; be the characteristic function of {;} U T}; so
/i 1s an n, w-limit function. In addition, if § is an n-limit ordinal, then

(X 5)B=HBpel:p=p}=Fp.

j<k

And if f is n-isolated, then ( 3 f;)(f) equals 1if § € |J T C supp;(f), and
Jj<xk j<k
otherwise, it equals 0. It follows that there is an n-isolated function g such

that f = ( 3_ f;) + g, thereby establishing the result. O

j<k

Since a function [ : © — Cis n-summable iff it is the sum of a collection
of countable n-summable functions, Theorem 1.4 immediately implies the
next result.
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COROLLARY 1.5. A function f : O — C is n-summable iff it is the sum
of a collection of n, w-limit functions and an n-isolated function.

COROLLARY 1.6. If'V is an n-summable valuated p™-socle, then it is
1sometric to a valuated direct sum ®;c;V;, where each V; is either cyclic or
an n, w-limit.

Proor. By Corollary 1.5, fy is the sum of a collection of %, w-limit
functions and an n-isolated function, and each term is the Ulm function of a
valuated p"-socle that is an n, w-limit or a valuated direct sum of cyclics. So
the result follows from Theorem 0.1. O

COROLLARY 1.7. Ifais an ordinal, 1 = q,(o) and k = r,(x), then o is
the length of some n-summable valuated p™-socle V iff 0 <k <n implies
that A has countable cofinality. In fact, if A has countable cofinality or
k > n, then we can choose V to be countable.

Proor. If 4 has cofinality «, then let {§;}, _,. be a strictly increasing set
of n-isolated ordinals with limit 4. First, if k = 0, let K = {f;},_,.. Next, if
0<k<mn, then k = w, o — 1is an n-limit and we let K = {f;},_, U {a — 1}
Lastly,ifk > n,theno — 1 = A1+ k — lisn-isolated and we let K = {o — 1}.
In any of these cases, let f be the characteristic function of K. It follows
from Theorem 1.5 that f = fi for some n-summable valuated p"-socle V. It
is easy to check that V will have length «, and that if 1 has countable co-
finality or k > n, then V will be countable.

Conversely, suppose 2 is a limit ordinal of uncountable cofinality and
0<k<mn. If the valuated p"-socle V is either cyclic or an n, w-limit, then
fy(oe — 1) = 0. It follows that there cannot be an n-summable valuated p"-
socle of length o. O

We now restrict our attention to functions f : w; — C. If 1 is a limit
ordinal, then let

A+n—1 A
) = f and f(J) = inf{ f: oc<i}.
/ /

Observe that f(1) is either 0 or an infinite cardinal. We say f is n-thin if
there is a closed and unbounded subset C C w; consisting of limit ordinals A
such that f'(1) = 0. Further, we say f is n-admassible if
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(1.A) for every limit A <w; we have f'(1) gf()v); and
(1.B) either f is n-thin, or {a<wy : f() > V;} is unbounded in w;.

Any function f : w; — C1is l-isolated and hence 1-summable. In addition, if
n =1, then f'(1) =0, so f is 1-thin and 1-admissible.

We now point out that for » > 1, the study of n-summable functions can
be reduced to the study of 2-summable functions, which will simplify our
discussion. If n > 1 and « is isolated, then let f'(¢) = f(o +n — 2). If n = 2,
then f' =f.

LEMMA 1.8. If f: w1 — Candn > 1, then

(@) f is n-isolated iff [’ is 2-isolated;

(b) f is an n,w-limit iff ' is a 2, w-limit;

(¢) f is n-admissible iff ' is 2-admissible;
(d) f is n-summable iff f' is 2-summable.

Proor. (a), (b) and (c) follow immediately from the definitions, and (d)
follows from (a), (b) and Corollary 1.5. O

LEmMA 1.9. Suppose f : 1 — C s 2-admissible and 1< w; is a limit.

(@) If f(3) is uncountable, a < and y<f(1), then there is an isolated
ordinal o such that f(o') is uncountable, o <o’ <A and y<f(a).
(b) If f(A) # O, then A is a limit point of supp;(f).

Proor. We verify (a), the proof of (b) being even more straightfor-
ward. ~ B
Since f(A) < [ f, we have y =] max{y,w} <f(o) for some o with

<o <A ChooseOC +ocl/ to be the smallest ordinal satisfying these conditions.
We need to show that o is isolated, so assume that it is actually a limit.
By (1.A), ¥ < f(o!) < f(o!), so f(o) is uncountable and y < (o). Arguing
as in the last paragraph with A replaced by o/, we have y < f (/") for some o
with e <o <o, contradicting the minimality of o'. O

We now come to the main point of this section, the characterization of n-
summable functions defined on w;.

THEOREM 1.10. Fora function [ : w; — C, the following are equivalent:

(@) f is n-summable;

(b) f s the sum of a collection of n, w-limit functions and an n-isolated
Sfunction,

(¢) f is n-admissible.
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Proor. If n =1 then any such function satisfies any of these condi-
tions. So we may assume n > 1. Replacing f by f’, by Lemma 1.8, we may
assume n = 2.

By Corollary 1.5, (a) and (b) are equivalent, so we need to show they are
equivalent to (c). Suppose first that (b) holds, and let f = >_ f; + g, where

el
each f;is a 2, w-limit and ¢ is 2-isolated. It is easy to check that (1.A) holds
for g and each f;, which readily implies that it holds for f, as well.

Regarding (1.B), observe first that if {« <w; : f(2) > Ry} is unbounded
in w1, then we are clearly done; so we may assume it is bounded, say by
n<ai. If (1.B) fails, then the set S = supp;,(f) N (¢, ) is stationary in w;.
For every A € S there is an ¢, € I such that f;,(1) # 0. Since each f; is a
2, w-limit function, it follows that the assignment A—1; is injective. For
every 4 € S we can then find an o; € (i, 4) such that f;,(a;) # 0. Note that
A—a; will be a regressive function, so by Fodor’s Lemma (see, for example,
[12], Theorem 8.7), there is an o € (1, ;) such that «; = o for all 4 in an
uncountable subset R of S. This implies that

f@) > fi) > fi,() = [R| = wr.
el AER
This contradicts the fact that f(x) is countable for all & > u. Therefore, we
have shown that (b) implies (c).

Conversely, supposing (c) holds, we verify that (b) follows. Let U be the
closure of {z<w; : f(x) > N1} in the order topology. Define f,,f. : w1 — C
by the conditions supp(f,) C U, supp(fe) Cw; — U and f=f,+f.
Clearly, f.(a) < Nq for all « <wy, and if « is isolated, then f,(«) will be 0 or
uncountable. We will be done if we can verify the following:

CrAmM 1. (b) holds for f,.
CrAmM 2. (b) holds for f,.
Starting with Claim 1, let

I'={(B,7): B €supp,(fu) and y<fu(B) =f(B)}.

If i =(B,7) €I, then clearly f() is uncountable. Therefore, by Lem-
ma 1.9(a), there is a strictly increasing sequence K; = {o; ;}, ., € supp;(fu)
with limit § such that y< f(«) = f,,(«) for all « € K;. Let f; : w1 — x be the
characteristic function of {#} U K;; so f; is an n-limit.

We need to establish two facts:

(1) for all § € supp;,(f,), we have Y f;(f) = f.(p); and

el
(2) for all o € supp;(f,), we have > fi(a) < fi ().

el
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For (1), if € supp,(fu), then fi(B) =1 iff i = (B,y), where y<fu(f).
This happens for precisely f,(f) elements ¢ € I, so that (1) follows. Re-
garding (2), if o € supp;(f,), then f,(a) > Xy. Further, if ¢ = (f,y) € I and
fil@) =1, then > a and y<f,(x). Since this can happen for at most
Ny - f,, (o) = fu (o) elements i € I, we can conclude that (2) follows. So we
have verified Claim 1.

Turning to Claim 2, we first define a closed and unbounded subset
C C w; as follows: If U is unbounded, then we let C = U. On the other
hand, if U is bounded by u<wj, then by (1.B) we can find such a subset
D C (u, w1) consisting of limit ordinals 4 such that f(4) = 0. In this case, we
let C = U U D. Since supp(f,) C w; — U and f(1) =0 for all 1 € D, it fol-
lows that supp(f.) C w; — C and that f, agrees with f on w; — C.

Since C is closed, w; — C is the disjoint union of sets of the form (d;, ¢;)
for ¢ € I, where ¢; <w;. Let f, = )" f; where supp(fi) C (d;, ;). Since f; is

el
countable, Claim 2, and hence the entire result, will follow once we show f;
satisfies Theorem 1.4(c) (where n = 2).

Let /< be a limit ordinal such that f;(1) # 0; we need to show that 4
is a limit point of supp;(f;). Note that J; <1 <¢; and by Lemma 1.9(b), Ais a
limit point of supp;(f). Since f, f. and f; agree on (;, &), it follows that 1is a
limit point of supp;(f;), as required. O

2. Realizing Valuated p”-Socles

In this section we discuss which w;-bounded valuated p"-socles V'
appear as the p"-socle of some group. In fact, we will start by being a
bit more general. We say a valuated group V is group-like if for all
ordinals «, we have (pV)(x+1) = p(V(®)); in other words, if x € pV
and o< x|y, then there is a ¥y € V such that o < |y|;, and py = x. Note
that if p"V = {0}, then pV C V[p"~'], which readily implies that any
valuated p"-socle is group-like. We say a valuated group V is sup-
ported by a group G if V is an essential subgroup of G so that for all
xeV, |xy = |z We will say V is realizable if it is supported by
some group G. For valuated p"-socles, this agrees with our previous
terminology.

Recall from [16] that if V is a valuated group, there is a group H(V)
containing V' as a nice subgroup such that H(V)/V is totally projective. In
this construction we may clearly assume that V' and H(V) have the same
length.
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PropoSITION 2.1.  Suppose V is a valuated group. Then V is realizable
iff it is group-like and there is a balanced subgroup Z C H(V) such that
there is a valuated decomposition H(V)[pl = Z[pl & VIpl

ProoF. Suppose first that V is supported by the group G. To show
that V is group-like, let « € (pV)(x + 1). Then x = pz for some z € V. In
addition, there is a y € p*G such that py = x. Note that p(y —z) =0 so
that y —z € G[p] C V. Therefore, y =z + (y —2) € VN p*G = V() and
Py = x, as required.

Next, since V' is a nice subgroup of H(V) and H(V)/V is totally pro-
jective, by ([6], Corollary 81.4) the identity map V — V extends to a
homomorphism 7 : H(V) — G. It is easy to see that the range of 7 is a pure
subgroup of G containing V. And since V is essential in G, we can conclude
that # is surjective. Let Z be its kernel.

Since for all & we have (p*G)[p] = V(o) p] C n((p*H(V)[p)) C (p*G)p],
it follows that Z is balanced in H(V). The identity map V[pl(=Gl[p]) —
VIpl(C H(V)) being an isometry leads to the valuated decomposition
HW)[p] = Z[p] ® VIp], giving one implication.

Conversely, suppose V is group-like and we are given Z C H(V) as
indicated. Let G = H(V)/Z and = : H(V) — G be the natural epimorphism.

It is clear that = maps V onto an essential subgroup of G. We will be
done if we can show that for all ¥ € V, we have |x|;, = |n(x)|;. We certainly
have |x|y, =[]y < [7(0)|g. We establish the reverse inequality by in-
duction on the order of x.

Suppose first that « € V[p] and o = |n(x)|;. Since Z is a balanced
subgroup of H(V), there is ay € (p*H(V))[p] such that n(y) = x. We must
have y = x + 2, where z € Z[p], so that o < |y|; < |x|, as required.

Suppose now that this holds for all elements of V[p*~1], and x € V[p"],
where o = |n(x)|;. Since px € V[p*~!], by induction o+ 1 < |n(p)|; =
|px|y,. Since V is group-like, there is a ¥ € V(«) such that py = px. Note
that « —y € V[pl and |n(x — y)|; > o, so that [« — y|;, > «. However, this
implies that |x|;, = |(x — ¥) + y|, > o, as required. O

ProposITION 2.2. If V is an w-bounded valuated group, then V 1is
realizable iff it is group-like.

Proor. By Proposition 2.1, if V is realizable, then it is group-like.
Therefore, assume V is w-bounded and group-like. Since V is w-bounded,
H(V) will be separable. And since V is nice in H(V), the quotient H(V)/V
will be a separable totally projective group, i.e., it is 2-cyclic. This implies
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that there is a valuated decomposition H(V)[p] = F & V[p], where F'is a
free, w-bounded valuated vector space (see, for example, [11], Lemma 1). It
follows that there is a pure (and hence isotype) 2-cyclic subgroup Z C H(V)
such that Z[p] = F. Since F is closed in H(V)[p] in the induced p-adic to-
pology, it follows that Z is closed in H(V). This means that G e 1 BIAE
separable. Therefore, Z is nice, and hence balanced, in H(V). So by Pro-

position 2.1, V is realizable. O

Since any valuated p"-socle is group-like, the next statement follows
directly from Proposition 2.2.

COROLLARY 2.3. If V is an w-bounded valuated p"-socle, then it is
realizable.

The main purpose of this section is to describe precisely when a given 7-
summable valuated p"-socle is realizable. As discussed in the introduction,
it is also natural to ask when a group G supported by an n-summable
valuated p"-socle V is determined by V, i.e., if G’ is any other group sup-
ported by V, then G = . If such a G is determined by V, we will say V is
uniquely realizable.

For example, if V' is an w-bounded n-summable valuated p"-socle, then
by Corollary 2.3, V is realizable. In fact, the summability of V[p] implies
that any group supported by V will be X-cyclic. In other words, w-bounded
n-summable valuated p"-socles are uniquely realizable. In the next section,
we consider when this remains the case for groups of greater length. For
now, we present a simple example.

ExAMPLE 2.4. Suppose V is a valuated p"-socle which is n-summable
w2

and @2 = o + w-bounded. If f=f, and f(w) > [ f >Ny then V is
wt+n—1
realizable, but not uniquely realizable. In fact, ther+e are groups A and A’

supported by V such that A/p”A is Z-cyclic and A’ /p®A’ is not.

PROOF. Since f is n-admissible, f(w) > f'(1), which readily implies that
f is an admissible function; so there is a dsc group A with f = f4. It follows
that A[p"] is m-summable, so by Theorem 0.1, there is an isometry
A[p"] = V; in other words, V is realizable.

On the other hand, let M = {m<w : f(m) > Ny}, and let k > n — 1 be
an integer such that f(w+k) > N;. Let B= P Lgmes. Next, let X be a

— eM
pure subgroup of the torsion completion B coryl'zcaining B such that X/B has
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rank N;. It can be verified that Y = X /B[pk+1] is n-summable and
1, ifaecM;
fr@=< Ry, fa=w+k;

0, otherwise.

Ifwelet A’ = A @ Y, then A’ will also be n-summable. We have constructed
A’ so that fy = fa4 = f. This implies that A’[p"] is also isometric to V.

Clearly, since A is a dsc group, A/p”A is X-cyclic. On the other hand,
A’/p”A’ has a summand isomorphic to

Y/p(uY _ (X/B[pk—H])/(X[pk+l]/B[pk+l]) A X/x[pk+l] o pk+1X,

which is not X-cyclic. It follows that A’/p®A’ is also not XZ-cyclic, so that V'
is not uniquely realizable. O

If 1 is a limit ordinal and V is a valuated group, then the A-topology on V
uses V(p) for f < 1 as a neighborhood base of 0. Naturally, a subgroup W of
V is said to be A-dense if it is dense in this topology, i.e., for all f < 1 we have
V=V(p)+W.Welet L,V be the completion of V in the J-topology, i.e.,
the inverse limit of V/V(f) over f< 1. As an exception to our overall re-
striction to primary groups, L,V may have elements of infinite order.
However, if V is a valuated p"-socle, then p"L,V = {0}. There is a natural
map V — L,V whose kernel is V(1), leading to an inclusion V/V(1) C L,V.
We then set P,V = (L, V)[pl/(V/VM)Ipland Q,V =L, V/V/V(A). If G
is a group and A has countable cofinality, G/p*G will be isotype and -dense
in L)G, and Q,;G will be divisible.

We now review some additional concepts from [4]. If o is an ordinal and V' is
a valuated p"-socle, then a subgroup W of V is a-high if it is maximal with
respectto W N V() = {0}. Ana-high subgroup W of Vis n-isotypein V (i.e.,it
is a valuated p"-socle under the induced valuation), and if « is a limit, W is o-
dense in V. If o is n-isolated, then there is a valuated decomposition
V=W & U, which we refer to as a standard o-decomposition of V. If, in
addition, « >n —1, then U C V(e —n +1). We now connect these definitions.

LEmMA 2.5.  Suppose V is a valuated p"-socle, /. <w; is a limit ordinal
and W is A-high in V. Suppose further that G is a group supported by W,
n:L,G — Q,G 1is the canowical epimorphism and u:V — L,G is the
natural extension of the homomorphism W C G — L;G (so that V(A) is the
kernel of 1). Then there is a natural isomorphism

P,V = (Q,@)[pl/nlu(V))pl.
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Proor. Note that (L;G)[p"] will be complete in the (induced) A-to-
pology and W C V will be A-dense in it; so we can identify (I.,G)[ p"] with
L;W = L;V. Therefore,

P;(V) = (L;V)Ipl/(V/V()lp]
= (L;®pl/uV)lp]
=~ [(L;®pl/GLp]l/[uV)pl/GLp]]
=~ (Q;@pl/n(u(W))p],

completing the proof. O

We now describe a natural way to construct a group supported by a
valuated p"-socle. The following is the main inductive step.

LEMMA 2.6.  Suppose V is a valuated p"-socle, <1 <wy are limit or-
dinals and W, C W are, respectively, J.and ) -highin V. Let G, be a group
supported by W) and A be a group supported by W, (7) (where, technically,
we shift the valuation in the latter group by 4). Then there is a group G
containing G; supported by W, such that p’G, = A iff

Ao
) [ r=wem.
A+n—1

ProOF. LetA =J @ K, where J is a maximal p”!-bounded summand
of A. Thereis astandard A + n — 1-decomposition W, = W,,,,_1 & Y, where
W;in_1i8 A+ n — 1-highin V containing W,, W, ,, 1(1) =Jand Y = K[p"].
Let D be a divisible hull of W)_,,,_1 /W, and E be a divisible hull of K. There is
an embedding J = W, 1(0) = J' & [Wyy,1(2) + W;1/W; C D.

By a standard construction (cf., [8], Theorem 106), the existence of G
is equivalent to the existence of a commutative pull-back diagram

A = A
l l
0 — Gy, — Gy — D&E — 0
| | Lo

0 - Gy — LGy 5 QG — 0

Therefore, given G, the existence of G is equivalent to the existence of a
homomorphism ¢: D & E — Q,;G, with kernel J' @ K = A.

The natural homomorphism x : V — L,;G;, whose kernel is V(1), in-
duces a homomorphism y, : W;,—1/W, — Q,G,, whose kernel is J'. The
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divisibility of @;G, implies that y, extends to a homomorphism
71 : D — @Q,G,. Since W,,,_1/W, is (algebraically) the direct sum of a
collection of copies of 7, and p"~1J’ = {0}, it follows that (W,,,_1/W,)/J’
is essential in D/J’. This implies that the kernel of y; is also J’. In addition,
by Lemma 2.5, there is an isomorphism

P;(V) = (@G pl/n(u(V)p]l = (Q.@[pl/ D) pl.
A standard computation shows that the rank of £/K agrees with the
Ao
rank of a basic subgroup of K, which is [ f. Therefore, there is a

A+n—1
homomorphism ¢ : £ — Q,G, such that ¢ =9, +0: DD E — Q,G, has
kernel J' @ K = A iff (*) holds. O

We will say the valuated group V has an wi-high tower if it is the
smoothly ascending union of a chain of subgroups indexed by the countable
limit ordinals, {W;},_,, , such that for each 4, W; is /-high in V. For ex-
ample, if V is a-bounded where o <w - w, then V clearly has an w;-high
tower. If V is a valuated p"-socle or a group, then V has an w;-high tower
iff the socle V[p] has an w;-high tower. In particular, if V is a group or
valuated p"-socle that is summable, then it has an w;-high tower.

THEOREM 2.7.  Suppose the valuated p™-socle V has w;-high tower and
f =fv. Then V is realizable iff for every countable limit ordinal 1, we have

Ao
/ f<r@PyV)).

A+n—1

Proor. Let W; be as above. For each limit ordinal A<w;, we in-
ductively construct an ascending chain of groups G; supported by W,. If 1is
a limit of limit ordinals, we can construct G, by taking a union. Suppose then
that we have constructed W, and we want to construct W,,,. By Cor-
ollary 2.3, we can find a group A supported by W, ,(1). So by Lemma 2.6,
we can extend G to get the required G, iff our cardinality condition is
satisfied. O

We will need a pair of observations about the above construction, so

o

assume the notation in the proof of Lemma 2.6. If [ f=»P,(V))is
A+n—1

infinite, then we could construct two different extensions ¢,¢' : D ® E —

Q,G; of y;, both with kernel J' ® K = A, such that ¢ maps onto the torsion
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subgroup of Q;G,, and ¢ does not. If G, and G, are the groups con-
structed with these two homomorphisms, we could conclude that ;G is
torsion-free and @G, is not (in other words, G,/ p*G, is A-torsion complete
and G, /p*G is not). This establishes the first part of the next result.

COROLLARY 2.8. Suppose the n-summable valuated p"-socle V is
realizable and f = fy. If either

i+
(1) for some limit ordinal A< w;, f f =rP,(V))is mnfinite, or

_ w2 +n—1
@ flo= [ fz2N

w+n—1

then there are non-isomorphic groups G and G' supported by V.

Proor. Regarding (2), let W, be an w2-high subgroup of V. As in
Example 2.4, we can construct non-isomorphic groups A and A’ of length w2
supported by W,,2; in particular, A /p®A and A’ /p®A’ will not be isomorphic.
If we extend these to groups G and G’ supported by V, then since
G/p“G =2 A/p”A and G’ /p°G' =2 A’ /p”A’, we can conclude that G and G
are not isomorphic. O

We have the following immediate consequence of Theorem 2.7, which is
an extension of Corollary 2.3.

COROLLARY 2.9. Any w + n — 1-bounded valuated p"-socle V is rea-
lizable.

We now specialize this to the case of valuated p"-socles that are »-
summable. The next result allows us to compute the required invariants.

LEMMA 2.10.  IfV is an n-summable valuated p"-socle, f def frand isa
countable limit ordinal, then v(P;V) = (f ).

_ J i
Proor. Let ¢ = f(4) and fy <A be chosen so that [f = [f = &for all

Bo B
o < f<i. We may clearly assume that f, is n-isolated, so there is a
standard f,-decomposition V =W & U, where W is f,-high in V. It fol-

lows that P,V is naturally isomorphic to P;U. Replacing V by U, we may
i
assume [f =¢

0
Since V is a valuated direct sum of countable groups, the same will be

true of V; def V/V(4), and B V;[p]. Since a countable valuated vector
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space is free, we can conclude that B is free. Clearly, fz(ff) = f(p) for all
p <2, and we can identify (L,V)[p] with L,B, so that P,V = P,B.
If o; is a strictly increasing sequence that converges to 4, then we can

write B = @ B;, where for each i<w we have B;(x;)=2B; and
i<w
Bi(2;41) = {0}. It follows that ;B is isometric to B = [] Bj;, sothat P,V is
i<w

isomorphic to B/B. Since B/B has rank &, the result follows. O

This brings us to the main goal of this section, i.e., the generalization of
the Existence Theorem for Principal p-Groups from [9] promised in the
introduction. It is an immediate consequence of Theorem 2.7, Lemma 2.10
and the fact that an w;-bounded n-summable valuated p”-socle has an w;-
high tower.

THEOREM 2.11. Suppose V is an w;-bounded n-summable valuated
p"-socle and f = fy. Then V is realizable iff for every countable limit or-
dinal /. we have

VR

f<foy®.

A+n—1

For example, if f(z) =1 for « <w, flw+1) =k and f(x) =0 for
a > w+1, then f is 2-admissible, so there is a valuated p2-socle V with
f = fv. However, this V is realizable iff x < 2%,

3. Unique Realization

We say a function f : w1 — Cis wi-countable, if f(o) is countable for all
o <wi. The following is similar to ([4], Corollary 1.7).

PROPOSITION 3.1.  Suppose V is a valuated p™-socle and f def fv is w-
countable. Then V is n-summable iff it is summable and f is n-thin.

ProoF. Suppose first that V is n-summable, so that f is n-admissible.
It follows immediately that V is summable. And it follows from (1.B) that f
is n-thin.

Conversely, suppose V is summable and f is n-thin. Let oy = 0 and for
0<i<wy, let o; be a strictly increasing enumeration of a CUB subset of
countable limit ordinals such that f’(o;) =0 for all 0<i<w;. After col-
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lecting terms, there is a valuated decomposition V[p] = & S;, where

1<w
So C VIp] is og-high and for i >0, S; C V(x; +n — D[p] is1 o 1-high.
Clearly, each S; is countable.

Let W; be an a;,1-high subgroup of V(«;) such that W;[p] = S;. It fol-
lows that W, is countable and n-isotype in V. By ([4], Corollary 1.6), there
is a valuated decomposition V = @ W;, completing the argument. O

1<y

COROLLARY 3.2. Suppose G is a group such that fg is w-countable.
Then G is n-summable iff it 1s summable and fq is n-thin. In this case,
G/p*G will be countable for all o< w.

Proor. The first conclusion follows by applying Proposition 3.1 to
G[p"]. To verify the last sentence, if H is p**®-high in G, then there is an
isomorphism H/p*H = G /p*G. Since H[ p]is countable, so is H. Therefore,
G/p*G is also countable. O

For example, if f(«) =1 for all x <wy, and V is a free valuated vector
space with f = fy, then V is realizable, so there is a summable group G
such that fz = f. Since G/p*G will be countable for all o < wy, this G will be
a C,,-group; this is the type of group constructed in [1]. Note that this
group will not be 2-summable, since f is not 2-thin. More generally, if we
define f so that f(«) = 0 whenever o is an n-limit and f(«) = 1 whenever o
is m-isolated, then there is an n-summable group G such that f = fg.
However, since f; is not # + 1-thin, G will not be » + 1-summable.

We now turn to a discussion of when a realizable n-summable valuated
p"-socles is, in fact, uniquely realizable. We start with the case where the
Ulm function is w;-countable.

THEOREM 3.3. Let V be a realizable n-summable valuated p™-socle
such that f dof fv 1 w1 — C is wi-countable. Assuming the continuum hy-
pothesis (CH), V is uniquely realizable iff it is countable.

Proor. Clearly, if V is countable then any group supported by V will
be countable, and such groups are classified by their Ulm functions. [This
direction clearly does not depend on CH.]

Conversely, suppose V is uncountable; i.e., supp(f) is unbounded. We
need to construct non-isomorphic groups Gs and G supported by V. Let
{W}; <o, be an wi-high tower of V. Let S;, 7', for limit ordinals 2 <y, be
a smoothly ascending chains of countable sets such that S, NV =
T,NV =W, and |[S)10, — S UV)| =T, — (T, UV) =R and let S, T
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be their unions. As sets, we will let Gg =S and Gy = T and we will in-
ductively define group structures on S; and 7, so that S,[p"]=
T,;[p™] = W,. It is important to note that since S, will be pure and w-dense
in S, if A is a reduced group, then a homomorphism f : S; — A is uniquely
determined by its restriction to S,,.

Given CH, the cardinality of the set of functions f:S, — T is
X% = R}, so we can index them by f; for i <w;. Let E; C w; for i <w; be a
collection of pairwise disjoint stationary subsets consisting of limit ordinals
(see, for example, [12], Lemma 8.8).

Suppose /' is a limit and for all /. < 2’ we have defined group structures
on S; and T supported by W;. If 1’ is a limit of limits, then we simply take
unions. Suppose then, that we have constructed our group structures on S;
and 7';, and A’ = /4 + w. We now divide the construction into two parts.

CASE 1. A€ E; and fi(S,,) C T, extends to an isomorphism g : S; — T.

Identify S, and 7', using ¢ and call the result G;. Then as in the proof of
Lemma 2.6, there are group structures on S, and T, that extend G,
and are supported by W, , for which S;.,,/p*S;+., and T, /0" T, map
to distinct subgroups of L;G;. In particular, this means that the iso-
morphism ¢ : S; — T, does not extend to an isomorphism S, ,, /p*S o —
T/'Hrw/p;'T/ler-

CAsE 2. Case 1 does not apply.

Extend the group structures on S; and 7' to S;.,, and T, in any way
so that they are supported by W).,.
Let Gs= U S, and Gy = |J T). It follows that V is supported by

A<y A<an
both Gg and G7. We claim that they are not isomorphic; assume otherwise,

and let h:Gg — Gr be such an isomorphism. It follows that C =
{A<w; : KS,) = T,} is closed and unbounded in w;. Let i <w; be such that
h restricted to S, agrees with f;. Since E; is stationary, it follows that there
is an 1 € E; N C. Note that & will induce an isomorphism from Gg/p*Gg =~
Sit0/0'Sit0 to Gp/p*Gr 2 T, /p"T) 10, Which is an extension of the
isomorphism gd:efh| s, : S; — T;. This is contrary to the construction from
Case 1, which shows that Gg and Gy are not isomorphic. So V is not un-
iquely realizable. O

Observe that the continuum hypothesis is equivalent to the condition
that NS“ < ¥y = R/. By the CEH (for “countable exponent hypothesis) we
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will mean the statements that k™ < x* for all infinite cardinals «. Clearly,
the generalized continuum hypothesis implies the CEH. The following
result, therefore, generalizes Theorem 3.3.

THEOREM 3.4. Suppose V is a realizable n-summable valuated p"-
socle and f = fy. If V(w + n — 1) is countable, then V is uniquely realiz-
able. In fact, any group supported by V must be a dsc group.

Conversely, assuming the CEH, if V(w + n — 1) is uncountable, then V
1s not uniquely realizable.

Proor. Suppose first that V(w + n — 1) is countable and G is a group
supported by V. Let H be p®*"1-high in G. Since G is n-summable, by ([4],
Theorem 3.5), H must be a dsc group. Since "(G/H) = r(V(w +n — 1)) < Ny,
it follows from Wallace’s Theorem (see, for example, [3], Proposition 1.1) that
G is a dsc group. Therefore, G is determined by V.

w2
Conversely, suppose V(w + n — 1) is uncountable. Let k = [ f.
w+n—1
CASE 1. k is uncountable.

Let u = ]_’(a)). If e < p, then it follows from Corollary 2.8(2) that V is not
uniquely realizable. We may therefore assume that x > g, so that the CEH
implies x > M. By Theorem 2.11, x < 1%, so that x = @™ = »(P,(V)). In
this case, Corollary 2.8(1) implies that V is not uniquely realizable.

CASE 2. Kk = Ny.

Subcase 2a: For all « with w +7 — 1 < a<w; we have f(a) < Rg.

It follows from Theorem 3.3 that there are non-isomorphic groups A,
and A; supported by V(w+n —1) (where, again, we shift values by
w + n — 1). These two groups are contained in groups G; and Gy supported
by V, where Ay = p®*"~1Gy and A; = p®*"1G,. Since G; and G will also
not be isomorphic, it follows that V is not uniquely realizable.

Subcase 2b: For some o with o +7 — 1 < a<w; we have f(x) > R;.

Let «>w be chosen minimally so that f(x) > N;. Since x=
w2

[ f = R, we can conclude that « > w2. Since f is n-admissible, o must
w+n—1 _ )
be n-isolated. If q,(x) = 1 > w2, then f(1) < j f = No. In addition, by
Theorem 2.11 wtn—1

Mo
N [ S Em)=For < v =

An—1
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It follows from Corollary 2.8(1) that V is not uniquely realizable, completing
the proof. O

Again, assuming the CEH, the last result states that an n-summable
group G is uniquely determined by fg iff it is a dse group and p®*"*~1G is
countable. We now consider the particular case where n = 1.

A group G is said to be w-totally X-cyclic if every separable subgroup of
G is 2Z-cyclic. These groups were studied in [2], where, for example, it was
shown that they are precisely the dsc groups G for which p®G is countable.
Therefore, we have the following consequence of Theorem 3.4 for n = 1.

COROLLARY 3.5. Assuming the CEH, a summable group G is un-
iquely determined by fq iff it is w-totally X-cyclic.

For example, if (o) = N; for all « < wand f(«) = 0 for o« > w, then asin
Example 2.4, there are summable groups A and A’ with Ulm function f
such that A is a dse group and A’ is not. So, as a summable group A is not
uniquely determined by f. However by Theorem 3.4, as a 2-summable
group A is uniquely determined by f.

In ([4], Theorem 3.8), it was shown that if G is a group and G[p"] is n-
summable for all positive integers n, then G must be a dsc group. We
conclude this paper with an analogous result for Ulm functions that illus-
trates the power of our realization results.

THEOREM 3.6. A function f:w; — C is admissible iff it is n-ad-
missible for all positive integers n.

Proor. If fis admissible, then there is a dsc group G such that f = f.
It follows that G[p"]is n-summable and f = fg;,». So by Theorem 1.10, f'is
n-admissible for each positive integer .

Conversely, suppose for each positive integer n, f is n-admissible. So
by Theorem 1.10, there is an n-summable valuated p"-socle V,, such that
fv, =f. It is clear that V,,.;[p"] will also be an n-summable valuated p"-
socle and that fy, [, =f, so that by Theorem 0.1 there is an isometry
Vi =2 Vi i1[p"]. If we identify these two, then we can define G to be the
union |J V,. Note that G has a valuation | |; determined by the

1<n<w
valuations on the various V. In addition, if ¥ € G and a<|x|;, then

x €V, for some n, and so x € V,,1[p"]. Hence, thereisay e V,,; CG
such that py =« and « < |y|;. This means that for all x € G, |¢|; =
sup{|y|; +1:y € G and py = x}. An easy induction then implies that | |,
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is the height function on G. Since G[p"] = V,, is n-summable for each =, it
follows from ([4], Theorem 3.8) that G is a dsc group. Therefore, f = f;
will be admissible. O

The last result could be proven combinatorially using the definition (1.A
and B), but the argument is less intuitive and significantly longer than the
above.
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