Realization Theorems for Valuated p^n -Socles

PATRICK W. KEEF

ABSTRACT - If n is a positive integer and p is a prime, then a valuated p^n -socle is said to be n-summable if it is isometric to a valuated direct sum of countable valuated groups. The functions from ω_1 to the cardinals that can appear as the Ulm function of an n-summable valuated p^n -socle are characterized, as are the n-summable valuated p^n -socles that can appear as the p^n -socle of some primary abelian group. The second statement generalizes a classical result of Honda from [9]. Assuming a particular consequence of the generalized continuum hypothesis, a complete description is given of the n-summable groups that are uniquely determined by their Ulm functions.

0. Terminology and introduction

Except where specifically noted, the term "group" will mean an abelian p-group, where p is a prime fixed for the duration of the paper. Our terminology and notation will be based upon [6]. A group is Σ -cyclic if it is isomorphic to a direct sum of cyclic groups. We also make use of concepts related to valuated groups and valuated vector spaces that can be found, for example, in [16] and [7], and that we briefly review: Let \mathcal{O} be the class of ordinals and $\mathcal{O}_{\infty} = \mathcal{O} \cup \{\infty\}$, where we agree that $\alpha < \infty$ for all $\alpha \in \mathcal{O}_{\infty}$. A valuation on a group V is a function $| \ |_V : V \to \mathcal{O}_{\infty}$ such that for every $x, y \in V, |x \pm y|_V \ge \min\{|x|_V, |y|_V\}$ and $|px|_V > |x|_V$. As a result, for all $\alpha \in \mathcal{O}_{\infty}$, $V(\alpha) = \{x \in V : |x|_V \ge \alpha\}$ is a subgroup of V with $pV(\alpha) \subseteq V(\alpha+1)$. We say V is α -bounded if $V(\alpha) = \{0\}$; the length of V is the least α such that $V(\alpha) = V(\infty)$.

A homomorphism between two valuated groups is *valuated* if it does not decrease values and an *isometry* if it is bijective and preserves values. If $\{V_i\}_{i\in I}$, is a collection of valuated groups, then the usual direct sum, $V=\bigoplus_{i\in I}V_i$, has a natural valuation, where $V(\alpha)=\bigoplus_{i\in I}V_i(\alpha)$ for every $\alpha\in\mathcal{O}_{\infty}$.

E-mail: keef@whitman.edu

 $^{(\}ast)$ Indirizzo dell'A.: Department of Mathematics, Whitman College, Walla Walla, WA 99362, USA.

If W is any subgroup of V, then restricting $| \ |_V$ to W turns W into a valuated group with $W(\alpha) = W \cap V(\alpha)$ for all $\alpha \in \mathcal{O}_{\infty}$. A valuated group W with $pW = \{0\}$ is called a *valuated vector space*; so each $W(\alpha)$ will be a subspace of W. We say a valuated vector space is *free* if it is isometric to a valuated direct sum of cyclic groups (of order p). If V is a valuated group, then its socle $V[p] = \{x \in V : px = 0\}$ is a valuated vector space, and V is summable if V[p] is free. A group G is a valuated group using the height function (also denoted by $| \ |_G$) as its valuation; in this case $G(\alpha) = p^{\alpha}G$, and G is said to be separable if it is ω -bounded. If P is a fixed positive integer, it follows that the P^n -socle of G, written $G[p^n] = \{x \in G : p^n x = 0\}$, can be viewed as a valuated group.

In [4], an ∞ -bounded valuated group V was defined to be a valuated p^n -socle if $p^nV=\{0\}$ and for every $x\in V[p^{n-1}]$ and every ordinal $\beta<|x|_V$, there is a $y\in V$ with x=py and $\beta\leq |y|_V$. It easily follows that an ∞ -bounded valuated vector space is a valuated p-socle. The p^n -socle of a reduced group G is always a valuated p^n -socle, and if $V=G[p^n]$, then we will say G is supported by V. A valuated p^n -socle is realizable if it is supported by some reduced group. [The parallel requirements that V be ∞ -bounded and that G be reduced are convenient, but not strictly speaking necessary.]

Let C be the class of all cardinals. If V is a valuated group, then the α -th $Ulm\ invariant$ of V is

$$f_V(\alpha) = r(V(\alpha)[p]/V(\alpha+1)[p]) \in \mathcal{C}.$$

We call $f_V: \mathcal{O} \to \mathcal{C}$ the *Ulm function* of V. Another definition of the Ulm function of a general valuated group is given in [10], and it is easy to verify that these agree for valuated p^n -socles. In general, when we say $f: \mathcal{O} \to \mathcal{C}$ is a function, we mean that its support is contained in some ordinal δ , and we identify f with its restriction $f: \delta \to \mathcal{C}$.

A valuated p^n -socle is said to be n-summable if it is isometric to the valuated direct sum of a collection of countable valuated groups (each of which will also be a valuated p^n -socle). It was shown in [4] that the theory of n-summable valuated p^n -socles parallels the theory of dsc groups (i.e., direct sums of countable groups - see Chapter XII of [6] for standard results on these groups). For example, the following is ([4], Theorem 2.7), which parallels ([6], Theorem 78.4).

Theorem 0.1. Suppose V and W are n-summable valuated p^n -socles. Then there is an isometry $V \cong W$ iff their Ulm functions agree, i.e., $f_V = f_W$. The parallel between n-summable valuated p^n -socles and dsc groups can be extended. A subgroup X of a valuated group V is nice if every coset a+X has an element of maximal value. A nice composition series for V is an ascending chain of nice subgroups $\{X_i: i \leq \delta\}$ such that

- (C1) $X_0 = \{0\}, X_{\delta} = V$;
- (C2) for all $i < \delta, X_{i+1}/X_i \cong \mathbb{Z}_p$;
- (C3) for all limit ordinals $\lambda \leq \delta$, $X_{\lambda} = \bigcup_{i \leq \lambda} X_i$.

A *nice system* for V is a collection $\mathcal N$ of nice subgroups of V such that

- (S1) $\{0\} \in \mathcal{N}$;
- (S2) \mathcal{N} is closed under group sums;
- (S3) If $S \subseteq V$ is countable, then $S \subseteq N$ for some countable $N \in \mathcal{N}$.

If V is a valuated p^n -socle, let λ_V be the unique ordinal such that $|V|_V = \{|x|_V : x \in V\} \subseteq \mathcal{O}_{\infty}$ is order-isomorphic to $\lambda_V \cup \{\infty\}$. The following is ([4], Theorem 2.1), which parallels ([6], Theorem 81.9).

THEOREM 0.2. Suppose V is a valuated p^n -socle and $\lambda_V \leq \omega_1$. Then the following are equivalent:

- (a) V is n-summable;
- (b) V has a nice system;
- (c) V has a nice composition series.

If $\lambda_V \leq \omega_1$ and $\phi: |V|_V \to \lambda_V \cup \{\infty\}$ is an order-preserving bijection and $|x|_V' = \phi(|x|_V)$ for every $x \in V$, then V is also a valuated p^n -socle using $|\cdot|_V'$ and virtually anything that is true using one valuation (e.g., that V is n-summable) is also true using the other. It therefore makes sense to restrict our attention to those n-summable valuated p^n -socles that are ω_1 -bounded. This leads to two of the main questions that are addressed in this paper:

- (1) If $f: \omega_1 \to \mathcal{C}$ is a function, when does $f = f_V$ for some *n*-summable valuated p^n -socle V?
- (2) If V is an ω_1 -bounded n-summable valuated p^n -socle, when is V realizable?

Complete answers are given to both questions. For obvious reasons, a function satisfying (1) will be called n-summable. Section 1 is a discussion of n-summable functions, which are characterized in Theorem 1.10. This combinatorial condition, which we describe later, can be viewed as a generalization of the classical notion of an admissible function (see [6], Theorem 83.6).

Section 2 is a consideration of question (2). In Theorem 2.11 it is shown that V is realizable iff for every countable limit ordinal λ and every $\alpha < \lambda$ we have

$$\sum_{\lambda+n-1\leq\beta<\lambda+\omega} f_V(\beta) \leq \left(\sum_{\alpha<\beta<\lambda} f_V(\beta)\right)^{\aleph_0}.$$

Naturally, a group G is n-summable if $G[p^n]$ is n-summable as a valuated p^n -socle. These groups are considered in [5], [13], [14] and [15]. An n-summable group will always be summable (since a countable valuated vector space is free), and so $p^{\omega_1}G = \{0\}$ (see, for example, [6], Theorem 84.3). Therefore, any n-summable valuated p^n -socle that is realizable must be ω_1 -bounded; this is another reason for restricting to the ω_1 -bounded case. It is known that a given valuated vector space is often supported by different groups that are not isomorphic. This suggests a third question.

(3) If V is an n-summable valuated p^n -socle, when is V uniquely realizable, in the sense that any two groups supported by V are isomorphic?

Since n-summable valuated p^n -socles are classified by their Ulm functions, the last question can be restated as follows:

(3') Describe the *n*-summable groups G that are uniquely determined by their Ulm functions; that is, those that have the property that if G' is another *n*-summable group with $f_G = f_{G'}$, then G is isomorphic to G'.

Assuming a natural statement regarding cardinal arithmetic that is a consequence of the generalized continuum hypothesis, this question is answered in Theorem 3.4. With this cardinality assumption, it is shown that V is uniquely realizable iff $V(\omega + n - 1)$ is countable; and in this case, every group G supported by V will be a dsc group. In particular, when n = 1, Corollary 3.5 states that these groups agree with those described in ([2], Theorem 2.6).

Theorem 2.11 (i.e., the solution to the above question (2)) is a generalization of the classical "Existence Theorem for Principal p-Groups" from [9]; in fact, for n=1, it reduces to precisely this result. However, there are several important differences. First, it is fairly clear that if n=1, then any function $f: \omega_1 \to \mathcal{C}$ will satisfy (1); i.e., any such function is the Ulm function of some free valuated vector space. On the other hand, if n>1, then f will be the Ulm function of an n-summable valuated p^n -socle iff it satisfies Theorem 1.10. Second, the proofs of our main results are

considerably less complicated; i.e., a few pages in length, as opposed to the over twenty pages needed to prove the Existence Theorem in [9]. And third, we can apply our techniques to answer question (3) whenever our condition on cardinal arithmetic holds; the latter question was not even considered in [9].

1. Realizing Ulm Functions

In this section we give an explicit description of those functions from ω_1 to the cardinals that are *n*-summable, in that they can appear as the Ulm function of an *n*-summable valuated p^n -socle. By considering (valuated) direct sums, it follows that the sum of a collection of *n*-summable functions is *n*-summable.

If α is an ordinal, then $\alpha = q_{\omega}(\alpha) + r_{\omega}(\alpha)$, where $q_{\omega}(\alpha)$ is 0 or a limit and $r_{\omega}(\alpha) < \omega$. We say α is an n-limit if $q_{\omega}(\alpha) > 0$ and $r_{\omega}(\alpha) < n-1$, and otherwise, we say α is n-isolated. An n-limit α is an n, ω -limit if $q_{\omega}(\alpha)$ has countable cofinality; clearly, if $\alpha < \omega_1$, then it is an n, ω -limit iff it is an n-limit. Note that all ordinals are 1-isolated and α is 2-isolated iff it is isolated in the usual sense of the term.

For a function $f: \mathcal{O} \to \mathcal{C}$, we denote the support of f by $\operatorname{supp}(f)$, and we further let $\operatorname{supp}_I(f) = \{\beta \in \operatorname{supp}(f) : \beta \text{ is } n\text{-isolated}\}$ and $\operatorname{supp}_L(f) = \{\beta \in \operatorname{supp}(f) : \beta \text{ is an } n\text{-limit}\}$. We begin with an elementary observation.

Lemma 1.1. If V is a valuated p^n -socle, $f = f_V : \mathcal{O} \to \mathcal{C}$ and $\beta \in \operatorname{supp}_L(f)$, then $q_\omega(\beta)$ is a limit point of $\operatorname{supp}_I(f)$.

PROOF. If δ is n-isolated and $\delta < \lambda \stackrel{\text{def}}{=} q_{\omega}(\beta)$, then let α be the smallest ordinal such that $\delta < \alpha \in \operatorname{supp}(f)$; so $\alpha \leq \beta$. If α is an n-limit, then $\alpha = \mu + k$ where $\mu = q_{\omega}(\alpha) > \delta$ and $k = r_{\omega}(\alpha) < n - 1$. Let $x \in V(\alpha)[p] - V(\alpha + 1)[p]$ and find y such that $|y|_V = \mu$ and $p^k y = x$. Since k+1 < n and $p^{k+1}y = px = 0$, there is a $z \in V(\delta + 1)$ such that pz = y. If $\alpha' = |z|_V > \delta$, then $\alpha' < \mu \leq \alpha$, and there is a $z' \in V(\alpha' + 1)$ such that pz' = y. Therefore, $z - z' \in V(\alpha')[p] - V(\alpha' + 1)[p]$, and so $f(\alpha') \neq 0$. However, this contradicts the choice of α . So $\alpha \in \operatorname{supp}_I(f)$ and $\delta < \alpha < \lambda$, proving the result. \square

We will say $f: \mathcal{O} \to \mathcal{C}$ is *n-isolated* if every $\alpha \in \text{supp}(f)$ is *n-*isolated; in particular, f will always be 1-isolated. The next elementary observation is a description of the Ulm functions of the class of strongly *n*-summable valuated p^n -socles (see [4], Corollary 1.7).

LEMMA 1.2. If $f: \mathcal{O} \to \mathcal{C}$ is n-isolated, then it is n-summable.

PROOF. For an n-isolated ordinal β , let $k = \min\{n, \beta + 1\}$ and $V_{\beta} = \langle x_{\beta} \rangle$ be a cyclic valuated p^n -socle of order p^k with $|x_{\beta}|_{V_{\beta}} = 0$, when $\beta < n-1$, and otherwise, $|x_{\beta}|_{V_{\beta}} = \beta - (n-1)$. We then let V be the valuated direct sum of $f(\beta)$ copies of V_{β} for all β . It can easily be checked that $f = f_V$, so that f is n-summable, as required.

In particular, any function $f:\mathcal{O}\to\mathcal{C}$ is 1-summable. We will say $f:\mathcal{O}\to\mathcal{C}$ is an n,ω -limit if it is the characteristic function of a set of the form $\{\gamma_i\}_{i<\omega}\cup\{\beta\}$, where β is an n,ω -limit ordinal, and γ_i for $i<\omega$ is a strictly ascending sequence of n-isolated ordinals with limit $q_\omega(\beta)$. Unsurprisingly, a countable valuated p^n -socle V is an n,ω -limit function. The following result gives a concrete picture of such objects.

LEMMA 1.3. If $f: \mathcal{O} \to \mathcal{C}$ is an n, ω -limit function, then f is n-summable.

PROOF. Suppose, as above, f is the characteristic function of $\{\gamma_i\}_{i<\omega}\cup\{\beta\}$; set $\lambda=q_\omega(\beta), k=r_\omega(\beta)$. There is clearly no loss of generality in assuming $\gamma_0\geq n-1$. Let W be generated by y and $\{x_i\}_{i<\omega}$ subject to the relations $p^{k+1}y=0$, and for $i<\omega$, $p^nx_i=y$. It is straightforward to check that a valuation on W can be defined by the formulas: $|p^\ell y|_W=\lambda+\ell$ for $0\leq \ell\leq k,\ |p^\ell x_i|_W=\gamma_i-(n-1)+\ell$ for $0\leq \ell\leq n-1$, and if $z=jy+\ell_1x_{i_1}+\cdots+\ell_mx_{i_m}$, where $p^n\not\mid\ell_1,\ldots,\ell_i$, then

$$|z|_W = \min\{|jy|_W, |\ell_1 x_{i_1}|_W, \dots, |\ell_m x_{i_m}|_W\}.$$

It can also be checked that if $z \in pW = \langle px_i : i < \omega \rangle$ and $\alpha < |z|_W$, then there is a $z' \in W$ such that pz' = z and $\alpha \leq |z'|_W$.

From this, it follows that $V = W[p^n]$ is a countable valuated p^n -socle. It also follows that there is a valuated decomposition

$$V[p] = \langle p^k y \rangle \oplus \Biggl(igoplus_{i < \omega} \langle p^{n-1} (x_i - x_{i+1})
angle \Biggr).$$

This implies that $f_V = f$, as required.

If $f: \mathcal{O} \to \mathcal{C}$ is a function, and $\alpha \leq \beta \leq \infty$, then let $\int\limits_{\alpha}^{\beta} f = \sum\limits_{\alpha \leq \gamma < \beta} f(\gamma)$. We say f is countable if $\int\limits_{0}^{\infty} f \leq \aleph_{0}$.

THEOREM 1.4. Suppose $f: \mathcal{O} \to \mathcal{C}$ is a countable function. Then the following are equivalent:

- (a) f is n-summable;
- (b) f is the sum of a collection of n, ω -limit functions and an n-isolated function;
 - (c) If $\beta \in \text{supp}_L(f)$, then $q_{\omega}(\beta)$ is a limit point of $\text{supp}_I(f)$.

PROOF. First, assuming (a), then (c) follows from Lemma 1.1.

Next, assuming (b), then (a) follows from Lemmas 1.2 and 1.3.

To complete the proof, suppose (c) holds for f; we will then verify (b). Let

$$I = \{(\beta, \gamma) : \beta \in \text{supp}_L(f) \text{ and } \gamma < f(\beta)\},\$$

 $\kappa = |I| \leq \aleph_0$ and $\{(\beta_j, \gamma_j)\}_{j < \kappa}$ be a listing of I. For each $j < \kappa$ there is a strictly increasing sequence, $\{\alpha_{j,\ell}\}_{\ell < \omega} = C_j \subseteq \operatorname{supp}_I(f)$, with limit $q_\omega(\beta_j)$; we can also obviously pick these so that if $q_\omega(\beta_j) = q_\omega(\beta_{j'})$, then $C_j = C_{j'}$.

Let $\{\mathcal{N}_j\}_{j<\kappa}$ be disjoint infinite subsets of ω . For each $j<\kappa$, we inductively define $T_i\subseteq C_j$ by the equation

$$T_j = \{\alpha_{j,\ell} : \ell \in \mathcal{N}_j\} - (T_0 \cup \cdots \cup T_{j-1}).$$

Clearly, these sets are disjoint.

Claim: T_j is infinite. The first term is infinite, so it will suffice to show that if j' < j, then $\{\alpha_{j,\ell} : \ell \in \mathcal{N}_j\} \cap T_{j'}$ is finite. If $q_{\omega}(\beta_j) = q_{\omega}(\beta_{j'})$, then $C_j = C_{j'}$ and clearly

$$\{\alpha_{i,\ell}: \ell \in \mathcal{N}_i\} \cap T_{i'} \subseteq \{\alpha_{i,\ell}: \ell \in \mathcal{N}_i\} \cap \{\alpha_{i',\ell}: \ell \in \mathcal{N}_{i'}\} = \emptyset.$$

On the other hand, if $q_{\omega}(\beta_j) \neq q_{\omega}(\beta_{j'})$, then $\{\alpha_{j,\ell} : \ell \in \mathcal{N}_j\} \cap T_{j'} \subseteq C_j \cap C_{j'}$ is finite, since C_j and $C_{j'}$ have different suprema.

For every $(\beta_j, \gamma_j) \in I$, let f_j be the characteristic function of $\{\beta_j\} \cup T_j$; so f_j is an n, ω -limit function. In addition, if β is an n-limit ordinal, then

$$\Big(\sum_{j<\kappa}f_j\Big)(\beta)=|\{(\beta_j,\gamma_j)\in I:\beta=\beta_j\}|=f(\beta).$$

And if β is n-isolated, then $\Big(\sum\limits_{j<\kappa}f_j\Big)(\beta)$ equals 1 if $\beta\in\bigcup\limits_{j<\kappa}T_j\subseteq\operatorname{supp}_I(f)$, and otherwise, it equals 0. It follows that there is an n-isolated function g such that $f=\Big(\sum\limits_{j<\kappa}f_j\Big)+g$, thereby establishing the result. \square

Since a function $f: \mathcal{O} \to \mathcal{C}$ is n-summable iff it is the sum of a collection of countable n-summable functions, Theorem 1.4 immediately implies the next result.

COROLLARY 1.5. A function $f: \mathcal{O} \to \mathcal{C}$ is n-summable iff it is the sum of a collection of n, ω -limit functions and an n-isolated function.

COROLLARY 1.6. If V is an n-summable valuated p^n -socle, then it is isometric to a valuated direct sum $\bigoplus_{i\in I} V_i$, where each V_i is either cyclic or an n, ω -limit.

PROOF. By Corollary 1.5, f_V is the sum of a collection of n, ω -limit functions and an n-isolated function, and each term is the Ulm function of a valuated p^n -socle that is an n, ω -limit or a valuated direct sum of cyclics. So the result follows from Theorem 0.1.

COROLLARY 1.7. If α is an ordinal, $\lambda = q_{\omega}(\alpha)$ and $k = r_{\omega}(\alpha)$, then α is the length of some n-summable valuated p^n -socle V iff 0 < k < n implies that λ has countable cofinality. In fact, if λ has countable cofinality or $k \ge n$, then we can choose V to be countable.

PROOF. If λ has cofinality κ , then let $\{\beta_i\}_{i<\kappa}$ be a strictly increasing set of n-isolated ordinals with limit λ . First, if k=0, let $K=\{\beta_i\}_{i<\kappa}$. Next, if 0< k< n, then $\kappa=\omega$, $\alpha-1$ is an n-limit and we let $K=\{\beta_i\}_{i<\omega}\cup\{\alpha-1\}$. Lastly, if $k\geq n$, then $\alpha-1=\lambda+k-1$ is n-isolated and we let $K=\{\alpha-1\}$. In any of these cases, let f be the characteristic function of K. It follows from Theorem 1.5 that $f=f_V$ for some n-summable valuated p^n -socle V. It is easy to check that V will have length α , and that if λ has countable cofinality or $k\geq n$, then V will be countable.

Conversely, suppose λ is a limit ordinal of uncountable cofinality and 0 < k < n. If the valuated p^n -socle V is either cyclic or an n, ω -limit, then $f_V(\alpha-1)=0$. It follows that there cannot be an n-summable valuated p^n -socle of length α .

We now restrict our attention to functions $f: \omega_1 \to \mathcal{C}$. If λ is a limit ordinal, then let

$$f'(\lambda) = \int\limits_{\lambda}^{\lambda+n-1} f \text{ and } \overline{f}(\lambda) = \inf \left\{ \int\limits_{\alpha}^{\lambda} f : \alpha < \lambda \right\}.$$

Observe that $\overline{f}(\lambda)$ is either 0 or an infinite cardinal. We say f is n-thin if there is a closed and unbounded subset $C \subseteq \omega_1$ consisting of limit ordinals λ such that $f'(\lambda) = 0$. Further, we say f is n-admissible if

- (1.A) for every limit $\lambda < \omega_1$ we have $f'(\lambda) \leq \overline{f}(\lambda)$; and
- (1.B) either f is n-thin, or $\{\alpha < \omega_1 : f(\alpha) \ge \aleph_1\}$ is unbounded in ω_1 .

Any function $f: \omega_1 \to \mathcal{C}$ is 1-isolated and hence 1-summable. In addition, if n = 1, then $f'(\lambda) = 0$, so f is 1-thin and 1-admissible.

We now point out that for n > 1, the study of n-summable functions can be reduced to the study of 2-summable functions, which will simplify our discussion. If n > 1 and α is isolated, then let $f'(\alpha) = f(\alpha + n - 2)$. If n = 2, then f' = f.

LEMMA 1.8. If $f: \omega_1 \to \mathcal{C}$ and n > 1, then

- (a) f is n-isolated iff f' is 2-isolated;
- (b) f is an n, ω -limit iff f' is a $2, \omega$ -limit;
- (c) f is n-admissible iff f' is 2-admissible;
- (d) f is n-summable iff f' is 2-summable.

PROOF. (a), (b) and (c) follow immediately from the definitions, and (d) follows from (a), (b) and Corollary 1.5.

Lemma 1.9. Suppose $f: \omega_1 \to \mathcal{C}$ is 2-admissible and $\lambda < \omega_1$ is a limit.

- (a) If $\overline{f}(\lambda)$ is uncountable, $\alpha < \lambda$ and $\gamma < \overline{f}(\lambda)$, then there is an isolated ordinal α' such that $f(\alpha')$ is uncountable, $\alpha < \alpha' < \lambda$ and $\gamma < f(\alpha')$.
 - (b) If $f(\lambda) \neq 0$, then λ is a limit point of $supp_I(f)$.

PROOF. We verify (a), the proof of (b) being even more straightforward.

Since $\overline{f}(\lambda) \leq \int_{\alpha+1}^{\lambda} f$, we have $\gamma' \stackrel{\text{def}}{=} \max\{\gamma,\omega\} < f(\alpha')$ for some α' with $\alpha < \alpha' < \lambda$. Choose α' to be the smallest ordinal satisfying these conditions. We need to show that α' is isolated, so assume that it is actually a limit.

By (1.A), $\gamma' < f(\alpha') \le \overline{f}(\alpha')$, so $\overline{f}(\alpha')$ is uncountable and $\gamma < \overline{f}(\alpha')$. Arguing as in the last paragraph with λ replaced by α' , we have $\gamma' < f(\alpha'')$ for some α'' with $\alpha < \alpha'' < \alpha'$, contradicting the minimality of α' .

We now come to the main point of this section, the characterization of n-summable functions defined on ω_1 .

Theorem 1.10. For a function $f: \omega_1 \to \mathcal{C}$, the following are equivalent:

- (a) f is n-summable;
- (b) f is the sum of a collection of n, ω -limit functions and an n-isolated function;
 - (c) f is n-admissible.

PROOF. If n = 1 then any such function satisfies any of these conditions. So we may assume n > 1. Replacing f by f', by Lemma 1.8, we may assume n = 2.

By Corollary 1.5, (a) and (b) are equivalent, so we need to show they are equivalent to (c). Suppose first that (b) holds, and let $f = \sum_{i \in I} f_i + g$, where each f_i is a 2, ω -limit and g is 2-isolated. It is easy to check that (1.A) holds for g and each f_i , which readily implies that it holds for f, as well.

Regarding (1.B), observe first that if $\{\alpha < \omega_1 : f(\alpha) \ge \aleph_1\}$ is unbounded in ω_1 , then we are clearly done; so we may assume it is bounded, say by $\mu < \omega_1$. If (1.B) fails, then the set $S = \sup_L(f) \cap (\mu, \omega_1)$ is stationary in ω_1 . For every $\lambda \in S$ there is an $i_\lambda \in I$ such that $f_{i_\lambda}(\lambda) \ne 0$. Since each f_i is a 2, ω -limit function, it follows that the assignment $\lambda \mapsto i_\lambda$ is injective. For every $\lambda \in S$ we can then find an $\alpha_\lambda \in (\mu, \lambda)$ such that $f_{i_\lambda}(\alpha_\lambda) \ne 0$. Note that $\lambda \mapsto \alpha_\lambda$ will be a regressive function, so by Fodor's Lemma (see, for example, [12], Theorem 8.7), there is an $\alpha \in (\mu, \omega_1)$ such that $\alpha_\lambda = \alpha$ for all λ in an uncountable subset R of S. This implies that

$$f(\mathbf{a}) \geq \sum_{i \in I} f_i(\mathbf{a}) \geq \sum_{\mathbf{a} \in R} f_{i_{\mathbf{a}}}(\mathbf{a}) = |R| = \omega_1.$$

This contradicts the fact that $f(\alpha)$ is countable for all $\alpha > \mu$. Therefore, we have shown that (b) implies (c).

Conversely, supposing (c) holds, we verify that (b) follows. Let U be the closure of $\{\alpha < \omega_1 : f(\alpha) \ge \aleph_1\}$ in the order topology. Define $f_u, f_c : \omega_1 \to \mathcal{C}$ by the conditions $\operatorname{supp}(f_u) \subseteq U$, $\operatorname{supp}(f_c) \subseteq \omega_1 - U$ and $f = f_u + f_c$. Clearly, $f_c(\alpha) \le \aleph_0$ for all $\alpha < \omega_1$, and if α is isolated, then $f_u(\alpha)$ will be 0 or uncountable. We will be done if we can verify the following:

CLAIM 1. (b) holds for f_u .

CLAIM 2. (b) holds for f_c .

Starting with Claim 1, let

$$I = \{(\beta, \gamma) : \beta \in \operatorname{supp}_L(f_u) \text{ and } \gamma < f_u(\beta) = f(\beta)\}.$$

If $i = (\beta, \gamma) \in I$, then clearly $\overline{f}(\beta)$ is uncountable. Therefore, by Lemma 1.9(a), there is a strictly increasing sequence $K_i = \{\alpha_{i,j}\}_{j < \omega} \subseteq \operatorname{supp}_I(f_u)$ with limit β such that $\gamma < f(\alpha) = f_u(\alpha)$ for all $\alpha \in K_i$. Let $f_i : \omega_1 \to \kappa$ be the characteristic function of $\{\beta\} \cup K_i$; so f_i is an n-limit.

We need to establish two facts:

- (1) for all $\beta \in \operatorname{supp}_L(f_u)$, we have $\sum_{i \in I} f_i(\beta) = f_u(\beta)$; and
- (2) for all $\alpha \in \operatorname{supp}_I(f_u)$, we have $\sum_{i \in I} f_i(\alpha) \leq f_u(\alpha)$.

For (1), if $\beta \in \operatorname{supp}_L(f_u)$, then $f_i(\beta) = 1$ iff $i = (\beta, \gamma)$, where $\gamma < f_u(\beta)$. This happens for precisely $f_u(\beta)$ elements $i \in I$, so that (1) follows. Regarding (2), if $\alpha \in \operatorname{supp}_I(f_u)$, then $f_u(\alpha) \geq \aleph_1$. Further, if $i = (\beta, \gamma) \in I$ and $f_i(\alpha) = 1$, then $\beta > \alpha$ and $\gamma < f_u(\alpha)$. Since this can happen for at most $\aleph_1 \cdot f_u(\alpha) = f_u(\alpha)$ elements $i \in I$, we can conclude that (2) follows. So we have verified Claim 1.

Turning to Claim 2, we first define a closed and unbounded subset $C \subseteq \omega_1$ as follows: If U is unbounded, then we let C = U. On the other hand, if U is bounded by $\mu < \omega_1$, then by (1.B) we can find such a subset $D \subseteq (\mu, \omega_1)$ consisting of limit ordinals λ such that $f(\lambda) = 0$. In this case, we let $C = U \cup D$. Since $\operatorname{supp}(f_c) \subseteq \omega_1 - U$ and $f(\lambda) = 0$ for all $\lambda \in D$, it follows that $\operatorname{supp}(f_c) \subseteq \omega_1 - C$ and that f_c agrees with f on $\omega_1 - C$.

Since C is closed, $\omega_1 - C$ is the disjoint union of sets of the form $(\delta_i, \varepsilon_i)$ for $i \in I$, where $\varepsilon_i < \omega_1$. Let $f_c = \sum_{i \in I} f_i$ where $\operatorname{supp}(f_i) \subseteq (\delta_i, \varepsilon_i)$. Since f_i is countable, Claim 2, and hence the entire result, will follow once we show f_i satisfies Theorem 1.4(c) (where n = 2).

Let $\lambda < \omega_1$ be a limit ordinal such that $f_i(\lambda) \neq 0$; we need to show that λ is a limit point of $\operatorname{supp}_I(f_i)$. Note that $\delta_i < \lambda < \varepsilon_i$ and by Lemma 1.9(b), λ is a limit point of $\operatorname{supp}_I(f)$. Since f, f_c and f_i agree on $(\delta_i, \varepsilon_i)$, it follows that λ is a limit point of $\operatorname{supp}_I(f_i)$, as required.

2. Realizing Valuated p^n -Socles

In this section we discuss which ω_1 -bounded valuated p^n -socles V appear as the p^n -socle of some group. In fact, we will start by being a bit more general. We say a valuated group V is group-like if for all ordinals α , we have $(pV)(\alpha+1)=p(V(\alpha))$; in other words, if $x\in pV$ and $\alpha<|x|_V$, then there is a $y\in V$ such that $\alpha\leq |y|_V$ and py=x. Note that if $p^nV=\{0\}$, then $pV\subseteq V[p^{n-1}]$, which readily implies that any valuated p^n -socle is group-like. We say a valuated group V is sup-ported by a group G if V is an essential subgroup of G so that for all $x\in V$, $|x|_V=|x|_G$. We will say V is realizable if it is supported by some group G. For valuated p^n -socles, this agrees with our previous terminology.

Recall from [16] that if V is a valuated group, there is a group H(V) containing V as a nice subgroup such that H(V)/V is totally projective. In this construction we may clearly assume that V and H(V) have the same length.

PROPOSITION 2.1. Suppose V is a valuated group. Then V is realizable iff it is group-like and there is a balanced subgroup $Z \subseteq H(V)$ such that there is a valuated decomposition $H(V)[p] = Z[p] \oplus V[p]$.

PROOF. Suppose first that V is supported by the group G. To show that V is group-like, let $x \in (pV)(\alpha+1)$. Then x=pz for some $z \in V$. In addition, there is a $y \in p^{\alpha}G$ such that py=x. Note that p(y-z)=0 so that $y-z \in G[p] \subseteq V$. Therefore, $y=z+(y-z) \in V \cap p^{\alpha}G=V(\alpha)$ and py=x, as required.

Next, since V is a nice subgroup of H(V) and H(V)/V is totally projective, by ([6], Corollary 81.4) the identity map $V \to V$ extends to a homomorphism $\pi: H(V) \to G$. It is easy to see that the range of π is a pure subgroup of G containing V. And since V is essential in G, we can conclude that π is surjective. Let Z be its kernel.

Since for all α we have $(p^{\alpha}G)[p] = V(\alpha)[p] \subseteq \pi((p^{\alpha}H(V))[p]) \subseteq (p^{\alpha}G)[p]$, it follows that Z is balanced in H(V). The identity map $V[p](=G[p]) \to V[p](\subseteq H(V))$ being an isometry leads to the valuated decomposition $H(V)[p] = Z[p] \oplus V[p]$, giving one implication.

Conversely, suppose V is group-like and we are given $Z \subseteq H(V)$ as indicated. Let G = H(V)/Z and $\pi : H(V) \to G$ be the natural epimorphism.

It is clear that π maps V onto an essential subgroup of G. We will be done if we can show that for all $x \in V$, we have $|x|_V = |\pi(x)|_G$. We certainly have $|x|_V = |x|_{H(V)} \leq |\pi(x)|_G$. We establish the reverse inequality by induction on the order of x.

Suppose first that $x \in V[p]$ and $\alpha = |\pi(x)|_G$. Since Z is a balanced subgroup of H(V), there is a $y \in (p^{\alpha}H(V))[p]$ such that $\pi(y) = x$. We must have y = x + z, where $z \in Z[p]$, so that $\alpha \leq |y|_H \leq |x|_V$, as required.

Suppose now that this holds for all elements of $V[p^{k-1}]$, and $x \in V[p^k]$, where $\alpha = |\pi(x)|_G$. Since $px \in V[p^{k-1}]$, by induction $\alpha + 1 \leq |\pi(px)|_G = |px|_V$. Since V is group-like, there is a $y \in V(\alpha)$ such that py = px. Note that $x - y \in V[p]$ and $|\pi(x - y)|_G \geq \alpha$, so that $|x - y|_V \geq \alpha$. However, this implies that $|x|_V = |(x - y) + y|_V \geq \alpha$, as required. \square

Proposition 2.2. If V is an ω -bounded valuated group, then V is realizable iff it is group-like.

PROOF. By Proposition 2.1, if V is realizable, then it is group-like. Therefore, assume V is ω -bounded and group-like. Since V is ω -bounded, H(V) will be separable. And since V is nice in H(V), the quotient H(V)/V will be a separable totally projective group, i.e., it is Σ -cyclic. This implies

that there is a valuated decomposition $H(V)[p] = F \oplus V[p]$, where F is a free, ω -bounded valuated vector space (see, for example, [11], Lemma 1). It follows that there is a pure (and hence isotype) Σ -cyclic subgroup $Z \subseteq H(V)$ such that Z[p] = F. Since F is closed in H(V)[p] in the induced p-adic topology, it follows that Z is closed in H(V). This means that $G \stackrel{\text{def}}{=} H(V)/Z$ is separable. Therefore, Z is nice, and hence balanced, in H(V). So by Proposition 2.1, V is realizable. \square

Since any valuated p^n -socle is group-like, the next statement follows directly from Proposition 2.2.

COROLLARY 2.3. If V is an ω -bounded valuated p^n -socle, then it is realizable.

The main purpose of this section is to describe precisely when a given n-summable valuated p^n -socle is realizable. As discussed in the introduction, it is also natural to ask when a group G supported by an n-summable valuated p^n -socle V is determined by V, i.e., if G' is any other group supported by V, then $G \cong G'$. If such a G is determined by V, we will say V is uniquely realizable.

For example, if V is an ω -bounded n-summable valuated p^n -socle, then by Corollary 2.3, V is realizable. In fact, the summability of V[p] implies that any group supported by V will be Σ -cyclic. In other words, ω -bounded n-summable valuated p^n -socles are uniquely realizable. In the next section, we consider when this remains the case for groups of greater length. For now, we present a simple example.

EXAMPLE 2.4. Suppose V is a valuated p^n -socle which is n-summable and $\omega 2 = \omega + \omega$ -bounded. If $f = f_V$ and $\overline{f}(\omega) \geq \int\limits_{\omega + n - 1}^{\omega 2} f \geq \aleph_1$, then V is realizable, but not uniquely realizable. In fact, there are groups A and A' supported by V such that $A/p^\omega A$ is Σ -cyclic and $A'/p^\omega A'$ is not.

PROOF. Since f is n-admissible, $\overline{f}(\omega) \ge f'(\lambda)$, which readily implies that f is an admissible function; so there is a dsc group A with $f = f_A$. It follows that $A[p^n]$ is n-summable, so by Theorem 0.1, there is an isometry $A[p^n] \cong V$; in other words, V is realizable.

On the other hand, let $M=\{m<\omega: f(m)\geq\aleph_0\}$, and let $k\geq n-1$ be an integer such that $f(\omega+k)\geq\aleph_1$. Let $B=\bigoplus_{m\in M}\mathbb{Z}_{p^{m+k+2}}$. Next, let X be a pure subgroup of the torsion completion \overline{B} containing B such that X/B has

rank \aleph_1 . It can be verified that $Y = X/B[p^{k+1}]$ is *n*-summable and

$$f_Y(lpha) = \left\{ egin{array}{ll} 1, & ext{if } lpha \in M; \ lpha_1, & ext{if } lpha = \omega + k; \ 0, & ext{otherwise.} \end{array}
ight.$$

If we let $A' = A \oplus Y$, then A' will also be n-summable. We have constructed A' so that $f_{A'} = f_A = f$. This implies that $A'[p^n]$ is also isometric to V.

Clearly, since A is a dsc group, $A/p^\omega A$ is Σ -cyclic. On the other hand, $A'/p^\omega A'$ has a summand isomorphic to

$$Y/p^{\omega}Y = (X/B[p^{k+1}])/(X[p^{k+1}]/B[p^{k+1}]) \cong X/X[p^{k+1}] \cong p^{k+1}X,$$

which is not Σ -cyclic. It follows that $A'/p^{\omega}A'$ is also not Σ -cyclic, so that V is not uniquely realizable.

If λ is a limit ordinal and V is a valuated group, then the λ -topology on V uses $V(\beta)$ for $\beta < \lambda$ as a neighborhood base of 0. Naturally, a subgroup W of V is said to be λ -dense if it is dense in this topology, i.e., for all $\beta < \lambda$ we have $V = V(\beta) + W$. We let $L_{\lambda}V$ be the completion of V in the λ -topology, i.e., the inverse limit of $V/V(\beta)$ over $\beta < \lambda$. As an exception to our overall restriction to primary groups, $L_{\lambda}V$ may have elements of infinite order. However, if V is a valuated p^n -socle, then $p^nL_{\lambda}V = \{0\}$. There is a natural map $V \to L_{\lambda}V$ whose kernel is $V(\lambda)$, leading to an inclusion $V/V(\lambda) \subseteq L_{\lambda}V$. We then set $P_{\lambda}V = (L_{\lambda}V)[p]/(V/V(\lambda))[p]$ and $Q_{\lambda}V = L_{\lambda}V/(V/V(\lambda))$. If G is a group and λ has countable cofinality, $G/p^{\lambda}G$ will be isotype and λ -dense in $L_{\lambda}G$, and $Q_{\lambda}G$ will be divisible.

We now review some additional concepts from [4]. If α is an ordinal and V is a valuated p^n -socle, then a subgroup W of V is α -high if it is maximal with respect to $W \cap V(\alpha) = \{0\}$. An α -high subgroup W of V is n-isotype in V (i.e., it is a valuated p^n -socle under the induced valuation), and if α is a limit, W is α -dense in V. If α is n-isolated, then there is a valuated decomposition $V = W \oplus U$, which we refer to as a standard α -decomposition of V. If, in addition, $\alpha \geq n-1$, then $U \subseteq V(\alpha-n+1)$. We now connect these definitions.

LEMMA 2.5. Suppose V is a valuated p^n -socle, $\lambda < \omega_1$ is a limit ordinal and W is λ -high in V. Suppose further that G is a group supported by W, $\pi: L_{\lambda}G \to Q_{\lambda}G$ is the canonical epimorphism and $\mu: V \to L_{\lambda}G$ is the natural extension of the homomorphism $W \subseteq G \to L_{\lambda}G$ (so that $V(\lambda)$ is the kernel of μ). Then there is a natural isomorphism

$$P_{\lambda}V \cong (Q_{\lambda}G)[p]/\pi(\mu(V))[p].$$

PROOF. Note that $(L_{\lambda}G)[p^n]$ will be complete in the (induced) λ -to-pology and $W \subseteq V$ will be λ -dense in it; so we can identify $(L_{\lambda}G)[p^n]$ with $L_{\lambda}W \cong L_{\lambda}V$. Therefore,

$$P_{\lambda}(V) = (L_{\lambda}V)[p]/(V/V(\lambda))[p]$$

$$= (L_{\lambda}G)[p]/\mu(V)[p]$$

$$\cong [(L_{\lambda}G)[p]/G[p]]/[\mu(V)[p]/G[p]]$$

$$\cong (Q_{\lambda}G)[p]/\pi(\mu(V))[p],$$

completing the proof.

We now describe a natural way to construct a group supported by a valuated p^n -socle. The following is the main inductive step.

LEMMA 2.6. Suppose V is a valuated p^n -socle, $\lambda < \lambda' < \omega_1$ are limit ordinals and $W_{\lambda} \subseteq W_{\lambda'}$ are, respectively, λ and λ' -high in V. Let G_{λ} be a group supported by W_{λ} and A be a group supported by $W_{\lambda'}(\lambda)$ (where, technically, we shift the valuation in the latter group by λ). Then there is a group $G_{\lambda'}$ containing G_{λ} supported by $W_{\lambda'}$ such that $p^{\lambda}G_{\lambda'} = A$ iff

$$\int_{\lambda+m-1}^{\lambda+\omega} f \le r(P_{\lambda}V).$$

PROOF. Let $A=J\oplus K$, where J is a maximal p^{n-1} -bounded summand of A. There is a standard $\lambda+n-1$ -decomposition $W_{\lambda'}=W_{\lambda+n-1}\oplus Y$, where $W_{\lambda+n-1}$ is $\lambda+n-1$ -high in V containing $W_{\lambda},W_{\lambda+n-1}(\lambda)=J$ and $Y=K[p^n]$. Let D be a divisible hull of $W_{\lambda+n-1}/W_{\lambda}$ and E be a divisible hull of K. There is an embedding $J=W_{\lambda+n-1}(\lambda)\cong J'\stackrel{\mathrm{def}}{=}[W_{\lambda+n-1}(\lambda)+W_{\lambda}]/W_{\lambda}\subseteq D$.

By a standard construction (cf., [8], Theorem 106), the existence of $G_{\lambda'}$ is equivalent to the existence of a commutative pull-back diagram

Therefore, given G_{λ} , the existence of $G_{\lambda'}$ is equivalent to the existence of a homomorphism $\phi: D \oplus E \to Q_{\lambda}G_{\lambda}$ with kernel $J' \oplus K \cong A$.

The natural homomorphism $\mu: V \to L_{\lambda}G_{\lambda}$, whose kernel is $V(\lambda)$, induces a homomorphism $\gamma_0: W_{\lambda+n-1}/W_{\lambda} \to Q_{\lambda}G_{\lambda}$, whose kernel is J'. The

divisibility of $Q_{\lambda}G_{\lambda}$ implies that γ_0 extends to a homomorphism $\gamma_1:D\to Q_{\lambda}G_{\lambda}$. Since $W_{\lambda+n-1}/W_{\lambda}$ is (algebraically) the direct sum of a collection of copies of \mathbb{Z}_{p^n} and $p^{n-1}J'=\{0\}$, it follows that $(W_{\lambda+n-1}/W_{\lambda})/J'$ is essential in D/J'. This implies that the kernel of γ_1 is also J'. In addition, by Lemma 2.5, there is an isomorphism

$$P_{\lambda}(V) \cong (Q_{\lambda}G)[p]/\pi(\mu(V))[p] = (Q_{\lambda}G)[p]/\gamma_1(D)[p].$$

A standard computation shows that the rank of E/K agrees with the rank of a basic subgroup of K, which is $\int\limits_{\lambda+n-1}^{\lambda+\omega}f$. Therefore, there is a homomorphism $\sigma:E\to Q_\lambda G_\lambda$ such that $\phi=\gamma_1+\sigma:D\oplus E\to Q_\lambda G_\lambda$ has kernel $J'\oplus K\cong A$ iff (*) holds. \square

We will say the valuated group V has an ω_1 -high tower if it is the smoothly ascending union of a chain of subgroups indexed by the countable limit ordinals, $\{W_{\lambda}\}_{\lambda<\omega_1}$, such that for each λ , W_{λ} is λ -high in V. For example, if V is α -bounded where $\alpha<\omega\cdot\omega$, then V clearly has an ω_1 -high tower. If V is a valuated p^n -socle or a group, then V has an ω_1 -high tower iff the socle V[p] has an ω_1 -high tower. In particular, if V is a group or valuated p^n -socle that is summable, then it has an ω_1 -high tower.

THEOREM 2.7. Suppose the valuated p^n -socle V has ω_1 -high tower and $f = f_V$. Then V is realizable iff for every countable limit ordinal λ , we have

$$\int_{\lambda+n-1}^{\lambda+\infty} f \le r(P_{\lambda}(V)).$$

PROOF. Let W_{λ} be as above. For each limit ordinal $\lambda < \omega_1$, we inductively construct an ascending chain of groups G_{λ} supported by W_{λ} . If λ is a limit of limit ordinals, we can construct G_{λ} by taking a union. Suppose then that we have constructed W_{λ} and we want to construct $W_{\lambda+\omega}$. By Corollary 2.3, we can find a group A supported by $W_{\lambda+\omega}(\lambda)$. So by Lemma 2.6, we can extend G_{λ} to get the required $G_{\lambda+\omega}$ iff our cardinality condition is satisfied.

We will need a pair of observations about the above construction, so assume the notation in the proof of Lemma 2.6. If $\int\limits_{\lambda+n-1}^{\lambda+\omega}f=r(P_{\lambda}(V))$ is infinite, then we could construct two different extensions $\phi,\phi':D\oplus E\to Q_{\lambda}G_{\lambda}$ of γ_1 , both with kernel $J'\oplus K\cong A$, such that ϕ maps onto the torsion

subgroup of $Q_{\lambda}G_{\lambda}$, and ϕ' does not. If $G_{\lambda'}$ and $G'_{\lambda'}$ are the groups constructed with these two homomorphisms, we could conclude that $Q_{\lambda}G_{\lambda'}$ is torsion-free and $Q_{\lambda}G'_{\lambda'}$ is not (in other words, $G_{\lambda}/p^{\lambda}G_{\lambda}$ is λ -torsion complete and $G_{i'}/p^{\lambda}G_{i'}$ is not). This establishes the first part of the next result.

Corollary 2.8. Suppose the n-summable valuated p^n -socle V is realizable and $f = f_V$. If either

all zable and
$$f = f_V$$
. If either

(1) for some limit ordinal $\lambda < \omega_1$, $\int\limits_{\lambda+n-1}^{\lambda+\omega} f = r(P_{\lambda}(V))$ is infinite, or

(2) $\overline{f}(\omega) \ge \int\limits_{\omega+n-1}^{\omega 2} f \ge \aleph_1$,

(2)
$$\overline{f}(\omega) \ge \int_{\omega+n-1}^{\omega z} f \ge \aleph_1$$

then there are non-isomorphic groups G and G' supported by V.

PROOF. Regarding (2), let $W_{\omega 2}$ be an $\omega 2$ -high subgroup of V. As in Example 2.4, we can construct non-isomorphic groups A and A' of length $\omega 2$ supported by $W_{\omega 2}$; in particular, $A/p^{\omega}A$ and $A'/p^{\omega}A'$ will not be isomorphic. If we extend these to groups G and G' supported by V, then since $G/p^{\omega}G \cong A/p^{\omega}A$ and $G'/p^{\omega}G' \cong A'/p^{\omega}A'$, we can conclude that G and G' are not isomorphic.

We have the following immediate consequence of Theorem 2.7, which is an extension of Corollary 2.3.

COROLLARY 2.9. Any $\omega + n - 1$ -bounded valuated p^n -socle V is realizable.

We now specialize this to the case of valuated p^n -socles that are nsummable. The next result allows us to compute the required invariants.

Lemma 2.10. If V is an n-summable valuated p^n -socle, $f \stackrel{\text{def}}{=} f_V$ and λ is a countable limit ordinal, then $r(P_{\lambda}V) = (\overline{f}(\lambda))^{\aleph_0}$.

PROOF. Let $\xi = \overline{f}(\lambda)$ and $\beta_0 < \lambda$ be chosen so that $\int\limits_{\beta_0}^{\lambda} f = \int\limits_{\beta}^{\lambda} f = \xi$ for all $\beta_0 \leq \beta < \lambda$. We may clearly assume that β_0 is *n*-isolated, so there is a standard β_0 -decomposition $V = W \oplus U$, where W is β_0 -high in V. It follows that $P_{\lambda}V$ is naturally isomorphic to $P_{\lambda}U$. Replacing V by U, we may assume $\int\limits_0^\zeta f=\xi.$ Since V is a valuated direct sum of countable groups, the same will be

true of $V_{\lambda} \stackrel{\text{def}}{=} V/V(\lambda)$, and $B \stackrel{\text{def}}{=} V_{\lambda}[p]$. Since a countable valuated vector

space is free, we can conclude that B is free. Clearly, $f_B(\beta) = f(\beta)$ for all $\beta < \lambda$, and we can identify $(L_{\lambda}V)[p]$ with $L_{\lambda}B$, so that $P_{\lambda}V \cong P_{\lambda}B$.

If α_i is a strictly increasing sequence that converges to λ , then we can write $B=\bigoplus_{i<\omega}B_i$, where for each $i<\omega$ we have $B_i(\alpha_i)=B_i$ and $B_i(\alpha_{i+1})=\{0\}$. It follows that $L_\lambda B$ is isometric to $\overline{B}=\prod_{i<\omega}B_i$, so that $P_\lambda V$ is isomorphic to \overline{B}/B . Since \overline{B}/B has rank ξ^{\aleph_0} , the result follows.

This brings us to the main goal of this section, i.e., the generalization of the Existence Theorem for Principal p-Groups from [9] promised in the introduction. It is an immediate consequence of Theorem 2.7, Lemma 2.10 and the fact that an ω_1 -bounded n-summable valuated p^n -socle has an ω_1 -high tower.

Theorem 2.11. Suppose V is an ω_1 -bounded n-summable valuated p^n -socle and $f = f_V$. Then V is realizable iff for every countable limit ordinal λ we have

$$\int_{\lambda+n-1}^{\lambda+\omega} f \leq \overline{f}(\lambda)^{\aleph_0}.$$

For example, if $f(\alpha) = 1$ for $\alpha \leq \omega$, $f(\omega + 1) = \kappa$ and $f(\alpha) = 0$ for $\alpha > \omega + 1$, then f is 2-admissible, so there is a valuated p^2 -socle V with $f = f_V$. However, this V is realizable iff $\kappa \leq 2^{\aleph_0}$.

3. Unique Realization

We say a function $f: \omega_1 \to \mathcal{C}$ is ω_1 -countable, if $f(\alpha)$ is countable for all $\alpha < \omega_1$. The following is similar to ([4], Corollary 1.7).

PROPOSITION 3.1. Suppose V is a valuated p^n -socle and $f \stackrel{\text{def}}{=} f_V$ is ω_1 -countable. Then V is n-summable iff it is summable and f is n-thin.

PROOF. Suppose first that V is n-summable, so that f is n-admissible. It follows immediately that V is summable. And it follows from (1.B) that f is n-thin.

Conversely, suppose V is summable and f is n-thin. Let $\alpha_0 = 0$ and for $0 < i < \omega_1$, let α_i be a strictly increasing enumeration of a CUB subset of countable limit ordinals such that $f'(\alpha_i) = 0$ for all $0 < i < \omega_1$. After col-

lecting terms, there is a valuated decomposition $V[p] = \bigoplus_{i < \omega_1} S_i$, where $S_0 \subseteq V[p]$ is α_1 -high and for i > 0, $S_i \subseteq V(\alpha_i + n - 1)[p]$ is α_{i+1} -high. Clearly, each S_i is countable.

Let W_i be an α_{i+1} -high subgroup of $V(\alpha_i)$ such that $W_i[p] = S_i$. It follows that W_i is countable and n-isotype in V. By ([4], Corollary 1.6), there is a valuated decomposition $V = \bigoplus_{i < \omega_1} W_i$, completing the argument. \square

COROLLARY 3.2. Suppose G is a group such that f_G is ω_1 -countable. Then G is n-summable iff it is summable and f_G is n-thin. In this case, $G/p^{\alpha}G$ will be countable for all $\alpha < \omega_1$.

PROOF. The first conclusion follows by applying Proposition 3.1 to $G[p^n]$. To verify the last sentence, if H is $p^{\alpha+\omega}$ -high in G, then there is an isomorphism $H/p^{\alpha}H \cong G/p^{\alpha}G$. Since H[p] is countable, so is H. Therefore, $G/p^{\alpha}G$ is also countable.

For example, if $f(\alpha)=1$ for all $\alpha<\omega_1$, and V is a free valuated vector space with $f=f_V$, then V is realizable, so there is a summable group G such that $f_G=f$. Since $G/p^\alpha G$ will be countable for all $\alpha<\omega_1$, this G will be a C_{ω_1} -group; this is the type of group constructed in [1]. Note that this group will not be 2-summable, since f is not 2-thin. More generally, if we define f so that $f(\alpha)=0$ whenever α is an n-limit and $f(\alpha)=1$ whenever α is n-isolated, then there is an n-summable group G such that $f=f_G$. However, since f_G is not n+1-thin, G will not be n+1-summable.

We now turn to a discussion of when a realizable n-summable valuated p^n -socles is, in fact, uniquely realizable. We start with the case where the Ulm function is ω_1 -countable.

Theorem 3.3. Let V be a realizable n-summable valuated p^n -socle such that $f \stackrel{\text{def}}{=} f_V : \omega_1 \to \mathcal{C}$ is ω_1 -countable. Assuming the continuum hypothesis (CH), V is uniquely realizable iff it is countable.

PROOF. Clearly, if V is countable then any group supported by V will be countable, and such groups are classified by their Ulm functions. [This direction clearly does not depend on CH.]

Conversely, suppose V is uncountable; i.e., $\operatorname{supp}(f)$ is unbounded. We need to construct non-isomorphic groups G_S and G_T supported by V. Let $\{W_{\lambda}\}_{{\lambda}<\omega_1}$ be an ω_1 -high tower of V. Let S_{λ} , T_{λ} , for limit ordinals ${\lambda}<\omega_1$, be a smoothly ascending chains of countable sets such that $S_{\lambda}\cap V=T_{\lambda}\cap V=W_{\lambda}$ and $|S_{\lambda+\omega}-(S_{\lambda}\cup V)|=|T_{\lambda+\omega}-(T_{\lambda}\cup V)|=\aleph_0$ and let S,T

be their unions. As sets, we will let $G_S=S$ and $G_T=T$ and we will inductively define group structures on S_λ and T_λ so that $S_\lambda[p^n]=T_\lambda[p^n]=W_\lambda$. It is important to note that since S_ω will be pure and ω -dense in S_λ , if A is a reduced group, then a homomorphism $f:S_\lambda\to A$ is uniquely determined by its restriction to S_ω .

Given CH, the cardinality of the set of functions $f: S_{\omega} \to T$ is $\aleph_1^{\aleph_0} = \aleph_1$, so we can index them by f_i for $i < \omega_1$. Let $E_i \subseteq \omega_1$ for $i < \omega_i$ be a collection of pairwise disjoint stationary subsets consisting of limit ordinals (see, for example, [12], Lemma 8.8).

Suppose λ' is a limit and for all $\lambda < \lambda'$ we have defined group structures on S_{λ} and T_{λ} supported by W_{λ} . If λ' is a limit of limits, then we simply take unions. Suppose then, that we have constructed our group structures on S_{λ} and T_{λ} , and $\lambda' = \lambda + \omega$. We now divide the construction into two parts.

Case 1. $\lambda \in E_i$ and $f_i(S_\omega) \subseteq T_\lambda$ extends to an isomorphism $g: S_\lambda \to T_\lambda$.

Identify S_{λ} and T_{λ} using g and call the result G_{λ} . Then as in the proof of Lemma 2.6, there are group structures on $S_{\lambda+\omega}$ and $T_{\lambda+\omega}$ that extend G_{λ} and are supported by $W_{\lambda+\omega}$, for which $S_{\lambda+\omega}/p^{\lambda}S_{\lambda+\omega}$ and $T_{\lambda+\omega}/p^{\lambda}T_{\lambda+\omega}$ map to distinct subgroups of $L_{\lambda}G_{\lambda}$. In particular, this means that the isomorphism $g:S_{\lambda}\to T_{\lambda}$ does not extend to an isomorphism $S_{\lambda+\omega}/p^{\lambda}S_{\lambda+\omega}\to T_{\lambda+\omega}/p^{\lambda}T_{\lambda+\omega}$.

CASE 2. Case 1 does not apply.

Extend the group structures on S_{λ} and T_{λ} to $S_{\lambda+\omega}$ and $T_{\lambda+\omega}$ in any way so that they are supported by $W_{\lambda+\omega}$.

Let $G_S = \bigcup_{\lambda < \omega_1} S_\lambda$ and $G_T = \bigcup_{\lambda < \omega_1} T_\lambda$. It follows that V is supported by both G_S and G_T . We claim that they are not isomorphic; assume otherwise, and let $h: G_S \to G_T$ be such an isomorphism. It follows that $C = \{\lambda < \omega_1 : h(S_\alpha) = T_\alpha\}$ is closed and unbounded in ω_1 . Let $i < \omega_1$ be such that h restricted to S_ω agrees with f_i . Since E_i is stationary, it follows that there is an $\lambda \in E_i \cap C$. Note that h will induce an isomorphism from $G_S/p^\lambda G_S \cong S_{\lambda + \omega}/p^\lambda S_{\lambda + \omega}$ to $G_T/p^\lambda G_T \cong T_{\lambda + \omega}/p^\lambda T_{\lambda + \omega}$, which is an extension of the isomorphism $g \stackrel{\text{def}}{=} h|_{S_\lambda} : S_\lambda \to T_\lambda$. This is contrary to the construction from Case 1, which shows that G_S and G_T are not isomorphic. So V is not uniquely realizable.

Observe that the continuum hypothesis is equivalent to the condition that $\aleph_0^{\aleph_0} \leq \aleph_1 = \aleph_0^+$. By the *CEH* (for "countable exponent hypothesis) we

will mean the statements that $\kappa^{\aleph_0} \leq \kappa^+$ for all infinite cardinals κ . Clearly, the generalized continuum hypothesis implies the CEH. The following result, therefore, generalizes Theorem 3.3.

Theorem 3.4. Suppose V is a realizable n-summable valuated p^n -socle and $f = f_V$. If $V(\omega + n - 1)$ is countable, then V is uniquely realizable. In fact, any group supported by V must be a dsc group.

Conversely, assuming the CEH, if $V(\omega + n - 1)$ is uncountable, then V is not uniquely realizable.

PROOF. Suppose first that $V(\omega+n-1)$ is countable and G is a group supported by V. Let H be $p^{\omega+n-1}$ -high in G. Since G is n-summable, by ([4], Theorem 3.5), H must be a dsc group. Since $r(G/H) = r(V(\omega+n-1)) \le \aleph_0$, it follows from Wallace's Theorem (see, for example, [3], Proposition 1.1) that G is a dsc group. Therefore, G is determined by V.

Conversely, suppose $V(\omega + n - 1)$ is uncountable. Let $\kappa = \int_{\omega + n - 1}^{\omega 2} f$.

Case 1. κ is uncountable.

Let $\mu = \overline{f}(\omega)$. If $\kappa \leq \mu$, then it follows from Corollary 2.8(2) that V is not uniquely realizable. We may therefore assume that $\kappa > \mu$, so that the CEH implies $\kappa \geq \mu^{\aleph_0}$. By Theorem 2.11, $\kappa \leq \mu^{\aleph_0}$, so that $\kappa = \mu^{\aleph_0} = r(P_\omega(V))$. In this case, Corollary 2.8(1) implies that V is not uniquely realizable.

Case 2. $\kappa = \aleph_0$.

Subcase 2a: For all α with $\omega + n - 1 \le \alpha < \omega_1$ we have $f(\alpha) \le \aleph_0$.

It follows from Theorem 3.3 that there are non-isomorphic groups A_0 and A_1 supported by $V(\omega + n - 1)$ (where, again, we shift values by $\omega + n - 1$). These two groups are contained in groups G_1 and G_2 supported by V, where $A_0 = p^{\omega + n - 1}G_1$ and $A_1 = p^{\omega + n - 1}G_2$. Since G_1 and G_2 will also not be isomorphic, it follows that V is not uniquely realizable.

Subcase 2b: For some α with $\omega + n - 1 \le \alpha < \omega_1$ we have $f(\alpha) \ge \aleph_1$.

Let $\alpha \geq \omega$ be chosen minimally so that $f(\alpha) \geq \aleph_1$. Since $\kappa = \int\limits_{\omega^2}^{\omega^2} f = \aleph_0$, we can conclude that $\alpha \geq \omega^2$. Since f is n-admissible, α must be n-isolated. If $q_\omega(\alpha) = \lambda \geq \omega^2$, then $\overline{f}(\lambda) \leq \int\limits_{\omega+n-1}^{\lambda} f = \aleph_0$. In addition, by Theorem 2.11

$$\aleph_1 \leq \int\limits_{\lambda+\eta-1}^{\lambda+\omega} f \leq r(P_{\lambda}(V)) = \overline{f}(\lambda)^{\aleph_0} \leq \aleph_0^{\aleph_0} = \aleph_1.$$

It follows from Corollary 2.8(1) that V is not uniquely realizable, completing the proof.

Again, assuming the CEH, the last result states that an n-summable group G is uniquely determined by f_G iff it is a dsc group and $p^{\omega+n-1}G$ is countable. We now consider the particular case where n=1.

A group G is said to be ω -totally Σ -cyclic if every separable subgroup of G is Σ -cyclic. These groups were studied in [2], where, for example, it was shown that they are precisely the dsc groups G for which $p^{\omega}G$ is countable. Therefore, we have the following consequence of Theorem 3.4 for n=1.

Corollary 3.5. Assuming the CEH, a summable group G is uniquely determined by f_G iff it is ω -totally Σ -cyclic.

For example, if $f(\alpha) = \aleph_1$ for all $\alpha \le \omega$ and $f(\alpha) = 0$ for $\alpha > \omega$, then as in Example 2.4, there are summable groups A and A' with Ulm function f such that A is a dsc group and A' is not. So, as a summable group A is not uniquely determined by f. However by Theorem 3.4, as a 2-summable group A is uniquely determined by f.

In ([4], Theorem 3.8), it was shown that if G is a group and $G[p^n]$ is n-summable for all positive integers n, then G must be a dsc group. We conclude this paper with an analogous result for Ulm functions that illustrates the power of our realization results.

THEOREM 3.6. A function $f: \omega_1 \to \mathcal{C}$ is admissible iff it is n-admissible for all positive integers n.

PROOF. If f is admissible, then there is a dsc group G such that $f = f_G$. It follows that $G[p^n]$ is n-summable and $f = f_{G[p^n]}$. So by Theorem 1.10, f is n-admissible for each positive integer n.

Conversely, suppose for each positive integer n, f is n-admissible. So by Theorem 1.10, there is an n-summable valuated p^n -socle V_n such that $f_{V_n} = f$. It is clear that $V_{n+1}[p^n]$ will also be an n-summable valuated p^n -socle and that $f_{V_{n+1}[p^n]} = f$, so that by Theorem 0.1 there is an isometry $V_n \cong V_{n+1}[p^n]$. If we identify these two, then we can define G to be the union $\bigcup_{1 \le n < \omega} V_n$. Note that G has a valuation $|\cdot|_G$ determined by the valuations on the various V. In addition, if $x \in G$ and $x \le |x|_G$, then

valuations on the various V_n . In addition, if $x \in G$ and $\alpha < |x|_G$, then $x \in V_n$ for some n, and so $x \in V_{n+1}[p^n]$. Hence, there is a $y \in V_{n+1} \subseteq G$ such that py = x and $\alpha \le |y|_G$. This means that for all $x \in G$, $|x|_G = \sup\{|y|_G + 1 : y \in G \text{ and } py = x\}$. An easy induction then implies that $|\cdot|_G$

is the height function on G. Since $G[p^n] = V_n$ is n-summable for each n, it follows from ([4], Theorem 3.8) that G is a dsc group. Therefore, $f = f_G$ will be admissible.

The last result could be proven combinatorially using the definition (1.A and B), but the argument is less intuitive and significantly longer than the above.

REFERENCES

- [1] D. CUTLER, Another summable C_{Ω} -group, Proc. Amer. Math. Soc., 26 (1970), pp. 43–44.
- [2] P. Danchev P. Keef, An application of set theory to $\omega + n$ -totally $p^{\omega+n}$ Projective primary abelian groups, Mediterr. J. Math. (to appear).
- [3] P. DANCHEV P. KEEF, Generalized Wallace theorems, Math. Scand., 104 (1) (2009), pp. 33-50.
- [4] P. Danchev P. Keef, n-Summable valuated pⁿ-socles and primary abelian groups, Commun. Algebra, 38 (2010), pp. 3137–3153.
- [5] P. Danchev P. Keef, Nice elongations of primary abelian groups, Publ. Mat., 54 (2) (2010), pp. 317–339.
- [6] L. Fuchs, Infinite Abelian Groups, Volumes I & II, Academic Press, (New York, 1970 and 1973).
- [7] L. Fuchs, Vector spaces with valuations, J. Algebra, 35 (1975), pp. 23–38.
- [8] P. Griffith, *Infinite Abelian Group Theory*, The University of Chicago Press (Chicago and London, 1970).
- [9] K. Honda, Realism in the theory of abelian groups III, Comment. Math. Univ. St. Pauli, 12 (1964), pp. 75–111.
- [10] R. Hunter F. Richman E. Walker, Existence Theorems for Warfield Groups, Trans. Amer. Math. Soc., 235 (1978), pp. 345–362.
- [11] J. Irwin P. Keef, Primary abelian groups and direct sums of cyclics, J. Algebra, 159 (2) (1993), pp. 387–399.
- [12] T. Jech, Set Theory (Third Millennium Edition), Springer (Berlin, 2002).
- [13] P. KEEF, On ω_1 - $p^{\omega+n}$ -projective primary abelian groups, J. Algebra and Number Theory Academia, 1 (1) (2010), pp. 53–87.
- [14] P. KEEF P. DANCHEV, On m, n-balanced projective and m, n-totally projective primary abelian groups, Submitted.
- [15] P. Keef P. Danchev, On n-simply presented primary abelian groups, To appear in Houston J. Math.
- [16] F. RICHMAN E. WALKER, Valuated groups, J. Algebra, 56 (1) (1979), pp. 145– 167.

Manoscritto pervenuto in redazione il 3 gennaio 2011.