REND. SEM. MAT. UN1v. PADOVA, Vol. 126 (2011)

Which Fields Have No Maximal Subrings?

A. AZARANG - O.A.S. KARAMZADEH

ABSTRACT - Fields which have no maximal subrings are completely determined.
We observe that the quotient fields of non-field domains have maximal
subrings. It is shown that for each non-maximal prime ideal P in a commu-
tative ring R, the ring Rp has a maximal subring. It is also observed that if R is
a commutative ring with [Max(R)| > 2% or |[R/J(R)| > 22°, then R has a
maximal subring. It is proved that the well-known and interesting property of
the field of the real numbers R (i.e., R has only one nonzero ring en-
domorphism) is preserved by its maximal subrings. Finally, we characterize
submaximal ideals (an ideal I of a ring R is called submaximal if the ring R/I
has a maximal subring) in the rings of polynomials in finitely many variables
over any ring. Consequently, we give a slight generalization of Hilbert’s
Nullstellensatz.

Introduction

All rings in this article are commutative with 1 # 0. If S is a subring of
a ring R, then 1 € S. The characteristic of a ring R is denoted by c¢(R)
and the algebraic closure of a field K is denoted by K. A proper subring S
of a ring R is said to be maximal if there is no subring of R properly
between S and E. Unlike maximal ideals, whose existence is guaranteed
by either Zorn’s Lemma or Noetherianity of rings, maximal subrings
need not always exist. We denote the set of maximal subrings (maximal
ideals) of a ring by RgMax(R) (Max(R)). Maximal subrings are also
studied in [17], [5], [6], [14], [13], [16], [2], [3] and [4]. In [2], maximal
subrings of commutative rings are investigated and some useful criter-
ions for the existence of maximal subrings are given. Using these cri-
terions one can easily see that some important rings have maximal
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subrings, see [2]. In [3], we have characterized exactly which Artinian
rings have maximal subrings. In particular, in [3], it is shown that, if F'is a
field which has either zero characteristic or is not algebraic over some
subfields (in particular every uncountable field) then F' has a maximal
subring. It is also interesting to note that if R is an integral domain with
the quotient field K, then R is a valuation ring with a unique nonzero
prime ideal if and only if R is a maximal subring of K, see [12, P. 43].
Consequently, if F'/K is a function field of one variable (i.e., an extension
field K C F' such that F is a finite algebraic extension of K(x), where
x € Fis atranscendental element over K) then the set RgMax(F') # () and
it coincides with the set of discrete valuation subrings of F' (note, by a
subring R of F', we mean K ¢ R G F), see [19, Theorem 1.1.13]. The latter
fact is also an immediate consequence of a more general result, namely, if
K C F is a non-algebraic field extension, then F' has a maximal subring
containing K, which is not a field, see [3, Corollary 1.2]. We also recall that
if V is a variety over an algebraically closed field k, then its coordinate

. klxq, ... 2]
ring k[V] = I
K = k(V), which is called the function field of V. In particular, if V = P}c,
where I} is the projective line over k, then one can easily show that P} is
bijective with the set of maximal subrings of k(x) containing k, see [19,
Theorem 1.2.2, Corollary 1.2.3] or [9, Problem 4.8]. More generally, if V is
a hyperelliptic curve, see [10, P. 298], then by an observation which ap-
peared recently in [21], see also [19, Appendix B] and [20], the set V is
bijective with RgMax(k(V)).

Now let us sketch a brief outline of this paper. Our aim in Section 1,
is to determine exactly which fields have no maximal subrings. In fact,
we show that the only fields £ which have no maximal subrings are
those of the form E = (J F)», where p is a prime number, F). is the

is a domain, hence it has a field of fractions

nel _
unique subfield, with p" elements, of F), the algebraic closure of
F, = (]T)’ and T is a subset of IN, the set of positive integers, such that

T ={n €N : every prime divisor of » is in a fixed set of prime num-
bers, say P} U {1}. Finally, in Section 1, we show that if A is the set of
fields without maximal subrings, up to isomorphism, then |A| = 2%, In
Section 2, we find more rings R with RgMax(R) # (. Also in Section 2,
we investigate some hereditary properties between a ring and its
maximal subrings. Finally, in Section 3, we determine exactly which
ideals of R[x] are not submaximal, and as a consequence we give a
generalization of Hilbert’s Nullstellensatz.
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1. Fields without maximal subrings

Before presenting our new results, let us cite the following facts from
[3]. The next result is in [3, Proposition 1.1] and for a more general result,
see [4, Proposition 2.1].

ProrosiTION 1.1.  Let F' C K be an algebraic field extension and S be
a maximal subring of F which is not a field. Then for any non-unit
element x € S, there exists a maximal subring R, of K such that x is not a
unit element in R,, R, NF = S, R,[x™']1 = K and R, s not a field, but it
contains the integral closure of S in K.

COROLLARY 1.2 [3, Corollary 1.2]. Let F be a field and F C K be a non-
algebraic field extension of F. Then K has a maximal subring which
contains F and is not a field.

CoroLLARY 1.3 [3, Corollary 1.3]. Let K be a field. If K is of
characteristic zero or uncountable then K has a maximal subring which
is not a field.

The following is now immediate.

COROLLARY 1.4. Let E be a field without maximal subrings, then E is
algebraic over F, for some prime number p.

Next, we recall that if K is a field and R is a domain containing K which
is also algebraic over K, then R is a field. This immediately implies that
whenever K is an algebraic field extension of a field ¥, then any subring
between F' and K is a field. In particular, any subring of F), is a field (more
generally, it is also well-known that any vector subspace E of F, over F, is
a field, if and only if for any « € E we have " € E, for all n).

In what follows, in this section we are going to present exactly the form
of fields which have no maximal subrings.

We need the next definitions.

DEFINITION 1.5. Let IN be the set of positive integers and T C IN. Then
T is said to be a field generating set (briefly FG-set) if E = |J Fp» is a

_ _ nel
subfield of I, where F';» is the unique subfield of ', with p" elements and p
is a prime number. Moreover, T must be such that if 7 C 7" C N and
E = U F = U Fu,thenT:T,.

nel nel”
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DEeFINITION 1.6. Let T7 C Ts be two F'G-sets. Then T, is said to be a
maximal F'G-subset of T if there is no F'G-set properly between 77 and Ts.

REMARK 1.7. One can easily see that there is a one-one order pre-
serving correspondence between the FG-subsets of N and subfields of ),
see also the Steinitz’s numbers and their properties in either [7] or [18].

Using the previous remark and Corollary 1.4, we immediately have the
following characterization of the fields without maximal subrings.

THEOREM 1.8. A field F' has no maximal subrings if and only if there
1s a prime nuwmber p such that either ' = I, or F is an infinite subfield of
F, such that F = |J Fy, where T is a FG-set which has no maximal FG-
subsets. nel

We know that the multiplicative group F'), of nonzero elements of F: is
cyclic of order p™ — 1. This and the fact that whenever an abelian group G
contains two elements of orders m and n, then it has an element of order
[m, n], the least common multiple of m, n, immediately yield the following
characterization of FG-sets.

ProposITION 1.9. T C N is a FG-set if and only if it satisfies the
following conditions.

Q) 1eT
@) Ifnel, dn thend eT.
3) If m,n € T, then [m,n] € T.

Proor. Let T be a FG-set, then (1) and (2) are evident. Hence let
E = |J Fy be the subfield of F, corresponding to 7. If m,n € T, then let

nel
a € F., B € F,. be elements in £ which are of order p" —1, p™ — 1 respec-

tively. Then E has an element y of order [p" — 1, p™ — 1]. But y is a root of the
equation”’ — x = 0, where k is the degree of f (), the minimal polynomial of
y over I, (note, the roots of f(xx) are y, )P, . . ., ypkfl ). Clearly, yi’k*1 = 1. Hence
[p" —1,p™ — 1]|p* — 1, consequently we have p”" — 1|p* — 1, p™ — 1|p* — 1.
Thus n|k, m|k imply that [m,n]|k. Since F),(y) = F,. CE we infer that k€ T
and therefore [m, n] € T. The converse is evident. O

By the previous proposition we have the following trivial examples of
FG-sets.
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ExampLE 1.10. T C N 1s a finite FG-set if and only if T consists of
divisors of an integer n € N. Let P be a set of prime numbers, then
T ={n € N : prime divisors of n are in P} U {1} is a FG-set.

Theorem 1.8 shows that in order to know exactly which fields are
without maximal subrings we must know the FG-sets which have no
maximal F'G-subsets. The next result precisely determines these FG-sets.

ProposiTION 1.11. Let T be a FG-set. Then T has no maximal FG-
subsets if and only if whenever q is a prime number in T, then ¢" € T for
all n € N. Moreover, T has no maximal FG-subsets if and only if T has
the form T = {n € N : every prime divisor of n is in a fixed set of prime
numbers, say P} U {1}.

Proor. Let T be a FG-set with the above property. We claim that 7" has
no maximal F'G-subsets. Let S ¢ T be a maximal F'G-subset of T and obtain a
contradiction. Take n € T'\ S and let n = p{"'p;” - - - p,"* be the factoriza-
tion of n. Since n ¢ S, we infer that there exists 1 < r < k with p! ¢ S. Now
put S;=SU {[m,pf‘] :m e S,t<m,}. Clearly, S; is a FG-set and
S¢S1ST (note, p* € T for all m) which is the desired contradiction.

Conversely, let T have no maximal FG-subsets. Suppose that g € T
is a prime number such that ¢"¢ T for some n > 2 and » is the least
positive integer with this property and seek a contradiction. Since T
is a FG-set, we infer that ¢"¢7T for all m >n. Now put S=
{eeT: x#¢" ', yeT, (gy) =1} and note that S is a maximal
FG-subset of T. To see this, it is clear that S is a FG-set. Let
SCSy CT, where S; is a FG-set. If S #S;, then there exists
¢y €81\ S, where y € T, (y,q) = 1. Hence ¢"! € S; and therefore
¢ '2€ 8y for all z€ T, (2,q) =1 (note, z€ S CS;). Thus S; =7 and
we are done. The last part is now evident. O

COROLLARY 1.12. a FG-set T has no maximal FG-subsets if and only
if whenever t € T, then t" € T for all n € I\.

REMARK 1.13.  Trivially by the above corollary, N is a FG-set without
maximal F'G-subsets, hence F), has no maximal subrings for any prime
number p.

Next, we observe that the collection of all FG-sets which are without
maximal FG-subsets is uncountable.
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ProposITION 1.14. Let A be the collection of all FG-sets which are
without maximal FG-subsets. Then A is uncountable.

Proor. Let p1,ps,...,px, ... be the sequence of prime numbers, i.e.,

p1 =2, p2 =3, ps =5, etc. We define the map ¢: A— []X;, where
i=1

X; ={0,1} for all 7, as follows. For each A € A we put ¢(4) = <a, >,

where a,, = 0if p, ¢ A and a,, = 1 if p,, € A. It is manifest that ¢ is one-one

and onto. Hence |A| = 2%, O

COROLLARY 1.15. Let {F; : i € I} be the family of fields, which are
without maximal subrings and have the same characteristic (up to
isomorphism). Then |I| = 2%. In particular, the set of all fields without
maximal subrings (up to isomorphism) is of cardinality 2.

2. More rings with maximal subrings and some hereditary properties

In this section, we begin with the following interesting result, which is a
generalization of the fact that each Artinian ring with zero characteristic
has a maximal subring, see [3].

PROPOSITION 2.1. Ewvery zero dimensional ring R of characteristic
zero has a maximal subring.

Proor. IfS =7\ {0}, then there exists a maximal ideal M such that
SN M =0, hence R/M is a field with zero characteristic. Therefore R /M
has a maximal subring, by Corollary 1.3. Thus R has a maximal subring
too. O

COROLLARY 2.2. Let {R;};°, be a family of rings with ¢«(R;) =n; # 0

and (n;,n;) =1 for all i # j. Then R = ]O_O[ R; has a maximal subring.
=1

Proor. Let M = [] M;, where each M, is a maximal ideal of ;. Then

=1
R/M is a zero dimensional ring (in fact, a regular ring) whose characteristic
is clearly zero. Hence, by the previous proposition, R /M, a fortiori R, have
maximal subrings. O

PrOPOSITION 2.3. Let R be a domain and F' # R be its quotient field.
Then F has a maximal subring.
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Proor. If c¢(R) = 0, then c(¥) = 0 and we are done by Corollary 1.3.
Thus we may suppose that c¢(R) = p # 0 and R contains F),. Since R is not
field, we infer that R is not algebraic over F",. Hence F is not algebraic over
F,, and therefore by Corollary 1.2 we are done. O

The following is interesting.

COROLLARY 24. Let R be a ring and P be a prime ideal of R which is
not maximal. Then Rp has a maximal subring.

Proor. Let F'be the quotient field of R /P. Clearly F' # R/P. Hence by
the previous proposition ' has a maximal subring. But we have —f ~F,

R
where P? is the extension of P in Rp. This means that —f has a maximal
subring and therefore Rp has a maximal subring too. |

ProposiTION 2.5.  Let R be a ring which contains a field F satisfying
at least one of the following conditions:

Q) c#) =0.

(2) F is uncountable.

(3) F is not algebraic over a finite field.

Then R has a maximal subring.

Proor. Let M be a maximal ideal in R. Then the field R/M contains a
copy of F'. Therefore if F' satisfies in one of the above conditions, then R /M
clearly satisfies it too. Hence by Corollaries 1.2, 1.3 and 1.4, R/M has a
maximal subring which implies that R has a maximal subring too. O

PROPOSITION 2.6. Let R be a ring with |Max(R)| > 2%. Then R has a
maximal subring.

Proor. PwtT ={R/M : M € Max(R)}.If R/M % R/M for any two
maximal ideals M, M’, then |T| > 2% and we are done by Corollary 1.15.

Hence we may assume that R/M =~ R/M’ for two maximal ideals M, M'.
R

R R R
NOWM N X iV and by [2, Theorem 2.2], we see that WAM has a
maximal subring, a fortiori, R has a maximal subring. |

COROLLARY 2.7.  Let {R;},.; be a family of rings with |I| > 2™. Then

R =[] R; has a maximal subring.
iel
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COROLLARY 2.8.  Let R be a Hilbert ring. Then either R has a maximal
subring or |Spec(R)| < 22°.

PrROOF. If [Max(R)| > 2%, then we are done, by Proposition 2.6. Hence
suppose that [Max(R)| < 2%. Since R is a Hilbert ring, every prime ideal of
R is an intersection of maximal ideals, therefore |Spec(R)| < 22°. O

The following is also in order.

PropoSITION 2.9. Let R be a ring with |J(R)|<|R| (or with
|U(R)| < |R), where U(R) is the set of units of R). If |R| > 2%°, then R has
a maximal subring. In particular, if |R/J(R)| > 22°, then R has a
maximal subring.

ProoF. First we note that |J(R)| < |U(R)|. If either |Max(R)| > 2% or
R/M is uncountable for some maximal ideal M of R, then we are done, by
Proposition 2.6 or Corollary 1.3. Hence we may assume that [Max(R)| < 2%,
R/M is countable for all M € Max(R) and seek a contradiction. Clearly,
R/J(R) embeds in ] E and therefore |R/J(R)| < 22" which is ab-

MeMax(R)
surd. The final part is now evident. O

The next interesting proposition shows that maximal subrings of R are
similar to R, regarding the existence of the unique nonzero ring en-
domorphism.

PROPOSITION 2.10. Let S be a maximal subring of R. Then S is dense
n R. Moreover, the only nonzero ring homomorphism from S into S is the
identity.

Proor. Clearly, S is uncountable. It is well-known that any additive
subgroup of R is either cyclic or dense in R. But clearly, S cannot be cyclic,
hence it is dense. Now for the final part, let ¢: S— S be a nonzero
homomorphism and consider the following two cases.

Case(I): Q € S. In this case, we first note that S is not a field and
SN Q = Z), where p is a prime number. To see this, since Q Z S, we infer

1
that there exists a prime number p such that ) ¢ S. But in view of [2,
Theorem 3.3], S has only one nonzero prime ideal, say M. Thus p € M and
1
for every prime number g # p, we have q¢ M. Consequently, p € S and

therefore 7,y C S which implies that S N Q = 7, (note, 7 is a maximal
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subring of Q). We also observe that c(S/M) = p, for p € M. Now we claim
that ¢ is an injective homomorphism. To this end, we show that
P = ker¢ +# 0, leads us to a contradiction. Since S/P embeds in the domain
S, we infer that P is a prime ideal and therefore we must have P = M. But
¢(S/P) = p which is absurd, for S/P = Im¢ C R. Next, we show that ¢ is
order preserving. Let a € S, & > 0 and therefore o = 2%, x € R. We claim
that 2 € S and we are done, for in that case ¢(a) = ¢(x)* > 0. To see this,
x? = a implies that « is integral over S and therefore if x¢ S, then R = S[x]
is integral over S. Consequently, S is a field which is impossible. Hence we
must have x € S and ¢(a) > 0 which means that ¢ is order preserving.
Finally, let ¢(a) = b, where a,b € S, a # b and seek a contradiction. We
may assume that a <b (note, ¢( — a) = —b). Since 7, is not a cyclic group,
we infer that 7, is dense in R and therefore there exists q € 7, with
a<q<b. Hence ¢(a)<¢(q) <¢(b). But trivially, ¢ is the identity on 7,
which means that b <q<¢(b), a contradiction.

Case(II): Q C S. First, let us get rid of the case when S might be a field
(note, we shall see shortly in the next remark that S can never be a field,
but let us ignore this for a moment). For every o € R\ S, we have R = S[«]
and R is algebraic over S (note, «~! € S[«]). Hence we may naturally ex-
tend ¢ to ¢" : R—R by defining ¢"|¢ = ¢ and ¢"(«) = o. But it is well-
known and easy to prove that ¢* is the identity (in fact, we have already
proved this in the last part of the proof of the previous case) and we are
done. Hence we may suppose that S is not a field. We now claim that ¢ is
also order preserving in this case. It suffices to show that ¢ > 0 implies
#(a) > 0 for all & € S. We have a = 2%, where x € R. We now claim that
x € S, for similar to the previous case, x ¢ S implies that S is a field which is
absurd. Hence ¢(a) = ¢(m)2 >0. Now let g € Q be an element with
0<g<a, then 0 < ¢(q) < ¢(a). But trivially ¢ is the identity on Q, Hence
0<q < @), ie., $a) > 0. Finally, by applying the final part of the proof of
the previous case and replacing 7, by () we are done. O

We give the following remark for the sake of the reader.

REMARK 2.11. We should clarify our ignoring, intentionally, an im-
portant fact concerning the maximal subring S of R in the previous proof.
Let us first recall an amazing and well-known theorem of Artin-Schreier,
which says, whenever a field F' is not algebraically closed but its algebraic
closure, say L, is a finite extension of F, then F must be real closed and
L = F(i), where 1> = —1, see [11, P. 316, Theorem 17]. It follows easily that
no maximal subring of a real closed field (note, the algebraic closure of a
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real close field is a finite extension over it), let alone R, can be a field (note,
if S is a maximal subring of R which is a field, then clearly R is a finite
extension of S, see [2, Theorem 3.3] and therefore C, the field of complex
numbers, is a finite extension of S). We can also easily infer from the Artin-
Schreier Theorem, that no maximal subring of an algebraically closed field
with a nonzero characteristic, can be a field. Hence in the proof of Pro-
position 2.10, although we know that, S is actually not a field, but we prefer
not to make use of this in the proof, on purpose, in order, to avoid invoking
the sophisticated theorem of Artin-Schreier, to just get rid of the trivial
case when S might be a field.

Now, we digress for a moment to record the following interesting fact.

ProposITION 2.12. Let R be a domain. Then there is no principal
maximal ideal in the following rings.

(1) Rlx], where R is an infinite domain whose set of units has smaller
cardinality than |R|.
(2) R[%lax27 e 79611]) n Z 2.

Proor. First we prove (1). Let M = (f(x)) be a maximal ideal in R[x]
and seek a contradiction. Clearly, the set A of all elements a € R such that
f(a)is aunit, has smaller cardinality than |R| (note, if the set of units is finite
then A is finite too, i.e., |A| <|R)|, if the set of units is infinite and has car-
dinality o, then |A| < a<|R|). Thus there is b € R such that f(b) = ¢ # 0 is
not a unit (note, f(x) =0 cannot have a root in R, for otherwise E[x]/M = R,
which is absurd; we should also emphasize that we may assume ¢ # 0 by
just using the fact that |A| <|R|). Now we note that (f(x)) & (¢, f(x)) # Rlx],
for if 1 = cg(x) + h(x)f (x), then 1 = c(g(b) + h(D)), a contradiction. Hence
(f(x)) is contained in a proper ideal (c,f(x)) which is a contradiction.

Finally we prove (2). This part must be well-known (at least when R is a
field), but we give a quick proof. It suffices to prove it for » = 2. Hence let
(f) be a maximal ideal in R[x, 2] and obtain a contradiction. Clearly, f is
not a constant element in R. Put f=fy+fixze+ -+ fnxy, where
fi € Rlx1], 1 =0,1,...,m. It is clear that f¢ R[x1], f ¢ Rlxz] and f; # 0.
Now we note that f = F(xs) € R[x1][x2] and there is some k such that
F(x’f)qé R, for otherwise for all » # s we have a] — «f|F'(x]) — F'(x]) which is
absurd. Finally, we claim that ()< (F(x’f), f) # R[x1,x2], which is the de-
sired contradiction. To this end, it is evident that (f) # (F(x’f), ). Hence we
must show that (F(),f) # Rlwy,x2]. If (F(b),f) = Rlwy, 2], then
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1=F(@bg+fh implies that 1= F(@@h)(g(wr,a?)+ h(xi,xF), where
g,h € R[x1,22]. Clearly, the latter equality is absurd. |

REMARK 2.13. We recall that a domain R is a G-domain if and only if
there is a principal maximal ideal M in R[x] with M N R = (0), see the proof
of Theorem 24 in [12]. This and part (2) of the previous result immediately
gives another proof of the well-known fact that E[x] is never G-domain.

Part (1) of Proposition 2.12, immediately yields the following corollary.

COROLLARY 2.14. If R s an infinite G-domain and U(R) is the set of
units of R, then |[U(R)| = |R).

REMARK 2.15. Tt is interesting to notice that if R is a domain whose
Jacobson radical J is nonzero, then |U(R)| = |R| (note, |/| = |R|and 1 —«x
is a unit for all x € J). This immediately gives another quick proof to the
previous corollary.

In [5], it is proved that if R is a finite maximal subring of a ring 7', then T
must be finite too. This is a trivial consequence of the fact that whenever R
is a maximal subring of T, then R is Artinian if and only if 7' is Artinian and
integral over R, see [3, the proof of Theorem 2.9] or [4, Theorem 3.8].

COROLLARY 2.16. If R is a maximal subring of an infinite G-domain
T, then [U(R)| = |R).

Proor. We note that T is algebraic over R, for if ¢ € T, then either
2 € R or t € R[t?]. Clearly, T is also finitely generated as a ring over R
(note, for each t € T'\ R, we have R[t] = T'). Now, by [12, Theorem 22], R is
a G-domain and by the preceding comment it must be infinite too and
therefore by Corollary 2.14, we are done. O

REMARK 2.17. By the proof of the above corollary, and [12, Theorem
22], in fact if R is a maximal subring of an integral domain 7', then R is a G-
domain if and only if 7" is a G-domain. In particular, if R is a maximal
subring of a ring T (not necessarily an integral domain), then an ideal @ in
T is a G-ideal if and only if @ N R is a G-ideal in R.

We remind the reader that whenever R is a maximal subring of a ring
T, then either T is integral over R or R is integrally closed in 7. Also one
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can easily see that if R is a maximal subring of T', then the conductor ideal
(R : T)is a prime ideal in R, see [8] or [17, Theorem 1 and Theorem 7], see
also [4, Remark 3.1]. Moreover, in [8] or [17] it is proved that if R is a
maximal subring of a ring T, then T is integral over R if and only if
(R:T) € Max(R); it is also shown that if R is integrally closed in 7, then
(R : T) € Spec(T). The following is now in order.

PropoSITION 2.18.  Let R be a maximal subring of a ring T. Then the
following statements hold.

(1) If R is a Hilbert ring then so is T.

2) If T is integral over R, then R is a Hilbert ring if and only if T is a
Hilbert ring.

3) If T is not integral over R and (R : T) € Max(T), then R is never a
Hilbert ring.

Proor. We remind the reader that, whenever R is a Hilbert ring, then
the rings of polynomials in finitely many variables over R and epimorphic
images of R are also Hilbert, see [12]. This proves (1) (note, for any
x € T\ R, we have R[x] = T). Therefore for (2), it suffices to show that R is
Hilbert whenever 7' is Hilbert. Let P be a G-ideal of R, since T is integral
over R, there exists a prime ideal @ of 7" such that Q N R = P. Now, we have
two cases, if @ € R, then R + @ = T. Hence we infer that R/P = T/Q.
Therefore @ is also a G-ideal of T. Thus @ is a maximal ideal of T, which
implies that P is a maximal ideal in R, too. Now, assume that @ C R.
Therefore @ = P and R/P is amaximal subring of 7'/P. Inasmuch as R/Pis
a G-domain, we infer that 7'/ P is also a G-domain, by Remark 2.17. Hence P
is amaximalideal of 7" and since 7'/ P is integral over R /P, we infer that R /P
is a field too, and we are done. For (3), we note that by Remark 2.17,
M = (R : T)is a G-ideal of R. Now, since T is not integral over B, M isnot a
maximal ideal in R, by the above comment. Hence we are done. O

Finally, we conclude this article with the following short section on
submaximal ideals.

3. Submaximal Ideals

Let us for the sake of brevity, in this section, call a ring R submaximal,
if R has a maximal subring and call an ideal I of R, a submaximal ideal if
R/I is a submaximal ring (note, I # R). It is manifest that whenever R
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contains a field which is either of zero characteristic or uncountable,
then every ideal of R is submaximal. We also note that if R is a Noe-
therian ring with |R| > 2%, then the nilradical of R is submaximal, by [4,
Theorem 2.9]. It is easy to see that a ring R is submaximal if and only if
there exist a proper subring S of R and x € R \ S such that S[x] = R, see
[2, Theorem 2.5].

The following is interesting.

LeEmMA 3.1.  Let R be a ring and I be an ideal of Rlx]. Then I is sub-
maximal if and only if at least one of the following conditions holds,

1) Foranyr € R, x —r¢ 1.
2) There exists an element v € R such that x —r el and INR 1is
submaximal in R. In particular in this case I = I N R, x — 7).

Proor. Let ¢ : R[x] — IE be the natural epimorphism and put

S = ¢(R). We consider two cases.

(1) Suppose for each r € R, we have x — ¢ I which is equivalent to

[ ]

x+1¢S. Hence —— = S[x + I] and we are done by the above comment.
R

(2) Suppose that & —r €I for some » € R or equivalently, S = %

But clearly, Rgac] =S 7 f 7 implies that [ is submaximal in R[«] if and

only if INR is submaximal in R. It remains to be shown that

= (x —r,I N R). To this end, it is evident that (x —»,I N R) C I. Now let
f(x) € I and put f(x) = (x — r)g(x) + b, where g(x) € R[x] and b € R. Con-
sequently, f(x) € (x — r,I N R) and we are done. O

COROLLARY 3.2. The ring T is submaximal if and only if there exist
a ring R and a ring epimorphism ¢: Rlx] — T such that either
Ker(@n{zx—r|re R} =0 or RN Ker(¢) is a submaximal ideal in R.

We recall that if P is a G-ideal of a ring R (i.e., R/P is a G-domain),
then P = R N M, for some maximal ideal M of R[x]. If P is not maximal,
then by the proof of [12, Theorem 24], R[x]/M is the quotient field of
R/P.

The following is now immediate.
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COROLLARY 3.3. Let M be a maximal ideal in the ring R[x]. Then the
following statements are equivalent.

(1) M 1is not submaximal in R[x].
2) M = (x — r,m) for some r € R, where m = M N R € Max(R) is not
submaximal in R.

Proor. We note that whenever [ is an ideal of R[x] with x — r € I for
some r € R, then I = (x — »,I N R). This and the previous lemma complete
the proof if we show that when M is not submaximal, then m = M N R is

maximal in R. To see this, we note that m is a G-ideal and if it is not maximal,

Rlx] R Rlx] R R[x]
then WR = %[t], for some ¢ € a \ m Da
field of %) Consequently, by the observation in the introduction of this

(noting that is the quotient

R
section, we infer that % is submaximal, which is absurd. Thus 7 must be

maximal. O

COROLLARY 3.4. Let R be a non-submaximal ring and I be an ideal in
Rlz]. Then I is submaximal in R[x]if and only if IN{x —r | r € R} = 0.

COROLLARY 3.5. Let R be a ring and I be an ideal in Rlxy,...,x,]
Then I is not submaximal if and only if I = I N R,x1 —r1,..., T, — Ty),
where r; € R and I N R is not submaximal in R.

In view of our main result in Section 1, the next corollary characterizes
non-submaximal ideals in the rings of polynomials in finitely many vari-
ables over a field K.

COROLLARY 3.6. Let K be a field and I be an ideal in R =
Klx1,...,z,) Then I is not submaximal if and only if I is a maximal
ideal of the form I = (x1 — ay,...,x, — a,) and K is non-submaximal.

Using the above corollary and the Hilbert’s Nullstellensatz, we next
present a fact which can be considered as a slight generalization of Hil-
bert’s Nullstellensatz.

REMARK 3.7. Let K be an algebraically closed field and I be an ideal in
R = Kluxy,...,x,]. If I is a non-submaximal ideal of R, then [ is a maximal
ideal of the form I = (x; —ay,..., 2, —a,) and K = F’p, for some prime
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number p (note, in this case there is no need for K to be algebraically closed
to get the latter form) and if 7 is a maximal ideal of R which is submaximal,
then I has the same form and K is a submaximal field. Consequently, in this
case each proper ideal of R is submaximal, too. We should also emphasize
that in the former case proper non-maximal ideals are submaximal. Hence,
when K = F, and I is a proper non-maximal ideal in R, then there exist
maximal subrings S of R such that / C S and S/(SNM) = F’p for all
maximal ideals M of R.

Finally, in the following proposition, we characterize rings in which
every maximal ideal of R[x] is non-submaximal, which is a generalization of
Corollary 3.6.

ProPOSITION 3.8. Let R be a ring with nonzero characteristic, say n.
Then the following conditions are equivalent.

(1) Every maximal ideal of R[x] is non-submaximal
(2) R is a Hilbert ring and for each maximal ideal m of R, R /m is an
algebraically closed field with nonzero characteristic.

In particular, if the number of prime divisors of n is k and |Max(R)| > k,
then R is submaximal.

Proor. If (1) holds, then by the proof of Corollary 3.3, R is a Hilbert
ring; and if M is a maximal ideal in R[x], then M = (M N R, x — r), where
r € R. This shows that R/(R N M) is algebraically closed field and we are
done (note, if m is a maximal ideal in R, and p(x) is an irreducible poly-
nomial in (B/m)[x], then M = (m, q(x)), where g(x) = > a;x' € R[x] with

n . 1=0
plx) = > a;x', a; = a; + m, is a maximal ideal of R[aé] and M NR = m,

b (R/m)x]
hence R[x]/M ~ ————

/ (p(x))

must have deg(p(x)) = 1). The converse is similar, by applying Corollary
3.3. For the final part, since if m is a maximal ideal of R, then we have
R/m = F), for some prime number p|n, we infer that there exist distinet
maximal ideals m; and mg such that R/mg = R/mg, ie., m; Nmy is
submaximal, by [2, Theorem 2.2], and we are done. O

and since the latter field is non-submaximal we

Acknowledgments. We are very grateful to the referee for reading this
paper carefully and giving helpful comments and corrections.



228 A. Azarang - 0.A.S. Karamzadeh

REFERENCES

[1] M. F. Arivan - I. G. MACDONALD, Introduction to Commutative Algebra,
(Addison-Wesley, 1969).
[2] A. AZARANG, On maximal subrings, (FIMS) 32 (2009), pp. 107-118.
[3] A. AZARANG - O. A. S. KARAMZADEH, On the existence of maximal subrings in
commutative artinian rings, J. Algebra Appl., 9 (5) (2010), pp. 771-778.
[4] A. AZARANG - O. A. S. KARAMZADEH, On Maximal Subrings of Commutative
Rings, to appear in Algebra Colloquium (2011).
[6] H. E. BELL - F. GUERRIERO, Some Condition for Finiteness and Commu-
tativity of Rings. Int. J. Math. Math. Sci., 13 (3) (1990), pp. 535—-544.
[6] H. E. BELL - A. A. KLEIN, On finiteness of rings with finite maximal
subrings. J. Math. Math. Sci., 16 (2) (1993), pp. 351-354.
[7] J.V.BRAWLEY - G. E. SCHNIBBEN, Infinite algebraic extensions of finite fields
(Contemporary mathemathics, 1989).
[8] D. FERRAND - J.-P. OLIVIER, Homomorphismes minimaux danneaux, J.
Algebra, 16 (1970), pp. 461-471.
[9] W. FuLToN, Algebraic curves (Benjamin, New York, 1969).
[10] R. HARTSHORNE, Algebraic geometry (Graduate Texs in Math. 52, Springer-
Verlag, New York-Heidelberg-Berlin, 1977).
[11] N. JACOBSON, Lecture in Abstract Algebra I11, Theorey of Fields and Galois
Theory (Graduate Text in Mathematics 32, Springer-Verlag, New York, 1964).
[12] I. KarLANSKY, Commutative Rings, Revised edn (University of Chicago
Press, Chicago 1974).
[13] A. A. KLEIN, The Finiteness of a ring with a finite maximal subrings, Comm.
Algebra, 21 (4) (1993), pp. 1389-1392.
[14] T.J. LAFFEY, A finiteness theorem for rings, Proc. Roy. Irish Acad. Seet. A, 92
(2) (1992), pp. 285-288.
[15] T. Y. Lawm, A First Course in Noncmmutative Rings, Second edn, (Springer-
Verlag, 2001).
[16] T. KweN LEE - K. SHAN Liu, Algebra with a finite-dimensional maximal
subalgebra. Comm. Algebra, 33 (1) (2005), pp. 339-342.
[17] M. L. MobicA, Maximal subrings, Ph.D. Dissertation. (University of Chicago,
1975).
[18] S. RoMaN, Flield Theory, Second edn. (Springer-Verlag, 2006).
[19] H. STICHTENOTH, Algebraic Function Fields and Codes, Second edn, (Spring-
er-Verlag, Berlin Heidelberg, 2009).
[20] G. D. VILLA SALVADOR, Topics in the Theory of Algebraic Function Fields,
(Brikhauser Boston, 2006).
[21] C. WEIR, Hyperelliptic function fields, Proceedings of Ottawa Mathematics
Conference, May (1-2), (2008).

Manoseritto pervenuto in redazione il 30 gennaio 2011.



