On Groups of Odd Order Admitting an Elementary 2-Group of Automorphisms

Karise G. Oliveira (*) - Pavel Shumyatsky (**) - Carmela Sica (***)

ABSTRACT - Let G be a finite group of odd order with derived length k. We show that if G is acted on by an elementary abelian group A of order 2^n and $C_G(A)$ has exponent e, then G has a normal series $G = G_0 \geq T_0 \geq G_1 \geq T_1 \geq \cdots$ $\geq G_n \geq T_n = 1$ such that the quotients G_i/T_i have $\{k, e, n\}$ -bounded exponent and the quotients T_i/G_{i+1} are nilpotent of $\{k, e, n\}$ -bounded class.

Dedicated to Professor Said Sidki on the occasion of his 70th birthday

1. Introduction

Let G be a group and A a group of automorphisms of G. The subgroup of all elements of G fixed by A is usually denoted by $C_G(A)$. It is well-known that very often the structure of $C_G(A)$ has strong influence over the structure of the whole group G. The influence seems especially strong in the case where G is a finite group of odd order and A is an elementary abelian 2-group. It was shown in [5] that if G is a finite group of derived length K on which an elementary abelian group K of order K0 acts fixed-point-freely, then K1 has a normal series K2 has a fixed-point point and the class of K3. It is bounded with a

(*) Indirizzo dell'A.: Instituto Federal de Educação, Ciência e Tecnologia de Goiás, Av. Universitária, s/n, Vale das Goiabeiras, CEP: 75400-000 Inhumas GO, Brazil.

E-mail: karisemat@gmail.com

(**) Indirizzo dell'A.: Department of Mathematics, Universidade de Brasilia, 70.919 Brasilia - DF, Brazil.

E-mail: pavel@mat.unb.br

(***) Indirizzo dell'A.: Dipartimento di Matematica, Università di Salerno, Via Ponte don Melillo, 84084 Fisciano (SA), Italy.

E-mail: csica@unisa.it

function of k and i (see also [7] for a short proof of this result). In the present paper we further exploit the techniques developed in [7]. One of the obtained results is the following theorem.

Theorem 1.1. Let G be a finite group of odd order and of derived length k. Suppose that G admits an elementary abelian group A of automorphisms of order 2^n such that $C_G(A)$ has exponent e. Then G has a normal series

$$G = G_0 \ge T_0 \ge G_1 \ge T_1 \ge \cdots \ge G_n \ge T_n = 1$$

such that the quotients G_i/T_i have $\{k, e, n\}$ -bounded exponent and the quotients T_i/G_{i+1} are nilpotent of $\{k, e, n\}$ -bounded class.

The other result deals with the situation where $\gamma_c(C_G(a))$ has exponent e for all automorphisms $a \in A^\#$. Here $A^\#$ denotes the set of non-trivial elements of A and $\gamma_i(H)$ stands for the i-th term of the lower central series.

THEOREM 1.2. Let G be a finite group of odd order and of derived length k. Suppose that a four-group A acts on G in such way that $\gamma_c(C_G(a))$ has exponent e for all $a \in A^{\#}$. Then G has a normal series

$$G=T_4\geq T_3\geq T_2\geq T_1\geq T_0=1$$

such that the quotients T_4/T_3 and T_2/T_1 are nilpotent of $\{e, c, k\}$ -bounded class and the quotients T_3/T_2 and T_1 have $\{e, c, k\}$ -bounded exponent.

Throughout the paper we say that a group G is nilpotent of class c meaning that the class of G is at most c and we say that G has exponent e meaning that the exponent of G divides e. The expression " (a, b, \ldots) -bounded" stands for "bounded from above by a function depending only on the parameters a, b, \ldots ".

2. Auxiliary Results

The following lemmas are well-known (see for example Theorem 6.2.2, Theorem 6.2.4 and Theorem 10.4.1 in [1]).

Lemma 2.1. Let G be a finite group admitting a coprime group of automorphisms A. Then we have

- a) $C_{G/N}(A) = C_G(A)N/N$ for any A-invariant normal subgroup N of G;
- b) $G = C_G(A)[G, A];$
- c) [G,A] = [G,A,A];
- d) If G is abelian, then $G = C_G(A) \times [G, A]$.
- Lemma 2.2. Let G be a finite group admitting an abelian non-cyclic coprime group of automorphisms A. Then $G = \langle C_G(a) \mid a \in A^{\#} \rangle$.
- LEMMA 2.3. Let G be a finite group of odd order admitting an automorphism a of order 2 such that G = [G, a]. Suppose that N is an a-invariant normal subgroup of G such that $C_N(a) = 1$. Then $N \leq Z(G)$.

Our next lemma is immediate from [3, Lemma 2.6].

LEMMA 2.4. Let G be a finite group admitting a coprime group of automorphisms A. Suppose that G is generated by a family $\{H_i \mid i \in I\}$ of normal A-invariant subgroups. Then

$$C_G(A) = \langle C_{H_i}(A) \mid i \in I \rangle.$$

Lemma 2.5. Let G be a metabelian finite group of odd order admitting an automorphism a of order 2 such that $C_G(a)$ has exponent e and G = [G, a]. Then G' has exponent e.

PROOF. Since G/G' is abelian and G=[G,a], by Lemma 2.1 $C_{G/G'}(a)=1$ and so $C_G(a)\leq G'$. Let N be the normal closure of $C_G(a)$ in G. Since G' is abelian we conclude that N has exponent e. On the other hand, G/N is abelian because a acts on G/N fixed-point-freely. Therefore G'=N and the result follows.

PROPOSITION 2.6. Let G be a finite group of odd order and of derived length k admitting an automorphism a of order 2 such that $C_G(a)$ has exponent e and G = [G, a]. Then G' has $\{e, k\}$ -bounded exponent.

PROOF. In view of Lemma 2.5 the result is obvious if $k \leq 2$. Suppose that $k \geq 3$ and let $M = G^{(k-1)}$. By induction we conclude that G'/M has $\{e,k\}$ -bounded exponent. Hence, it is enough to show that M has $\{e,k\}$ -bounded exponent. Working with the quotient $G/\langle C_M(a)^G\rangle$ we can simply assume that $C_M(a) = 1$. Lemma 2.3 now shows that $M \leq Z(G)$. Therefore $G^{(k-2)}$ is nilpotent of class 2. Since $G^{(k-2)}/M$ has $\{e,k\}$ -bounded exponent, it follows that $G^{(k-2)}$ has $\{e,k\}$ -bounded exponent [4, Theorem 2.5.2]. In particular, M has $\{e,k\}$ -bounded exponent.

A well-known theorem of Hall says that if G is a soluble group of derived length k and all metabelian sections of G are nilpotent of class at most c, then G is nilpotent of $\{k,c\}$ -bounded class [2]. We will require the following related result obtained in [6]. We denote by f(g,c) the expression $(g-1)\frac{c(c+1)}{2}+c$.

THEOREM 2.7. Let G be a group and N a nilpotent normal subgroup of G of class g such that $\gamma_{c+1}(G/N')$ has exponent e. Suppose that $\gamma_{c+1}(G)$ is soluble of derived length d. Then $\gamma_{f(g,c)+1}(G)$ has finite $\{g,e,c,d\}$ -bounded exponent.

The next proposition was obtained in [7, Corollary 3.2]. It plays a crucial role in the subsequent proofs.

PROPOSITION 2.8. There exists a number s = s(k,n) depending only on k and n with the following property. Suppose that G is a finite group of odd order that is soluble with derived length at most k. Assume that an elementary group A of order 2^n acts on G and let R be a normal A-invariant subgroup of G such that $C_R(A) = 1$. Set $N = \bigcap_{a \in A^\#} [G, a]$. Then $[R, \underbrace{N, \ldots, N}_{s}] = 1$.

3. Main Results

PROPOSITION 3.1. Let G be a finite group of odd order and of derived length k. Suppose that G admits an elementary abelian group of automorphisms A of order 2^n such that $C_G(A)$ has exponent e. Then $\bigcap_{a \in A^\#} [G, a]$ is an extension of a group of $\{k, e, n\}$ -bounded exponent by a nilpotent group of $\{k, e, n\}$ -bounded class.

PROOF. Set $N=\bigcap_{a\in A^\#}[G,a]$ and use induction on the derived length of N. If N is abelian, the result is trivial. Suppose that the derived length of N is greater than or equal to 2 and let L be the metabelian term of the derived series of N. Put $M=L'\cap C_G(A)$ and let D be the normal closure of M in G. Since D is abelian with generators of order e, we see that D has exponent e. Considering the quotient G/D we can simply suppose that $C_{L'}(A)=1$. Proposition 2.8 shows that $L'\subseteq Z_s(L)$ and so L is nilpotent of class s+1. By

induction, N/L' is an extension of a group of $\{k,e,n\}$ -bounded exponent by a nilpotent group of $\{k,e,n\}$ -bounded class, say c. Since the derived length of $\gamma_{c+1}(N)$ is at most k, by Theorem 2.7 we conclude that $\gamma_{f(s+1,c)+1}(N)$ has $\{k,e,n\}$ -bounded exponent, as required.

Given a group H and positive integers e and c, we denote by V(H) the verbal subgroup of H corresponding to the group-word $[x_1, \ldots, x_c]^e$ and by W(H) the verbal subgroup of H corresponding to the group-word $[x_1, \ldots, x_{3c-2}]^{e^3}$.

Lemma 3.2. Let G be a finite metabelian group of odd order admitting a four-group of automorphisms A such that $\gamma_c(C_G(a))$ has exponent e for all $a \in A^{\#}$. Then there exists a normal subgroup M of G such that $C_M(A) = 1$ and $\gamma_{3c-2}(G/M)$ has exponent e^3 .

PROOF. For every $a \in A^{\#}$ put $G_a = G'C_G(a)$. It is easy to see that $[G_a,a]=[G',a]$ is normal in G_a . Since $G_a/[G',a]$ is isomorphic to a quotient of $C_G(a)$, it follows that $V(G_a)$ is contained in [G',a]. Since G' is abelian, by Lemma 2.1 we have $[G',a] \cap C_G(a) = 1$. It follows that $V(G_a) \cap C_G(a) = 1$. Let $M=\prod_{a \in A^{\#}} V(G_a)$, obviously M is a normal subgroup of G. By Lemma 2.4, $C_M(A) = \langle C_{V(G_a)}(A) \mid a \in A^{\#} \rangle$ and so $C_M(A) = 1$. By Lemma 2.2 we have $G = \langle G_a \mid a \in A^{\#} \rangle$. Thus, G/M is product of three normal subgroups each of which is an extension of a group of exponent e by a nilpotent group of class c-1. Thus G/M is an extension of a group of exponent e^3 by a nilpotent group of class 3c-3.

Lemma 3.3. Let G be a metabelian group such that $\gamma_c(G/Z(G))$ has exponent e. Then $\gamma_{c+1}(G)$ has exponent e.

PROOF. Let $E = \gamma_c(G)$. Then $E/(Z(G) \cap E)$ has exponent e. For arbitrary elements $x_1, x_2, \ldots, x_c, x_{c+1} \in G$ we have

$$[x_1, x_2, \dots, x_c] \in E.$$

Therefore

$$[x_1, x_2, \dots, x_c]^e \in Z(G) \cap E,$$

whence

$$[[x_1, x_2, \dots, x_c]^e, x_{c+1}] = 1.$$

Since $[x_1, x_2, \dots, x_c] \in G'$, which is a normal abelian subgroup of G, we

obtain that

$$[x_1, x_2, \dots, x_c, x_{c+1}]^e = [[x_1, x_2, \dots, x_c]^e, x_{c+1}] = 1.$$

Hence, $\gamma_{c+1}(G)$ has exponent e.

PROPOSITION 3.4. Let G be a finite group of odd order and of derived length k admitting a four-group of automorphisms A such that $\gamma_c(C_G(a))$ has exponent e for all $a \in A^\#$. Then $\bigcap_{a \in A^\#} [G, a]$ is an extension of a group of $\{e, c, k\}$ -bounded exponent by a nilpotent group of $\{e, c, k\}$ -bounded class.

Proof. Let $N = \bigcap_{a \in A^\#} [G,a].$ We use induction on the derived length of

N. If N is abelian the result is trivial. Suppose that the derived length of N is greater than or equal to 2 and let L be the metabelian term of the derived series of N. First we will show that L is an extension of a group of $\{e,c,k\}$ -bounded exponent by a nilpotent group of $\{e,c,k\}$ -bounded class. By Lemma 3.2 there exists a normal subgroup M of L such that $C_M(A)=1$ and $\gamma_{3c-2}(L/M)$ has exponent e^3 . Thus $W(L)\subseteq M$ and so $W(L)\cap C_L(A)=1$. If W(L)=1, then $\gamma_{3c-2}(L)$ has exponent e^3 . Suppose that $W(L)\neq 1$. Since $W(L)\cap C_G(A)=1$ it follows from Proposition 2.8 that there exists a bounded number s such that

$$[W(L), \underbrace{N, \ldots, N}_{a}] = 1.$$

Let t be the smallest number such that $W(L) \subseteq Z_t(N)$. We know that $t \le s$. It will be shown by induction on t that L is an extension of a group of $\{e,c,k\}$ -bounded exponent by a nilpotent group of $\{e,c,k\}$ -bounded class. For t=1 we have the inclusion $W(L) \subseteq Z(N)$. In this case $L/(L \cap Z(N))$ is an extension of a group of exponent e^3 by a nilpotent group of class 3c-3. By Lemma 3.3 we deduce that $\gamma_{3c-1}(L)$ has exponent e^3 , as required.

Suppose now that $t \ge 2$ and the result is valid for t-1. Let $K = [W(L), \underbrace{N, \ldots, N}_{t-1}]$. It is clear that $K \le Z(N)$. By induction it follows

that L/K is an extension of a group of $\{e,c,k\}$ -bounded exponent by a nilpotent group of $\{e,c,k\}$ -bounded class and by Lemma 3.3 also L is an extension of a group of $\{e,c,k\}$ -bounded exponent by a nilpotent group of $\{e,c,k\}$ -bounded class, say c_1 . Put $H=\gamma_{c_1+1}(L)$. So H has $\{e,c,k\}$ -bounded exponent. Passing to the quotient G/H we can simply

assume that H=1. By induction on the derived length of N, we deduce that N/L' is an extension of a group of $\{e,c,k\}$ -bounded exponent by a nilpotent group of $\{e,c,k\}$ -bounded class, say c_2 . By Theorem 2.7 we conclude that $\gamma_{f(c_1,c_2)+1}(N)$ has $\{e,c,k\}$ -bounded exponent, as required.

Now we are in a position to prove our main results.

PROOF OF THEOREM 1.1. If n = 1, Proposition 2.6 guarantees that [G, a]' has $\{e, k\}$ -bounded exponent and so

$$G = G_0 \ge [G, a] = T_0 \ge [G, a]' = G_1 \ge T_1 = 1$$

is the required series. Suppose that $n\geq 2$ and use induction on n. For every normal A-invariant subgroup N of G the group A induces a group of automorphisms of G/N. In particular A induces a group of automorphisms B_a of G/[G,a] for every $a\in A^\#$ with $|B_a|\leq 2^{n-1}$ and $C_{G/[G,a]}(B_a)$ of exponent e. Let B be the elementary abelian group of order 2^{n-1} . We can define an action of B on G/[G,a] as follows. For all $a\in A^\#$ we consider B_a as a subgroup of B and we can write $B=B_a\times D_a$ for a suitable subgroup D_a of B. For any $b\in B$ there exists a unique pair $(b_1,b_2)\in B_a\times D_a$ such that $b=b_1b_2$. Then for any $x\in G/[G,a]$ we put $x^b=x^{b_1}$. This action is well defined and $C_{G/[G,a]}(B)$ has exponent e. Let $K=\prod_{a\in A^\#} G/[G,a]$, we have an action of B on K that extends the action of B on every factor G/[G,a] and $C_K(B)$ has exponent e.

By induction, K has a series of length 2(n-1) with the required properties. By Proposition 3.1 the subgroup $N = \bigcap_{a \in A^\#} [G,a]$ is an extension of a group of $\{k,e,n\}$ -bounded exponent by a nilpotent group of $\{k,e,n\}$ -bounded class. Since G/N embeds in K the result follows.

PROOF OF THEOREM 1.2. Each factor G/[G,a] is isomorphic to a quotient of $C_G(a)$, so it is an extension of a group of exponent e by a nilpotent group of class c-1. Therefore $K=\prod_{a\in A^\#}G/[G,a]$ is an extension of a group of exponent e^3 by a nilpotent group of class 3c-3. Let $N=\bigcap_{a\in A^\#}[G,a]$. Since G/N embeds in K, we conclude that $\gamma_{3c-2}(G/N)$ has exponent e^3 . Proposition 3.4 ensures that N is an extension of a group of $\{e,c,k\}$ -bounded exponent by a nilpotent group of $\{e,c,k\}$ -bounded class. The proof is complete.

REFERENCES

- [1] D. Gorenstein, *Finite Groups*, Harper and Row, New York, Evanston, London, 1968.
- [2] P. Hall, Some sufficient conditions for a group to be nilpotent, Illinois J. Math., 2 (1958), pp. 787–801.
- [3] B. Hartley, Periodic locally soluble groups containing an element of prime order with Cernikov centralizer, Quart. J. Math. Oxford Ser., (2), 33, n. 131 (1982), pp. 309–323.
- [4] E. Khukhro, Nilpotent groups and their automorphisms, Berlin, New York, De Gruyter expositions in mathematics; 8 (1993).
- [5] P. Shumyatsky, Groups with regular elementary 2-groups of automorphisms, Algebra and Logic, 27, no. 6 (1988), pp. 447–457.
- [6] P. SHUMYATSKY, On extensions of groups of finite exponent, Glasgow Math J., 45, n. 3 (2003), pp. 535–538.
- [7] P. Shumyatsky C. Sica, On groups admitting a fixed-point-free elementary 2-group of automorphisms, Comm. Algebra, 38, n. 11 (2010), pp. 4188–4192.

Manoscritto pervenuto in redazione il 24 febbraio 2011.