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On the Components of the Push-out Space
with Certain Indices

YUsur Kaya

ABSTRACT - Given an immersion of a connected, m-dimensional manifold M without
boundary into the Euclidean (m + k)-dimensional space, the idea of the push -
out space of the immersion under the assumption that immersion has flat
normal bundle is introduced in [3]. It is known that the push-out space has
finitely many path-connected components and each path-connected component
can be assigned an integer called the index of the component. In this study,
when M is compact, we give some new results on the push-out space. Especially
it is proved that if the push-out space has a component with index 1, then the
Euler number of M is 0 and if the immersion has a co-dimension 2, then the
number of path-connected components of the push-out space with index
(m — 1) is at most 2.

1. Introduction

Throughout we assume M (or M™) is an m-dimensional connected
smooth (C*°) manifold without boundary. The tangent space of M at a point
p will be denoted by T',M.

£ M™ — R™"* will be assumed a smooth immersion or embedding
into Euclidean m + k space, i.e. f has co-dimension k. In this case

dfp . TpMm N Tf(p)(R’WH-k) — {f(p)} ~ Rm+k ) Rm+k

is an injection. We identify T),M with Im df,, ¥p € M. In this way, we can
assume that f is an isometric immersion. There is a standard inner product
(,) on R™**. So we can define the normal space at p as the normal com-
plement of I'm df,. Let v,(f) denote the k— plane which is normal to /(M) at
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f(p). The total space of the normal bundle is defined by
N() = {(p,v) € M x R™™ . f(p) + v € v,()}.

Note that N(f) is an (m + k)-dimensional smooth manifold.

A normal field on M for f is a smooth map ¢&: M™ — R™* where
f(p)+ &(p) € vp(f) for all p € M.

With this notation, the endpoint map E : N(f) — R™ is defined by
E(p,v) = f(p) + v, and E is known to be a smooth map.

1.1 — Immersions of manifolds and focal points

DEFINITION 1. A point x € R is a focal point of f(M) with base p if
E is singular at (p,x — f(p)), 1.e. (p,x — f(p)) is a critical point of E. The
focal point has multiplicity u > 0 if rank (Jacobion E) =m +k — u .

The set of focal points of f (or f(M) ) with base p will be denoted by
F,(f).This is an algebraic variety, that is, it is a set of zeros of a poly-
nomial with degree at most m in k variables in v,(f) and in general it
can be quite complicated [8]. In this study, we will be considering the

simplest case. We remark that by [6], x € F),(f) iff < v,(f) and

B 1 _ 2=/
#=f(p) +7&(p) where &(p) = —7

shape operator Ag,) : TyM — TpM, i.e. J is a principal curvature of f at
f(p) in the normal direction &(p).

For € R™** the distance function for f, L, : M™ — R is defined by
L.(p) = ||lx — f(p)||*. Using [6], the point p € M is a critical point of L, if
and only if v € v,(f) and further p is a non-degenerate critical point of L, if
and only if « is not a focal point of f with base p. So,

and A is an eigenvalue of the

Fp(f)={x e R™™ . p is a degenerate critical point of L,}.

We use this characterisation of F',(f) to calculate focal points with base p.
Further, using [6] again, the index of L, at a non-degenerate critical point
p € M isequal to the number of focal points of f with base p which lie on the line
segment from f(p) to x, each focal point being counted with its multiplicity.

1.2 — Parallel immersions to a given immersion

DEFINITION 2. Let f:M"™ — R"™™ be an immersion and
{m,no, ..., } be an orthonormal set of normal fields for f in a neigh-
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bourhood of some point p € M. A normal field & for f is said to be a

o¢

parallel wnormal  field, if <a—p_,17j

>:O for all peM, where
1=1,....m,j5=1,....k and p1,...,pn 1S @ coordinate system in a

neighbourhood of p € M.

Since we assume M is connected, note that a parallel normal field on M
has constant length.

Let f: M™ — R™ be an immersion and assume & : M™ — R"* ig a
parallel normal field for f . The map f: : M™ — R™** is defined by

f(p) =f(p) + &(p).

If f: is an immersion, it is called a parallel immersion to f and & is said
to be immersive. We remark that, for all p € M, the normal planes of f
and f: at each p € M are the same.

If f: is an immersion, then the index of f;, ind fz, is defined to be the
total multiplicity of the focal points of f with base p on the line segment
between f(p) and f:(p), this index is shown to be constant over M by the
following well-known fact. We call this number as the index of the im-
mersive parallel normal field & as well.

LEmMa 1. Let f:M™—R™* be an immersion and let
E:M™ — R" pe a parallel normal field for f. Then the following are
satisfied.

(@) f: is an immersion if and only if for all p € M, fx(p) is not a
focal point of f with base p

(i) ® € R™* is a focal point of fz with base p if and only if x is a
focal point of f with base p. So, Fy(fz) = F,,(f) for all p € M.

1.3 — The push-out space of immersions with flat normal bundle

Let M be a connected, m-dimensional manifold and f : M — R™** be
an immersion. If for all p € M, there exists a neighbourhood U C M of p
and a parallel normal frame field for f on U, then it is said that f has
locally flat normal bundle. The normal bundle N(f) is flat (or globally flat)
if there exists a global parallel normal frame on M.

If the immersion f has locally flat normal bundle, then at each base
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point p € M, the focal set on v,(f) is a union of at most m hyperplanes
(which is the simplest set that can occur as focal set, if non empty) where
each plane is counted with its proper multiplicity [8, pp. 69-70]. A gen-
eralisation and the converse of this result can be derived from [4].

First, we assume that the normal bundle of f is globally flat. So there
exists an orthonormal set of parallel normal fields &, ..., &, : M™ — R™*
for f. For each pe M, a map ¢,:v)(f)— R® can be defined by

k
?p (f(p)—i— Za@ﬂp)) =(a1,...,a;). For each p € M, we denote Q, =

i=1
R \ ,(Fp(f)). Then, the push-out space of the immersion f is defined
by

Qf) = m 2.

peM

This set is essentially defined and many properties of it are studied in [3].
For example, Q(f) has finitely many path-connected components with each
component convex and each component can be assigned an integer called as
index. Further, if M is compact, each component is open. The definition of
Q(f) depends on the choice of &4, . .., &, but, it is shown in [3] that different
choices produces an isometric set. We are going to study some properties of
Q(f)which are related to number of path-connected components of Q(f) with
certain indices and some relations with the Euler characteristic of M (when
M is compact).

As pointed out in [3] we can next consider an immersion [ of m -di-
mensional manifold M which has locally flat normal bundle but the normal
holonomy group is nontrivial. In this case we can take the simply connected
covering space M of M with covering map 7 : M™ — M™ and work with the
immersion f = f o7 : M™ — R™"" which has globally flat normal bundle
with trivial normal holonomy. We know that f and f have the same focal
set:

PROPOSITION 1. With the notation above, Fy(f) = F( f )forallp e M
and p € M with n(p) = p, where n : M — M 1s the covering map.

ProoF. Letw € R™* and define L, : M™ — R (distance function for
the immersion f) by

L) = & = fF@)|]® = Ly o n(p),

where L, : M™ — R is the usual distance function for f. Since =z is an im-
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mersion, p is a degenerate critical point of L, if and only if 7(p) is a de-
generate critical point of L,. Therefore F,(f) = Fj;(f) for all p € M and
p € M with n(p) = p. O

So this result allows Q(f) to be defined by Q(f) = Q(fon) = Q(f).
This is useful especially when we have an immersion of a nonorientable
manifold with locally flat normal bundle where obviously the normal
holonomy group is nontrivial. Consequently, by replacing f with f if
necessary, we may assume that f has globally flat normal bundle with
trivial normal holonomy group. Remark that M may fail to be compact
again even M is compact, but we can use critical point theory of
distance function thorough the immersion of M to deduce some results
on £ f ).

Let @ = (a1,0as, . ..,a;) € Q). As in [3], define &) : M™ — R™ by

k
E(a)(p) = Z a;&;(p), where &;,&,, ..., &, are unit parallel normal fields on

—1
M forminé a basis for the normal k-plane at f(p) for all p € M. Then it is
easy to check that &(a) is an immersive parallel normal field for f on M.
With this notation (f) can be defined as

Q)= {a c RF : f(p)+ E(a)(p) is not a focal point of f with base p, VpeM}.

DEFINITION 3. Let a € Q(f). The index of a, ind a, is defined to be the
mdex of the tmmersion fxg).

We know by [3] that if A is a path-connected component of Q(f) and if
a,b € A, then ind a = ind b. Then the index of A is defined to be ind a for
some a € A which is constant over A. So each path-connected component
of Q(f) can be assigned a number, called its index. We will denote the
union of the path-connected components of Q(f) with index u by Q. So
Qf)y= QuUEtU---UQ™. Note that Q° is always non empty and the
others may be empty or not.

2. Path-connected components and their respective indices.

In this section, firstly, we give an example to illustrate the Q(f) for a
given embedding f with flat normal bundle and then we prove some
general results on Q(f).
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ExampPLE 1. Letf: R x R — S* ¢ R®**2 be given by

£0,¢) = 7 (cos 0,sin 0, cos ¢, sin ),

then f induces an embedding f of S} x S into §?
mod 27, ¢ mod 27 and also Q(f) = Q(f). Now,

c R?*2 by taking 0

&0,90) =f(0,9) = 7_ (cos 0,sin 0, cos ¢, sin @) ,

—(—-cosl,—

&(0,9) =

sin 0, cos ¢, sin ¢)

\/_

are unit parallel normal fields to f and form a basis for the normal planes for
all (0,¢) € R x R. Put &0, ¢) = t£1(0, ¢) + s&2(0, ¢), for some ¢, s € R, then
=f(0,9) +11(0.9) + 50, 9).

1 (A+t—s)cosO, (1+t—s)sinf, (1+t+s)cos, (1+t+s)sing).

2

Using the distance function L,(6, ¢) = ||x —f(@, <;5)||2 for x = (11, %2, 23, %4) €
R, we get

L, 2 . L.,
o =—(x18inf —xzcos b)) , 0

f:0,4)

(903 sing — x4 cos ) ,

90 2 EERRY
PL, 2 . L,
——— =—(xr1cos0 +x2sinf)), —5 =—=(x3cos0+ x4sinb) ,
oF 2 ? o V2 !
PL, B &L, _
0400  000¢
Then
2
0L, 0
Hess(L,) =H = P
x aZLx
¢
So ]75(0, #) is a focal point of f at (0, ¢) < (0, ) is a degenerate critical point
OL, OL,
— O —
00 ¢’

x :]?5(0, ¢) for some t,s € R. By replacing « byff(ﬁ, #)and using det H = 0
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we get

3(1+t—s) 0

det V2 9 =0<=1Q+t+s)1+t—-95=0
— 1+t
\/Q( +t+s)

= A+t -s=0
—s=+0+1).

Therefore the focal set of f with base (6, ¢) € R x R is a pair of lines per-
pendicular to one another which is the same for all base points (0, ¢).
Consequently

Q) = Q) = Qo (). ¥0.9).0.¢) € R xR.

Then, Q(f) has four path-connected components since each Qe.s( f) has
four path-connected components; one of index 0, two of index 1, and one
of index 2. Hence the same is true for Q(f), as Q(f) = .Q(f), see the
Figure 1. Then Q(f)=Q°UQ'U@® and in the Figure 1, we put
Q' =AUB.

Figure 1

We know by [3], 2(f) can have at most one component with index m and
if there is such a component, it is unbounded. Note that, we have examples
of immersions such that ©° is bounded.
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THEOREM 1. Let f: M™ — R™* be an immersion of a compact, m-
dimensional manifold such that f has flat normal bundle. If Q(f) has a
component with index m, then Q° is unbounded.

Proor. Leta € Q™ and take the immersive parallel normal field &(a) .
Then ¢, Y @) = fuw)(p),¥p € M and index fiq = m. So for all p € M, the
total multiplicity of focal points with base p on the line segment from f(p) to
Ja)(p) is m. Therefore there are no focal points on the rays

R, ={f(p) +t&a)p) € vy(f): t >1}
Qy ={f(p) + t&a)p) € vp(f): t <0}
AlsoVp e M, gop(Qp) ={ta :t <0} C 2, and so

{ta:t <0} C ({2 :p €M} =)
Hence {ta :t < 0} ¢ Q° and Q° is unbounded. O

PROPOSITION 2. Let f : M™ — R™* be an immersion with flat normal
bundle and assume &, 5 - M™ — R™ are immersive parallel normal fields
for fwithindices J.and u respectively. Then, the number of focal points with
base p on the line segment from fz(p) to f,(p) is constant for all p € M and it
18 A+ u — 21 for some l € N where max{0,1 + u —m} <1 <min{/, u}.

Proor. Asin Lemma 4.4 of [3], since f: + (- &) =f,, son—<Cis an
immersive parallel normal field for the immersion f; and we need to find its
index for f; which is constant. Here we try to formulate this constant.

Let p € M and put « = f:(p) and y = f,(p). If f(p),x,y are collinear,
then the number of focal points with base p on the line segment from f:(p)
to f,(p) is A+ u or |4 — u| with respect to positioning of f(p) and we can
take [ =0 or l =1 or | = u . Otherwise, take the triangle on v,(f) with
vertices f(p),x,y, and consider the 2 -plane say Q(p) which contains this
triangle. We know that Q(p) N F',(f) is a union of at most m lines if it is non
empty, since F,(f) is a union of at most m hyperplanes on v,(f) [8].

If w,v € vp(f), then the notation uv denotes the line segment from u to
v. We know the total multiplicity of focal points on f(p)x is 4 and on f(p)y is
. Now, let I(p) > 0 be an integer and assume that [(p) lines(counting
multiplicities) meet both of the edges f(p)xr and f(p)y. Clearly
0 < U(p) < min{A, u}. Then the remaining 4 — I(p) lines intersecting f(p)x
must intersect xy. And similarly the remaining x — I(p) lines intersecting
f(p)y must intersect xy. So we get the total multiplicity on xy is exactly
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A=Up)+u—1Up) =2+ u—2l(p). So we deduce the total multiplicity of
focal points on the line segment from f:(p) to f,(p) is A + u — 2{(p). But the
index of the parallel immersion (f),_., to f: is a constant number, so l(p) is
constant for all p € M.

Put [ =1I(p). Since there exist at most m lines on Q(p), then
A4 u—m <. Then max{0,1 4+ u —m} <1 <min{4, u}. O

(n—¢

COROLLARY 1. If A = u =1 1 Proposition 2, then, for all p € M, the
number of focal points with base p on the line segment from f:(p) to f,(p)
18 2 (where 1 = 0).

THEOREM 2. Let f: M"™ — R™* be an immersion with flat normal
bundle and assume & : M™ — R™ is an immersive parallel normal field
for f.

(1) There exists a we R*  such that Q(fe) = Q(f) —w, where
Qf)—w={a—w:aecQf)}

(ii) if A is a path-connected component of Q(f) with index u and if
the index of f: is 4, then there exists an | € N such that A —w is a path-
connected component of Q(f:) with index A+ u— 2l where max{0,
A4+ u—m} <l <min{k, u}.

Proor. (2) Since f has flat normal bundle, there exists a set of ortho-
normal parallel normal fields {&;, &, - - -, &} forming a basis of the normal
space at each base point p € M. We will use this basis to define Q(f) and
Q(f:). We can write

E=wiéy + - +Fwpdy

for some constants wy,...,w; € R and put w = (wy,...,wy) € R*. Then
we can easily see that a € Q(f)<=a—we Q(f). In fact, let
a=(ay,...,a) € Q(f). We know F,(f) = Fp,(f) for all p € M by Lemma
1 (ii). Then, for all p e M

fM+aé +- b ¢ Fp(f) =f+E+mé + -+ o — &
=fe+ (a1 — w1y + - + (o — wp)l & Fip(fe).

So a —w € Q(f) and therefore Q(f:) = Q(f) — w.

(77) Let @ € A, then clearly a — w € Q(f;) by Theorem 2 (i), hence A — w
is a path-connected component of Q(f:). Since A is a path-connected
component of Q(f) with index y, there exists an immersive parallel normal
field » for f with index x and ¢,(f(p) +n(p)) = a for all p € M. As in
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Proposition 2, f: + (n — &) =f,, so y — £ is an immersive parallel normal
field for f: and its index for f: is A+ u —2l for some [ € N where
max{0,A+ u —m} <1 <min{l,u}. O

The following result concerns the positioning of the path-connected
components of Q(f) in R,

THEOREM 3. Let f: M™ — R™* be an immersion with flat normal
bundle. Let A, B be path-connected components of Q(f) with index A and u
respectively. If 2 + u > m, then there exists a hyperplane in RF such that A
and B lie on one side of the hyperplane and Q° lies on the opposite side of
the hyperplane.

Proor. Let A, B be path-connected components of Q(f) with index A
and u respectively and a € A, b € B. Then there exist immersive parallel
normal fields &, for f such that index f: = A, index f, = u and also for
all pe M, 9,'(a) =f:(p) and ¢,'(b) =f,(p). Now consider the normal
plane v,(f) for a fixed p € M and the focal hyperplanes I1y,...,1I; on
vp(f) with their respective multiplicity w; where 1 <1¢ <s, s <m and
wy+ -+ ws <m.

Since f: has index 4, the line segment joining f(p) to f:(p) must cross
,,...,II, where [ <J, w, +---+w, =/ and similarly the line seg-
ment joining f(p) to f,(p) must cross Ilg,..., 115, where d <y,
wp, + -+ Wy, = p.

Here, I1,,,...,11,,Ilg , ..., Iz, are not all distinct since A + x> m . So
let IT € {II,,,... . 11,,} N {Ilg,.. Hﬁd} Then we claim that A, B stay on
one side of the hyperplane pp,(11 ) Ain R*. Set (op(ﬂ )=4;,1<i<s.
Since each 4; divides R* into two open connected regions, we identify them
by writing 4; for the region including the origin and ;" for the other part.

Then, @’ cCA; for all 1<i<s, AcAjn---N4) and BC
A 0---N Ay . Therefore A and B stay in A", and hence 4 is the hyper-
plane we are seeking. O

3. Number of path-connected components of Q(f) with certain indices

It is interesting to know the number of path-connected components of
Q(f) with their respective indices for an immersion f of M as it includes
some information on the geometry and the topology of the m -dimensional
compact manifold M. Here, we prove that if we have a path-connected
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component of Q(f) with index 1, then the Euler characteristic of M is 0.
Secondly, we prove that the number of path-connected components of Q(f)
with index (m — 1) is at most 2 for a co-dimension 2 immersion.

THEOREM 4. Let f : M"™—R"™** be an immersion of compact mani-
Sfold with flat normal bundle and let y(M) # 0 where m is an even number.
Then Q' = ().

Proor. If @' # (), then there exists a unit parallel normal field & for f
such that fi: =f + s& is an immersion with index 1 for some s > 0. So
V p € M, there exists only one focal point c¢(p) of multiplicity 1 on the line
segment from f(p) to fi:(p) such that ¢ : M™—R"™** p — c(p) is con-
tinuous. Define / : M™—R by

1

Y =
==

Then 4 is continuous as it is the principal curvature function of f in the unit
normal direction &. Also A is smooth since it is of constant multiplicity 1 on M
[7]. So the principal direction corresponding to the principal curvature A(p)
defines a nonzero smooth tangent vector field on M which has no zeros. So
considering that M is compact, (M) = 0 by the Poincaré-Hopf Theorem
in [5]. But this contradicts y(M) # 0. Therefore ot = 0. O

A generalisation of this theorem to any odd indexed component is
proved in [1] by a different method. Present method here may not be
generalized, because respective vector field can fail to be smooth.

DEFINITION 4. Let f : M"™—R™* be an immersion with flat normal
bundle, then d(f) is defined to be the total number of the path-connected
components of Q(f).

It was proved in [3] that d(f) < a(m, k) where a(m, k) is the number of
path-connected regions in the complement of m hyperplanes in general
position in RF as

2m ifm< k
oa(m, k) = .
(") itm>r
1

k
1=0
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COROLLARY 2. Let f: M*—R*™* be an immersion with flat (or
locally flat) normal bundle of a compact surface for some k > 1 and let
(M) # 0. Then Q' = ) and so d( f) < 2.

Proor. By Theorem 4, Q' = () and also Q°, Q? are connected [3], hence
d(f) < 2. Of course Q% can occur, definitely when f is spherical, [2]. O

ExampLE 2. For the homology groups of real projective space RP™,
we know that H;(RP™,7s) = 79 foralli=1,2,...,m. Then

0, if mis odd

1(RP™) = o .
1, if mis even

So, by Theorem 4, if f : RP"—R™** is any immersion with locally flat

normal bundle, we have Q' = () for m is even.

Let f : M2—R*™ be an immersion of a 2 -dimensional manifold M
with flat normal bundle. Then for any point p € M, F,(f) is a union of at
most 2 hyperplanes in v,(f). So F,(f) can divide v,(f) into at most 4 path-
connected regions, and the number of path-connected components of Q(f)
with index 1 can be at most 2 for any &k > 2.

In the following theorems we generalize this and prove a result con-
cerning the number of path-connected components of Q(f) with index
(m — 1) where m > 3.

THEOREM 5. Let m > 2 and f : M"—R"™* be an immersion with
flat normal bundle. Assume A, B are two different path-connected com-
ponents of Q(f) both with index (m — 1) and a € A, b € B. Then for each
p € M, all the focal hyperplanes in v,(f) meet the triangle A with vertices
f(p), o, Ya), 0, L(b), and moreover the total number of focal points on the
line segment from ¢, (a) to ¢, (b) is exactly 2.

ProOF. Let a € A, b € B. Then there are corresponding parallel
normal fields & =¢&(a) and n = &(b) say, such that index f: = index
fy = m — 1. By Proposition 2, for all p € M, we have total number of focal
points between f:(p) = (pijl(a) and f,(p) = (pljl(b) is 2(m — 1) — 2 for some
l € Nwherem — 2 <1 <m — 1. Since @ and b are in different components,
there must be at least one focal point between f:(p) and f,(p) for allp € M.
Sol=m—2.
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Let @ C v,(f) be the plane including the triangle A with vertices f(p),
Jf«(p), £,(p). Since | = m — 2, we have proved that the total multiplicity of
focal points on fx(p)f,(p) is exactly 2 for all p € M and hence there are
exactly m focal lines meeting with the triangle A as required. Since there
are m lines in @), this implies that all focal hyperplanes on v,(f) meet with
the triangle A, for all p € M. O

THEOREM 6. Let f:M"™—R™?Z be an immersion of a compact
manifold such that f has flat normal bundle, where m > 3. Then the number
of path-connected components of Q(f) with index (m — 1) is at most 2.

Proor. Assume there exist at least three path-connected components
of Q(f) withindex (m — 1),say A, B,C.Takea € A,be B,ce C.Letpe M
be an arbitrary point and consider the points x = ¢, Yay), y = ?, L(b),
z= go;l(c) on v,(f). Clearly x, ¥,z are nonfocal distinct points, since a, b, ¢
are in different components.

Since a, b, ¢ are in different components there is at least one focal point
on each line segment ¥y, ¥z, zx. So we can check that the points «,y,f(p)
cannot be collinear. Assume they lie on a line ¢ say. If f(p) is on &y then the
total multiplicity of focal points on / is at least (2m — 2) which is not pos-
sible for m > 3, since 2m — 2 > m. If f(p) is not on ¥y we get the total
multiplicity of focal points on f(p)x or f(p)y is at least m depending on the
positioning of f(p) on £ with respect to the points «, . This contradicts the
hypothesis that this number is (m — 1) . By a similar discussion we get the
points x, z, f(p) or y,2,f(p) or x,y,z,f(p) cannot be collinear.

By Theorem 5, all of the focal lines must meet the triangle with vertices
x,y,f(p) and further the total multiplicity of focal points on &y is exactly 2.
Similarly we get the same result considering the triangles with vertices
¥,2,f(p) and x,z,f(p).

We next show «, 9, z are not collinear. For if «, ¥, z all lie on a line then
by the above argument the total multiplicity of focal points on each line
segment ¥y, Yz, 2% is exactly 2. Without loss of generality we can assume y
is on xz. Then we obtain the total multiplicity of focal points on xz is
2 + 2 = 4 which is a contradiction.

Now consider the triangle with vertices «x, i, z. There are 3 cases to be
considered.

CASE 1. Assume f(p) is in the region I bounded by the triangle with
vertices &, ¥,z as shown in Figure 2. By Theorem 5 there exists at least one
focal line meeting with xf(p) and zf(p) considering the triangle with ver-
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tices x, f(p), z. Similarly there exists one focal line meeting with xf(p) and
yf (p) considering the triangle with vertices x, f(p), ¥. And also there exists
one focal line meeting with %f(p) and zf(p) considering the triangle with
vertices ¥,f(p),z. These focal lines are necessarily all different and to-
gether bound f(p). This implies that f(p) is in a bounded region of the
complement of the focal lines on v,(f).

CASE 2. Assume f(p) is in the region I as shown in Figure 2. Consider
the triangle with vertices z,f(p),y. By Theorem 5, there must be a focal
line meeting with f(p)z and 2 and this line must necessarily meet xf(p)
and xy. Similarly by considering the triangle with vertices x, f(p), z, there
must be a focal line meeting with f(p)z and zZ and this line must ne-
cessarily meet f(p)y and xy. Now we get at least 2 focal points on xy. But
again by Theorem 5 and considering the triangle with vertices x, f(p), y, it
is exactly 2. So there are no more focal lines meeting with xy. So far we
have one focal line meeting both xf(p) and zf(p). By Theorem 5 and con-
sidering the triangle with vertices «x,f(p),z, we need (m — 3) more focal
lines meeting with xf (p) and zf(p) which must necessarily meet with yf(p).
And one more focal line meeting both xf(p) and ¥z which must necessarily
meet with &y or zy. We know there are no more focal lines meeting with xy.
So the focal line meeting both xf(p) and ¥z must necessarily meet with zy.
This implies that for all p € M, z = f)(p) is bounded by focal lines on v, (f)
where the immersive parallel normal field &(a) is corresponding to a.

Cast 3. Now assume f(p) is in the region III as shown in Figure 2.
Then we know every focal line must meet the triangle with vertices
f(p),,y. But there must be a focal line meeting with f(p)z and zx si-
multaneously. So this line cannot meet the triangle with vertices f(p), x, y.
This gives a contradiction by Theorem 5. So we deduce that Case 3 cannot
occur.

Since p is an arbitrary point in M and gop*1 is an isometry, then either
Case 1 holds for all p € M or Case 2 holds for all p € M i.e. either f(p) is
bounded by focal lines on v, (f) or f(p) is bounded by focal lines on v,(f)
for all p € M.

Now, for some w € R™"2, take the distance function L,, for f. Since M is
compact, there is a critical point of L,, with index m2. So the total number of
focal points with base p on the line segment fromwto f(p) is m and so there is
no focal point with base p on the ray {f(p) +t(w —f(p)) | t < 0} C vp(f).
This implies that for some p € M, f(p)is not bounded by focal hyperplanes on
vp(f) and a similar statement is true for fx,)(q) considering the immersion
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S for some g € M. So there cannot be such path-connected components

A, B, C of Q(f). Therefore Q(f) can have at most two path-connected com-
ponents with index (m — 1).

ANE: v/

II

Figure 2 0

REMARK 1. Theorem 6 is not true for an immersion with co-dimension
k > 2. We can see that by taking product immersions. In Example 1, we
have an embedding f of T 2 into S* ¢ R* such that €( f) has two path-
connected components with index 1. Now take

fxfT?x 2R

by (f x £)(p.q) = (f(p).f(q)) where p,q € T2 Note that, by Theorem 4.2
of [3], f x f has flat normal bundle and Q(f x f) = Q(f) x Q(f), since f has
flat normal bundle. Then, we can easily check that Q(f x f) has 4 path-
connected components with index 3.

Consequently, for m > 2 and k > 2, it is a considerable question to ask
what is the maximum number of path-connected components of Q(f) with
index (m — 1). This might be at most k.
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