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The Arithmetic Theory of Local Constants
for Abelian Varieties

MARCO ADAMO SEVESO

ABSTRACT - We present a generalization of the theory of local constants developed
by B. Mazur and K. Rubin in order to cover the case of abelian varieties, with
emphasis to abelian varieties with real multiplication. Let 1 be an odd rational
prime and let L/K be an abelian l-power extension. Assume that we are given a
quadratic extension K/k such that L/k is a dihedral extension and the abelian
variety A/k is defined over k and polarizable. This theory can be used to relate
the rank of the 1-Selmer group of A over K to the rank of the 1-Selmer group of A
over L.

1. Introduction

In the paper [7] Mazur and Rubin provide an arithmetic theory of local
constants to study the parity of the Selmer groups. We briefly sketch their
ideas and present a generalization of the main result, which applies to
abelian varieties with real multiplication. This is needed in [14], where the
result is applied in order to relate the growth of the Selmer group to the
rationality of Stark-Heegner points.

Let K/k be a quadratic extension of a number field k£ and let L/K be a
finite abelian [-power extension, with Galois group I, such that L/k is
dihedral, where [ # 2 is arational prime. Let (4, O,[) = (4, O, [),, be triple
where (A4, O),, is an abelian variety with multiplication by an order O in a
number field F' (the data being defined over k) and [ C O is a prime ideal of
residue characteristic [. Since O is commutative the dual abelian variety A’
is canonically endowed with multiplication by O by letting o : A — A acts
on A! through of : A* — A'. We make the following assumptions on the
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triple (4, O, [):

e it is polarizable, meaning that there exists an O-linear and symmetrie
isogeny

LA A

of degree prime to I;

e (O,]) is regular, meaning that [ is prime to the conductor of O in Op,
the ring of integers of F;

e (O, ])isunramified, meaning that the discriminant of #'/Qis prime to .

The present paper is organized as follows. Section 2 quickly reviews the
theory of twisting abelian varieties and introduces some preliminary ma-
terial. Section 3 is devoted to review the Mazur-Rubin argument in the
more general setting of abelian varieties with multiplication by an order O.
The main result is Theorem 3.2, which applies to triples (A4, O,[) as above
and notably under the assumption [F : Q] = dim A. We note that it is re-
marked in [7] that their theory generalizes to abelian varieties; Section 3 is
understood to provide a suitable reference where unspoken assumptions
that are always satisfied in the case of elliptic curves are made explicit. In
particular, when [F" : Q] = dim A and one considers a prime [ as above, the
[-torsion and the [-adic Tate module look essentially like those of an elliptic
curve. Finally, the appendix “O-polarizations on abelian varieties with real
multiplication” is devoted to eliminate the above polarizability assumption
when (A4,0) has real multiplication, i.e. F' is a totally real field and
[F: Q] =dim A.

Let O be the completion of O at the prime ideal [, which is a discrete
valuation ring since (O, [) is regular. Then we have

o =EPoy,

[
thus inducing a decomposition

Seli~(A/L) = €P Sely~(A/L).
4l

We will be interested in the Selmer group Sel~ (A /L) attached to the prime
[ | I. Note that it is a cofinitely generated module over the discrete valuation
ring Oy, so that it makes sense to talk about its corank over Oy. Let Irr(I") be
the set of all the rational irreducible representations of 7" and note that
Sel((A/L) and Sel~(A/L) are O([I']-modules in a natural way. There is a
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canonical isogeny (map with finite kernel and cokernel)

(1) @Selpc A,/K) Y Sely- (A /L),

where SelI;c (A,, /K ) is the Selmer group of a twist A, of A by pin the sense of
[8] and [, is the unique prime ideal of O([I"] corresponding to the irreducible
representation p and dividing [ (see the preliminary discussion in Section 2).
The action of O[I'] on p factors through a quotient O,, whose completion
O, =0, at [, is again a discrete valuation ring. Denote by I' the residue
field of O, which is also the residue field of O,  for every p (again we refer to
Section 2).
The isogeny decomposition (1) yields

corankp, (Sel~(A/L)) = Z 7, coranko, (Sell;c (4,/K )) ,
»
(2)

where we set 7, := ranke, (O;,) > 1.

Hence, in order to get information on coranke, (Sel=(A/L)) from
the knowledge of coranke (Sel~(A/K)) we are led to compare
coranko, (Selp<(A/K)) with coranko,, (Sel[;jc (4,/K) ).

It turns out that, assuming that (A, O) has real multiplication, every
regular and unramified triple (A, O,[) is polarizable (see Theorem A.11),
so that the following generalization of [7, Theorem 7.1, case (a)] is deduced
from Theorem 3.2. Let ram (L /K /k) be the set of primes v of K that ramify
in L and are inert or ramified over k, i.e. v is unramified in L and v* = v for
the non-trivial automorphism c of K over k. Denote by Bad(A/K) the set of
primes of K that are of bad reduction for A/K.

THEOREM 1.1. Assume that (4,O,[), is a regular and unramified
triple with real multiplication. If ram(L/K/k) N Bad(A/K) = ¢ and
ram(L/K/k) N {v |} = ¢ for every p

dimy: (Sel[ (A p/K)) = dimp(Sel;(A/K)) mod 2
and

corankp el = corankp, (Selp mod 2.
k[_ﬂSlﬁA/,K ko, (Sel~(A/K d

The main application of Theorem 1.1 is the following. Define
parity~(A/K) := coranko, (Sel~(A/K)) mod 2.
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COROLLARY 1.2. Assume that (A, O,[), is a reqular and unramified
triple with real multiplication. If ram(L/K/k) N Bad(A/K) = ¢,
ram(L/K/k)N{v |1} = ¢ and parity~(A/K) =1 then

coranko, (Sel=(A/K)) > [L : K].

Proor. Thisis aconsequence of Theorem 1.1, together with (2) and the
equality > 7, = #I (see following (5) for this last equality). O
p

Note also that, whenever A[[](K) = 0, it follows from the subsequent
(7), together with the congruence relation appearing in the subsequent
Theorem 2.2, that we have:

parity(A/K) := dimp(Sel((A/K)) = coranke, (Sel~(A/K)) mod2.

Another useful application is the following Corollary, that we state
without proof.

COROLLARY 1.3.  Under the assumption of the above Corollary, further
suppose
Alll(K) =0.

Then, for every n € N, Seln(A/L) contains an %[F ]-module which is

%-free of rank at least [L : K| and, in particular,
dimp (Sel((A/L)) > [L : K].

The paper [7] deals with the theory of local constants for elliptic curves.
As remarked in [7], an extension of the theory of local constants to abelian
varieties is expected. The aim of the present work is to provide such a
generalization. The results of Section 3 work for arbitrary polarized,
regular and unramified triples (4, 0,[) = (4,0,1),. In the setting of el-
liptic curves the existence of a principal polarization makes the polariz-
ability assumption supefluous. As explained, the appendix “O-polarizations
on abelian varieties with real multiplication” removes this assumption
when A has real multiplication by an order O in a (totally real) number field
F. We do not prove the existence of a principal polarization, which is false
when the class number of F' is not one, but rather show the existence of a
polarization of degree prime to I. Of course Theorem 3.2 is applicable to
other scenarios: for example when (4, O,[) = (4, 7,1) and A is an abelian
surface with quaternionic multiplication it is well known that a principal
polarization exists. The above corollaries are true for an arbitrary polar-
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ized, regular and unramified triple (4,0,[) = (4,0,[),, but we have
choosen to state them without the polarizability assumption when we have
real multiplication since this is the statement needed in [14].

2. Twisting abelian varieties

Let O = Op be the ring of integers of a number field F' and let I” be a
finite abelian [-torsion group. We explain how to get a canonical isogeny
decomposition of the group algebra O[I']. This will be regarded like an
algebra with involution using the inversion in 7.

Let Irrp(I") be the set of isomorphism classes of distinct irreducible
representations of I” over F'. Since F'[I'] is semisimple there is a canonical
decomposition

Fir= & F,

pelrrp(I)

where F,/F are field extensions. The projection of F'[I'] onto F, gives the
action of F[I'] on the representation p.

DEFINITION 2.1. Anideal Z C O[I']is said to be saturated whenever the

quotient O;F] is O-flat.

Tensoring a saturated module Z C O[I'] over O with F' and conversely
intersecting an ideal in F'[I'] with O[I] establishes a bijection between the
set of the saturated ideals of O[I'] and the ideals of F'[I"]. We will denote by
Z,:=F,NO[I the saturated ideal corresponding to the field F,.

Since @ pcrrr,(r)Z, is an O[I']-submodule contained in O[] with finite
index we get an O[[']-linear isogeny:

(3) D z, %o

pelrry(I')

The aim of the following discussion is to study the O[I']-module structure
of the modules Z ,, which factors through a certainly quotient O, contained in
the field F',. From now on we will assume that F' is unramified over ! # 2. The
effect of this assumption is that the study of O, is essentially reduced to the
case O = 7. The following facts can be directly proved or can be deduced
from the case O = Z and [8, in particular Lemma 5.4]. The set Irrp(I") is in
bijection with the subgroups I" C I" such that I'/I" is cyclic, i.e. with



22 Marco Adamo Seveso

Irrq (I). If p € Irrp(I) corresponds to a cyclic quotient I7/I™ of order I" we
have F',, ~ I'({), where { a primitive ["-root of unity. Denote by [, the unique
prime of (] dividing [, so that Z[(]l = If. The ring O[I'] acts on Z, through
the quotient O, ~ O[(] and for every prime [' | L of O there is one only prime
[, of O, ~ O[¢] over ['and [ = O,[', where e = (I"). We have

(4) 10 =]V and 1,0, = ] 1.

() |

In particular the localization O, ( of O, at [is a discrete valuation ring with
uniformizers { — 1orz := ¢ — ¢! and we have O,, =0, m.Indeed F,(/F
is totally ramified of degree ¢(I") and O, ~ O/[{]. Under the isomorphism
0, ~ O[{]wehaveZ, ~ ({; — 1)O,, where (; is a primitive [-root of unity and
in particular 0,7, ~ 7" O,. Furthermore sending ¢ to (! induces a well
defined involution : on O, ~ O[{] such that the projection of O[I'] onto
0, ~ O[{] is a morphism of rings with involution. Then the formula

==, OpiZ, x 0T, — O,
[0, B] = 72 (p)

gives on O, Z, a perfect and (O,, 1)-Hermetian O, -valued pairing. We also
note that, if we write Z, 7, (resp. Z, o) for the saturated ideal corresponding
to the same irreducible Q-representation (resp. F-representation) it holds
the equality 7,0 = O ®7, Z, . In particular, setting 7, := ranke, (O ,) as
in the introduction, we have

(5) er =#I.
»

Recall the extensions L /K /k that was considered in the introduction, as
well as the polarizable, regular and unramified triple (4, O,[) = (4,0, [),.
The above discussion applies to I" := G, /x. We denote by ¥ the common
residue field of O (resp. O ) and O, (resp. Oy,) at [ (resp. O(l) and at [,
(resp. O,l,). The above discussion implies that the twists

Ay =T,000A=1,7,2,000A=1,7,0,A

do not depend on the ring O over which we are twisting. These twists have
been already considered in the literature and we refer to [8] for details. 4,
is again an abelian variety and for every K -algebra X there is a canonical
identification (see [8, Theorem 1.4])

(I/”O ®o A) (X) = (I/)-O RoA(X ®k L))GL/K.
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As it follows from [8, Prop. 4.1], O[I'] ®¢ A is identified with the re-
striction of scalars from K to L of A/K. It then follows that we have (see [7,
Prop. 3.1]):

Sely(A/L) ~ Sel,(O[I'l ©0 A/K)

and hence the isogeny (3) yields the O[I'] -linear isogeny decomposition (1).

The abelian varieties A,/K are endowed with multiplication by O,
acting on Z,» and we can consider the triple (4,,0,,[,). Note that
(4,,0,,1,) is again regular and unramified, as it follows from the above
discussion, but may fail to be polarizable. The decomposition (4) yields
canonical O/Ol"-module decompositions (see also [6] for a direct definition
of the [,-adic Selmer groups):

4] = @A,, (] forme X,

Sel (A/K) = @Sel[m (A/K).
(1

(6)

As in the setting of classical Selmer groups one can prove that there is
an exact sequence:
171
(M) 0—Lord, [I }(K) — Sely, (A,/K) — Seli~(4,/K) [1,] — 0

P

and furthermore
-1
) dimy (I(g ®r A, [I;C} (K)) = dimg (4, [(,] (K)).
p

Let T((A) be the Tate module attached to the [-adic representation of
the abelian variety A /k over the field k. We recall the following fact (see [8,
Theorem 2.2]): there is a Gg-equivariant isomorphism

T((A,) = T,0 0 Ti(A),

where Gg-acts on the right hand side via ¢~! ® g. The polarizability as-
sumption on (4, O, [) implies that the O((1)-valued Weil pairing on 7(A) is
perfect.

We only sketch the proof of the following Theorem, which is a
straightforward generalization of [7, Theorem A.12 and Prop. A.11], which
in turn is an application of the techniques developed in [4] (see also [13,
Prop. B.27] for further details).
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THEOREM 2.2. The pairing (-, —), induces on Sel~(A,/K) a
Gg r-equivariant and skew-(Oy,,1)-Hermetian pairing with kernel
Selix(A/K) g,

Sely= (A,/K) x Selp= (A,/K) — By

In particular
corankp, (Sel~(A,/K)) = dimg(Sel~(A4,/K)|[,| ) mod 2.
Lp p P » P P

Proor. The first step in the proof of the Theorem is to provide a
“model” of A, over k. This can be done as in [7, Prop. A.9]: choose a lift ¢ of
the non-trivial automorphism of the extension K /k to the algebraic closure
k/k.Forevery p € Irrp(I") define Jo , := (1 + €)Z o , whichis a right ideal
in O[Gy]. The left multiplication by 1+¢ gives a right O[/']-module
isomorphism 7, — J,, thus inducing an isomorphism over K: A, :=
T)0R00A>To,R0A=: A;}. The second step is in producing Oy ,(1)-val-
ued perfect, skew-(Oy,,1)-Hermetian and Gg-equivariant pairings on
T((4,), that are Gj-equivariant when making the identification
Ti(4,) = T (A)). They are obtained setting (—, —) ;= [—, —] ,@e where e s
the Oy(1)-valued Weil pairing on T((A4,), which is perfect in light of the
polarizability assumption on (A, O,[). Finally one applies the Flach con-
struction as explained in [7, Theorem A.12].

3. The arithmetic theory of local constants

Recall our polarized, regular and unramified triple (A,0,[) =
(4, O,1),, from the introduction. Since the claim of Theorem 3.2 is invariant
under isogenies of degree prime to [ we can suppose that O = Op (see
Lemma A.10).

LEmMA 3.1.  There are canonical identifications of F'[Gg|-modules:
4,[L,] = A[l.

Proor. By [7, Prop. 4.1] there is a canonical identification of
Fy[Gk]-modules A,[l,] = A[l], which is an identification of O/IO-mod-
ules (by the canonicity). The claim follows from the O/OIl-modules
decompositions (6). O
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The first of the subsequent congruences follows from Theorem 2.2, while
the second follows from Lemma 3.1 together with the exact sequence (7):

coranko,, (Sel[;c (A,,/K)) — coranko (Sel~(A/K)) =
(9)  dimy (Selyz (4,/K) [1,]) — dime(Sel= (A/K)[) =
dimy (Sellﬁ (4, /K)) — dimp(Sel;(A/K)) mod 2.

The F[Gk]-module identification A,[[,] =A[(] allow us to view
Sel;, (A,/K) as the sub-F -module of H*(K, A[(]) defined by the set of local
conditions S,,

A)(Ky) s,
Sy»:=1Im (I/)Aj’;a%)) < HY (K, A,[l,)) = H (Kv,A[I])>
for the local Kummer map J, at v. Recall that, as explained in the proof of
Theorem 2.2, the O-polarization on A induces on T((A,) = T, (A,) perfect
twisted pairings and, up to the canonical identification A, [I,,] = A]l], they
induce the same pairing on A[l]. It follows that, for every p, the Selmer
structure S, is selfdual (for the Weil pairing on A[[]) by the Bloch-Kato
generalization of Tate’s local duality applied to T (Ap) (see [2, Prop. 3.8]
and [7, Prop. A.7]). We can now apply [7, Theorem 1.4], whose proof relies on
a clever argument of Howard, which implies:

(10) dimp (Sel[p (A,,/K)) dimg (Sel((A/K)) Zdlrm (

veX

3 S )mod2

where X' denotes the set of primes out of which the Selmer structures S and
S, coincides, which is finite. The local constants are defined as being

51; - 61;(14, O, [,L/K, p) — dlmy[" (M)) m Z/ZZ

We are going to recover, from the results of [7], an explicit description

of the spaces ——— 3 Sy S . In order to connect these spaces with those defined
P,V

in [7] when working over 7, we will write S, = S, (resp. S,, = S,,1,) to
emphasize the dependence on the chosen prime [ | I. Then it is clear that we
have

Sv,l . Sv,I’

SUA,l n Spvvvlﬂ [/\l S’U,I/ N Spﬂ),l;)
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S/u,l
S’v,l N Sp,v,l,)
let L,/K be the cyclic subextension of L/K corresponding to the irre-
ducible representation p, choose a prime w of L, dividing v and set:

The space can be explicitly described as follows. For every p

. {unique subfield such that [Lpﬂ,, : L’p w} =1 if K, # L,y
paw * .
L,w if Ky =Ly,
The proof of [7, Corollary 5.3] readily generalizes to our setting and
gives a canonical identification

Sv,l _ A(KU)
Sv,l N S/m)‘l,, A(Kv) n NL,y.w/L' A(Lp,w) '

paw

THEOREM 3.2. Let ram(L/K /k) be the set of primes of K which ramify
m L/K and such that v° = v (if ¢ is the non-trivial automorphism of K /k)
and let Good;(A/K) be the set of primes of K of good reduction for A/K
whaich do not divide . Then, for every p,

coranke, | Sel~(A4,/K) ) — coranke, (Sel~(A/K)) =
Lp » P [

= ) 6,(A0OLL/Kp).

veram(L/K /k)
and when [F: Q] =dim A
coranko, (SelI;o (A,,/K)) — corankoe, (Sel~(A/K)) =

= > S0(A,0,[,L/K,p).
veram(L/K /k)—Good;(A/K)

ProOOF. According to (9) and (10) we have to show that ¢, =0
whenever v¢ram(L/K/k) (resp. v¢ram(L/K/k) — Good;(A/K) when
[F: Q] = dim A).

If v¢ ram(L/K/k) there are two possibilities: v° # v or v* = v and
véram(L/K). In the first case it is clear that [7, Lemma 5.1] gen-
eralizes: since the entire triples (A,0,[) and (4,,0,,(,) are defined
over k (see the proof of Theorem 2.2) the automorphism of K/k induces
isomorphisms

(A7 07 I)Kvi> (A7 07 I)K,,N

(A/n Oy, I/') K, > (A,,, Oy, I/)) Ky



The Arithmetic Theory of Local Constants for Abelian Varieties 27

Therefore, under the isomorphism H'(K,,A[(]) = H'(Ky,All]) induced
by conjugation, S, (resp. S,,) corresponds to Sy (resp. S,.) and hence
Oy = 0y (thus, assuming v° # v, we have J,c + 0, = 0). In the second case,
since v° = v, by [7, Lemma 6.5 (%)], for every prime w of L, the extension
L,,/K, is (non-trivial) totally ramified or v splits completely. Since the
first possibility has to be excluded (otherwise L/K should be ramified

too), the module _Su is trivial by the previous description and
Sv,l n S/),v,l,,
hence the direct addend — %' is trivial too (so that J, =0). It

follows the first formula. <% NSy,

Now assume [/': Q] =dim A and let v € ram(L/K/k) be a prime
such that v/l and A/K has good reduction at v (more generally as-
sume v° =9, vl and A/K to have good reduction at v). Since v* = v,
by [7, Lemma 6.5 (¢)] there are two possibilities: L, /K, is (non-tri-
vial) totally ramified for (every) w dividing v or v splits completely in

Sv,[
Sv,[ N S/},v,[/,
we may assume L,, /K, to be totally ramified (non-trivial) and since

L,, but in this latter case we have seen that is trivial. Thus

vfl and A/K has good reduction at v the proof of [7, Theorem 5.6]
generalizes. More precisely [7, Lemma 5.4] readily generalizes to the
case of an abelian variety A/K with multiplication, giving the identi-
fication

= =
— R0 AK) = —— 0 A[[*)(K

5 B0 A(K) = 5 20 AI)(K)
for every local field K of residue characteristic coprime with I. It is also true
that [7, Lemma 5.5] generalizes to abelian varieties A/X, showing that,
whenever in this case £/K is a (non-trivial) totally ramified extension and
A/K has good reduction, there are equalities:

NpA(L) = A(K) if [£: K] =1,
A(K) NIA(L) = IA(K).

These last two equalities applies first to L,,/L), and then to L, /K,,
giving:

Sot A(Ky) A(K,) A(Ky)

SueiNSpni,  A(Ky) NNL,, 1, ALpw)  AK) NIA(L,,) A

P’ pw
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A(Ky)
IA(Ky)
@y Iy and then using the generalization of [7, Lemma 5.4], we find

From the canonical decomposition of as a module over O/I0 =

S A = s A,
Sv,f mS/;,v,Iﬂ - (@) © v O © v
\[71
By (8) the [F-dimension of a5 ®p A[[*](K,) is the same as the F-dimen-

sion of A[[](K,). Thus we find
oy = dimp A[[)(K,),

which is the claimed generalization of [7, Theorem 5.6]. Hence to get the
second formula it is enough to show that the F-dimension of A[[](X,) is even
and this is where the assumption [/" : Q] = dim A plays its role. Indeed this
last fact follows exactly as in [7, Lemma 6.6], using the [F[G}]-vector space
A[l] (which is 2-dimensional over [ since [F' : Q] = dim A, by Proposition
A.11) and the IF(1)-valued Weil pairing on A[[] in a place of the I;|G}]-vector
space E[l] and the [} (1)-valued Weil pairing, which is used in the case of an
elliptic curve. O

A O-polarizations on abelian varieties with real multiplication

Let A be an abelian S-scheme with multiplication by an order O in a
totally real number field ¥ such that dimgA = [F : Q] is constant. The dual
abelian S-scheme A'/S, that we assume to exists (for example suppose that
A/S is projective), is canonically endowed with multiplication by O.

Let

Hom3™(A,A") = {4: A — A": =)' and 4 is O —linear}

be the set of all symmetrie O-linear morphisms (over S) from A/S to the
dual abelian scheme A'/S (here i = )t up to the canonical identification
A = A"). Let us be given a prime [ C O of residue characteristic / invertible
in S. For a torsion free finitely generated O;-module 7', T = T** canonically
where we write T = Homo, (T, O;) to denote the O(-dual. Using this
identification we may define

Homy (T, T%) :={i: T — T*: = —1" and / is O(-linear},
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called the O-module of alternating homomorphisms from 7' to 7. Then
T((AY) = T((A)" and we can consider the following commutative diagram
(see [3, 1.5]):

Hom™(A,AY) — Hom@!(T,T*)
(11) N N
Homo(A,AY), — Homoe/(T,T")

where we set T := T((A). Here M = M ®p O is the [ -adic completion of
M, since the modules involved are finitely generated.

If M is an O-module we write M to denote the constant presheaf
M(T/S) := M on the big étale site and we let M be the associated sheaf
M(T/S) = M™T) where np(T) denotes the set of connected components of
T and M™(T) is the O-module of maps from 7o(7T) to M. We also write M
and M to denote their restrictions to the étale site.

If M is a projective O-module of finite rank 7y, the functor M ®0 A
defined by the rule

(M 00 A)(T/S) := M ©0 A(T/S), T/S arbitrary

is representable by an abelian S-scheme with multiplication by O and di-
mension dimgM ®p A = rydimgA. Indeed this is clear when M = O"; in
general we may write 0" ~ M ® N, so that (M @0 A) ® (N Qp A) ~ A"
holds as functors and then we may apply Yoneda’s Lemma to deduce the
existence of an idemponent ey, € Endg(A"™) such that ey A" ~ M ®¢ A. In
particular M ®p A is a sheaf on the big étale site and its restriction to the
étale site is a sheaf.

On the other hand we may consider the presheaf M &/, A defined by
the rule

(M &0 A)(T/S) := M(T/S) @0 A(T/S) = M™® 0 A(T/S),

where T'/S may be an arbitrary S-scheme or an étale S-scheme if we work
with the étale site. We write M ®7Z) A — M ®¢ A to denote the associated
presheaf with the canonical sheafication morphism. We may therefore
consider the canonical morphism

A MeoAL MelhA—MaoA

where A is given by the sheafication morphism M — M, i.e. the diagonal
morphism M(T/S) =M — M(T/S) = M™). More generally, for an ar-
bitrary sheaf §, we write % ®¢ A for the sheaf associated to the presheaf
& @f A defined by the rule (F &%, A)(T/S) := F(T) @b A(T).
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LEMMA A.1. The canonical morphism M @p A — M Q0 A is an 1so-
morphism as sheaves on the big étale site or the étale site.

ProoF. After a base change to an arbitrary S-scheme T, i.e. after re-
stricting the values of our functors to étale T-schemes 7" /T we may work
with the étale site. Suffices to check that the canonical morphism is an
isomorphism on the stalks (see [9, IT Theorem 2.15] or [15, IT Theorem (5.6)
11)]). Let s — S be a geometric point and let Ogs = lim Oy be the strict
henselization of Og ;, where the limit runs over all étale Heightbourhoods of
5. Set S; := Gpec(Og;z) =limU. If § is a presheaf on the étale site,
Fs = (%#)5 where } is the associated sheaf (see [9, IT Remark 2.14 (¢)]); in
particular (M ®o A);= (M &%, A).. There is a canonical morphism

Bz = imB(U) — F(im U) = F(S5).

Since ¥ =M ®0 A is an S-scheme of finite type, lim(M ®0 A)(U) =
(M ®0 A)(lim U ) (see [9, IT Remarks 2.9 (d)]). Similarly, since we may
assume that the Us appearing in lim Oy are connected, A is an S -scheme of

finite type, the formation of direct limits commutes with tensor products
and S; is connected,

lim (M %) A)(U) = im(M @0 A(U)) = M @0 im A(U)
~ Mo A(ImU) = (M & A)(S5).

Summarizing we have canonical identifications (M ®p A);= (M ®0 A)(S5),

(M ®0 A)s= (M &F, A)(S5) and the canonical morphism 4 induces on the

stalks the morphism 4”(S5), which is the identity since S; is connected. O
We sketch a proof of the following well known fact.

PRrROPOSITION A.2. Let A be an abelian S-scheme (with O-multiplica-
tion) and let 0 £ A € & be an element of an invertible O-module L. Then
L ®0 A is an abelian S-scheme of the same dimension as A,

L A— QR0 A
Ma) =1®0a

is a faithful flat morphism, A[J] := ker A s finite and flat over S and

82
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2
where #A[2] is the order of the finite S-scheme A[1]. Furthermore, if # i
1s tnvertible on S, 1 is étale (and hence A[)] is S-étale).

Proor. Consider the exact sequence

2

We view A as a sheaf for the fppf topology and apply — ®o A. Since ¥
2

is O-flat, To7°(19(53,A) =0, and, since A is divisible and % finite,
) ,

% ®p A = 0. It follows that we have

2
0— T%(%,A) S AL LReA—0.

2
70’
scheme of the same dimension as A. We also see that 1is an isogeny, hence a
faithful flat morphism and an étale morphism when # A[4] is divisible on S
In order to compute the degree #A[/] of the finite S-group scheme A[1], w
first assume that (4,%) = (4,0), so that 1 € O C Endg(4) is just the
multiplication by 4 map. Since A[/] is S-flat, working with each connected
component of S, we may first assume that S is connected and then compute
the degree of A[A] over S after a base change to the residue field k(s) at any
s € S. Hence we may assume that S = Gpec(K) for a field K. Setting
N(Z) := #A[4], we see that N is anorm form on /'/(Q homogeneus of degree
2dimgA (by [10, IIT §19 Theorem 2]). It follows from [10, IIT § 19 Lemma]
and our assumption dimg(A) = [F : Q] that we have N = N% /o SO that
#A[l] = N3, /Q( 1) for A € O. The claim when ¥ = O follows from the fact

that Np/o(4) = # -4 70 because O is a lattice in F'. We now remark that, if we

have given (4;,%;) with 1 € ¥; an invertible O-module, 7 = 1,2 and if we
2

In particular, since Torg, ( A) = A[/] is finite, ¥ ®x A is an abelian S-

AU
assume that #—— is prime to #-——

iG] 0 the morphism

Moy s 1@ — & ®0 e
iy 5 l2) =l @2+ 41 @
L 210

induces an isomorphism % & 720 o~ T B0 Ja0" We apply this remark
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as follows. We take (11,%21) = (4, %) and (J2,%) = (#,¢"), where
1

X e Q! is choosen so that # v is prime to #Q,—O. We deduce that
4 O g ¢!

70 =H#— 0 70 On the other hand, we may consider the composition

JiA L L0eAl C ee Lopd = A
and deduce #A [1)] = #A[}] - #(% @p A)[X']. By the case & = O we get

? 1
#i #5” — #A]- #(L R0 A)[).

L U

Since Tor¢, (E , A) =A[/] and Tor} <5;,—O LR ®o A) = (L®oA)[X],

\ U
our choice of /' so that #% is prime to # L,—O implies that #A[/] is
1 A

?
prime to (L ®p A)[4'] too. We deduce #% = #A[J].

ProrosiTION A.3. If O( is a discrete valuation ving, the horizontal
mclusions appearing i (11) have torsion free cokernel.

Proor. It suffices to show that the lower horizontal inclusion and the
left vertical inclusion in (11) have torsion free cokernel, since then the
torsion freeness of the upper horizontal inclusion follows from the com-
mutativity of (11). Furthermore, to see that the left vertical inclusion has
torsion free cokernel it suffices to show that the inclusion of Hom{!"™ (A, A")
in Homo(A, A?) has torsion free cokernel. Suppose that 2 € Homo(A, A?)
is such that there exists 0 # n € 7 such that ni € Homy!™ (A, A'). Then
n/. = (/)" and the right hand side is A'n! = /'n, while the left hand side is
Jn. Hence /n = /'n and, since 7 is an isogeny, it is an epimorphism in the
category of sheaves for the fppf topology on S and the equality 2 = A’ can be
checked at the level of points. That the lower horizontal inclusion has tor-
sion free cokernel follows as in [5, Theorem (12.10), Chapter 12], thanks to
our assumption that Oy is a discrete valuation ring. O

Let & be an invertible O-module. For every ¢ : F—R we may consider
iy : L=L®,R and define L, :=i;!(L®,R%). An oriented invertible O-
module is an invertible O—module L together with the choice of a vector of
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signs ¢ = (&) such that ¢, € {+}. An homomorphism f : (&1,&1) — (22,82)
of oriented invertibles O-modules is an homomorphism f of O-modules
such that f(2]"7) c £;'7. To an orientation & on ¥ we can associate the set
of totally positive elements

L= ﬂﬁ;" cX

and indeed, the isomorphism class of the oriented O-module ¥, is uniquely
determined by the couple (£", ). Furthermore, since Aut(L", ) = O,
the set of totally positive units of O, we see that, to give an oriented O -
module (53+, 5&) (up to isomorphism), is the same as to give an element in the
narrow class group associated to the order O.

Consider the functor of symmetric O-linear morphisms:

L(A)(T/8) := Homy" (Ar, Ap)

and the subfunctor £ (A) of polarizations (where Ar and A} are the
base changes to 7). They are in fact sheaves for the étale topology and in
[12, Prop. 1.17], when O = Oy is the maximal order in a totally real field
F, it is proven that £(A) is locally constant with values in invertible O-
modules and generated by £*(A). When S is connected and normal, by
[12, Variante 1.18] £(A) is already constant, i.e. ¥(A) = ¥(A) for the
invertible O-module 2(A) := {(A)(T/S) = £(A)(S) where T'/S is con-
nected. In general there exists 7'/S étale such that ¥(A) = ¥ (Ar) re-
stricted to étale 7"/T.

Let 1" :%(A)®)A— A" be the morphism given by the rule
WA ®a):= Aa), where 4 € Homgym(AT,AtT) and a € Ap(T) = A(T/S).
Since A' is a sheaf, it induces a unique

(12) 1 QA) R A — Al

Note that, when £(A) = ¥(A) is constant, x is identified, via the iso-
morphism 4 of Lemma A.1, with the morphism

p:LA)@pA — Al
(13)
u(l®a):=i(a) € AT/S), a € A(T/S)

which is an isogeny being a non-zero map between abelian S-schemes of the
same dimension (see also [1, proof of (3)=-(1) of Proposition 3.1]).
The following proposition is a variant of [1, Proposition 3.1].
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ProposITION A4, The following are equivalent, when O = Op:

(1) ker u is n-torsion étale sheaf, where u is (12);
(2) for every integer t prime to n there exists T/S étale and
4 € LT(A)(T/S) of degree prime to t.

Proor. In [1, proof of (1) =(2) of Proposition 3.1] simply replace
[1,(3.6)] with the assertion that @: (A ®e, Mu)[t]— AY[t] is an in-
clusion (notations as in loc. cit.) and note that it is an isomorphism by a
comparison of degrees. Hence one recovers [1, ( 3.6)] and the proof of
the implication is the same. [1, proof of (2) = (3) of Proposition 3.1]
(with the obvius modification in the statement) is trivial. The analogous
of [1, proof of (3) = (1) of Proposition 3.1] is the same but we conclude
that K has order prime to [ for every prime [ prime to n.

COROLLARY A.5. Suppose that S is connected and normal or, more
generally, that L(A) = &(A) is a constant sheaf and that O = Op. The

following are equivalent:

(1) ker u is n-torsion étale sheaf, where u is (13);
(2) for every integer t prime to n there exists i€ X" (A) of degree
prime to t.

Proor. We need to prove that, if there exists /' € " (A)(T/S) of de-
gree prime to t, there exists 1€ Q7(A) of the same degree. Since
L(A) = L(A), LA)(T/S) = B(A)”(’(T). We take any connected component
Ty C T of T and we note that the image 4 of ' in £(A)(To/S) = L(A), which
is simply the T\p-component of /' € SZ(A)”O(T) (that we may assume to be non-
zero), is the required polarization. O

We are now going to show that, under the assumptions of Corollary A.5,
condition (1) is always satisfied if we take » to be the product of the primes
that are invertible in S. Indeed we will prove a slightly more general
statement without assuming that O = Or. We first record the following
corollary of Propositions A.2 and A.3.

COROLLARY A.6. If Homy!™ (A, A') # 0 and O; = Oy coincides with
the completion at [ of the maximal order Op, the upper horizontal
mcelusion appearing in (11) is an 1somorphism

Homg"'” (A, Af’)I: Homé{f’(T, T*) ~ O.
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PROOF. For every O;-module 7' let us denote by Homo, (A%, T, Oy) the
Or-module of bilinear forms b: T x T — Oy such that b(x,y) = —b(y, ).
Under the canonical identification Homo, (23, T, Or)= Homo, (T, T*) the

submodule Homo, (A, T, Oy) corresponds to Hom! (T, T*). Proposition A.2
implies that T((A) is a free rank two module over O. It follows that
Homo, (N, T, Oy) is free of rank one over Oy. Since H. om ™ (A, A) is torsion
free, the inclusion (11) shows that the free O;-module Hom!" (A, A'), may
have rank 0 or rank 1 (over O). Under the assumption H om‘gym(A,At) £0
we find that it holds the second possibility and the inclusion is an iso-
morphism, since it has torsion free cokernel by Proposition A.3. |

LEmMmA A.7. Suppose that S is connected and normal or, more gen-
erally, that L(A) = L(A) is a constant sheaf. Let ng o € N be the product of
those primes | € N that are invertible in S or such that O; = Op; (i.e. s
coprime with the conductor of O in the maximal order Op). Then the
primes dividing #ker p divides ng o and, in particular, ker u is an ng o-
torsion étale sheaf.

Proor. As we already remarked u in (13) is an isogeny. Let [ be a
prime that is invertible on S: for every such prime, to prove that x is an
isogeny of degree coprime with [, it is sufficient to show that 7}(x) is an
isomorphism. Whenever O; = Op,; this is equivalent to checking that
T((u) is an isomorphism for every prime [ | I. The formation of the [-adic
Tate module, commutes with taking tensor product with flat O-modules,
so that:

T(L(A) ®@o A) = L(A) @0 Ti(A) = ¥(A)©0,T((A).

For every Or-module write @%(T) := Hom3!(T,T*) for shortness.
Consider the canonical morphism:

= iy 5 QA @0, T(A) — T
L@t At).

The canonical inclusion ¥(A),C LY(T((A)) gives the following com-
mutative diagram:

Q(A)[(X)@I T[(A)
n , [
LT (A) @0, Ti(A) = Ty(A)
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Since ¥(A) # 0 and O; = Opy, by Corollary A.6 the left vertical
inclusion is an isomorphism. In other words the problem is reduced to
the analogous problem in the category of Op-modules, i.e. we must
show that, for every free rank 2 Or-module T, the canonical morphism
up is an isomorphism. This is a consequence of the subsequent alge-
braic Lemma A.8 O

LEmMa A.8. Let T be a finitely generated free module over a commu-
tative ring R. The canonical morphism

oy Hom@ (T, T*) @ T — T*
fet—f(t)

1s surjective if rank(T) # 1 with projective kernel. Furthermore we have
(with the convention that rank < 0 means rank = 0):

rank(7™) = rank(7),
rank(T)?(rank(T) — 1)
2 b
rank(7")(rank(7) — 2)(rank(7") + 1)
2

rank(Hom (A*T,R) ® T) =

rank(ker yp) =

In particular wyp is an isomorphism if and only if rank(T) = 2 or 0.

Proor. Up to the canonical identification Homy"(T,T*) =
Homp (N34T, R) the morphism u; corresponds to the canonical mor-
phism:

pp : Homp(NRT,R) @ T — T*
bt b(t,—).

Choose a basis {¢; : 1 =1,...,n} of T and let {J;} be the dual basis of {e;},
defined by the rule d;(e;) = d;;. By viewing the elements of 7' like column
vectors with respect to the basis {e;}, the element e; corresponds to the
column 1; which is zero at all its entries with the only exception of the i-
entry, which is equal to 1, and similarly J; corresponds to the row vector 1!
which is equal to zero at all its entries with the only exception of the i-entry,
which is equal to 1. Furthermore any element of b € Hom (2T, R) corre-
sponds to a matrix b = (b;;) which has zeros on the diagonal and such that
bjj = — by for i # j. In particular a basis of Hom (A2T, R) is obtained from
the elements b;;, € Hom(A2T,R) with iy > jo that corresponds to the



The Arithmetic Theory of Local Constants for Abelian Varieties 37

matrices b;,;, with b;; = 0 whenever (4,7) # (i0,J0) or (jo,%) and b;;, = 1.
The assertion on the rank of Hom (A\2T,R) @ T follows. We have

0 i & £ oo
bigio (€, =) = 1} - by - — = { 15 =), if k= o

~1t =5, if k=jp.

Now suppose rank(7") > 2, the other cases being trivial, and that we have
given J;, with h € {1,...,n — 1}: then we have b,;,(e,, —) = ), . Similarly
suppose that we have given ¢, with h € {2 ..,n}: then we have
bp1(e1, —) = —9y,. The surjectiveness of x4 follows and, since 7™ is a free R-
module, there is a section of u,. Hence ker uy appears like a direct ad-
dendum of the free module Hom(/\zT, R) ® T and it has to be a projective
R-module. Having computed the rank of Hom (A\*T,R) ® T, the assertion
on the rank of ker u, follows. O

LEMMA A.9. The property of having an O-polarization (over S) of de-
gree coprime with a fixed integer t € IN is invariant under O-isogenies
(over S) of degree prime to t.

Proor. Let A:A — B be an O-isogeny of degree prime to ¢ between
two S-schemes and let B — B! be the polarization ¢, induced by the ample
line bundle L, of degree prime to t. By definition one easily check the
equality ¢;- » = ', : the left hand side shows that we get a polarization on
A, since the pull-back of an ample line bundle by a finite morphism is an
ample line bundle; the right hand side shows that, this polarization, is of
degree coprime with . |

LEMMA A.10. Let A be an abelian S -scheme with multiplication by an
order O in a field F' and fix an integert € N. There is an O-linear isogeny
of degree coprime with t (overS) 1 : A — B of A into an abelian S-scheme B
with multiplication by the maximal order Op.

Proor. Choose an invertible ideal I C O such that # g is prime to ¢

~

and the conductor f(O) of the order O (in the maximal order). Then J is an
~—1

invertible O-ideal and it is Op-stable. The inclusion O C I =
Homp (3, O) yields an O-linear isogeny (see [6, 2.4]):

Jas:A—3@oA
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. o . _
which is of degree a power of # KL hence prime to t, and moreover 3! ®p A

1

has a canonical structure of Op-module, since I is an Or-module. O

We are now ready to prove the main result of the appendix.

THEOREM A.11. Let A/S be an abelian S-scheme over a conneced and
normal scheme S, with real multiplication by an order O in a totally real
number field F such that dimgA = [F : Q] and further asswme that A/S
exists. For every integert € N which is invertible in S there is an O-linear
polarization of degree prime to t.

In particular, if S = Spec(K) for a field K, we may find an O-linear
polarization of degree prime to t for every t prime to the characteristic of K.

Proor. Letmng o be asin Lemma A.7 and let ng be the product of those
primes that are invertible in S. Thanks to Lemmas A.9 and A.10 we may
assume O = Op, so that ng oy = ng. By Lemma A.7 ker ;¢ is an ng ¢ = ng-
torsion étale sheaf. Corollary A.5 gives the claim. O
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