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Functional Solutions for a Plane Problem
in Magnetohydrodynamics

GIOVANNI CIMATTI

ABSTRACT - We study the flow in a channel of a fluid obeying the equations of
magnetohydrodynamics under the hypotheses that viscosity, resistivity and
thermal conductivity depend on the temperature. The special class of solutions
for which two functional dependences between temperature and magnetic field
and velocity and magnetic field exist is considered.

1. Introduction

We study in this paper a class of steady, incompressible and recti-
linear flows of viscous, electrically and thermally conducting fluids
along cylindrical channels of arbitrary cross-section in the framework
of the equations of magnetohydrodynamies. The open and bounded
subset of R? representing the cross-section of the pipe is referred to
the orthogonal frame Ox;xsx3. Oxg is the axis of the channel with unit
vector i3. The magnetic field H and the velocity v are assumed to be of
the form

1.1) H = h(xq1,x0)i3
1.2) v = v(ry, X)is.
Moreover, we suppose

(1.3) p = play, 2).

The electrical resistivity p, the viscosity v and the thermal conductivity « are
assumed to be given functions of the temperature « and of v and h. The
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domain Q is multiply connected with its boundary I” consisting of two dis-
joint closed curves I'; and Iy of class C'. From the general equations of
magnetohydrodynamics and from the energy equation [6] we obtain, in
view of (1.1) and (1.2) the following boundary value problem (P) [4]. For
more details we refer to the Appendix.

1.4) V- (p(u,v,h)Vh) =0in Q
(1.5) V- (v, v,h)Vv) =0in Q

a6 v (K(u, v, B)Vu + v, v, Vo + plu, v, h)th) —0in Q

h=0onTl1, h=hon 5
v=0on/ly, v=vonly

u=0on Iy, u=uon I,

where &, v and u are given positive constants. We prove in Section 2 that if
the functions x, v and p have the special form (2.9) below, problem (P) has
one and only one solution. Section 3 deals with the functional solutions of
problem (P) i.e. with solutions for which there exist functional de-
pendences between « and & and between v and k. We prove the existence
of a one-to-one correspondence between the functional solutions and the
solutions of a two-point problem for a system of first order differential
equations depending on two parameters. First order ordinary differ-
ential equations depending on parameters whose solutions must satisfy
two boundary conditions have been considered, among others, in [2], [3],
[7] and [8]. In Section 4 a theorem of existence and uniqueness is proved
when resistivity, viscosity and thermal conductivity depend only on the
temperature.

2. A result of existence and uniqueness
To prove the next theorem we need the following elementary

LEMMA 1. Let &(u) € C1([0,0)), 7(v) € C1([0,2]), € C ([0, A])
2.1) k() > Ky >0
and

(2.2) W(u) > vy > 0.
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The transformation

2
(2.3) 0= Koo + M)+

2.4) y =N©),

defined foru € [0, 00), v € [0, h]land depending on the parameter h € [0, 1,
where

u v v

Ku) = / k@dt, M©@) = / @)dt, N@w) = / w(O)dt

0 0 0

is globally invertible for every h € [0, h].

Proor. By (2.2), (2.4) has an inverse
2.5) v=N"(y)

defined in [0, N(v)]. Substituting (2.5) into (2.3) we obtain

2
2.6) 0 = K) + MON () + % .

Since by (2.1) K(u) is strictly increasing and
2.7 lim K(u) =

U—00

(2.6) has, with respect to %, a unique solution

2
@38) w=K(0+ M0 + %)

The inverse of (2.3), (2.4) is therefore (2.8), (2.5). O
THEOREM 1. Ifx and v are given by

2.9) K(u, v, h) = plu, v, Wic(u), v(u,v,h) = plu, v, h)¥(w),

where p(u, v, h), K(u) and ¥(v) are C' functions such that

(2.10) plu,v,h) > py >0, k(u) > xg >0, ¥(v) > vy >0

when w >0, >v >0, h > h > 0, then problem (P) has one and only one
solution.
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ProoF. By the maximum principle the solutions of problem (P) satisfy
ux) >0, 0 >0vx) >0, h > h(x)>0in Q, x = (x1,a2).

Define K(u), M(v) and N(v) as in Lemma 1. The transformation

hZ
0=Ku)+ M) +§

y =N@)
by Lemma 1 is globally invertible with inverse
h2
@.11) w=U®O,p,h) =K (0 +MN\) + 5)
(2.12) v=Vy)=N"'W.
Define
(2.13) (0, h) = pUO,w,h), V), h).

Let (u(x), v(x), i(x)) be any classical solution of problem (P) and set

h(x)?

0(x) = K(u(x)) + M(v(x)) + 5

w(x) = N@(x)).

Problem (P) can be reformulated in terms of 6, w and & as problem (P)

(2.14) V - (a0, y,h)VO) =0 in Q
(2.15) V- (a0, y,h)Vy) =01in Q
(2.16) V- (0, w,h)Vh) =0in Q

72
0=0on I, G:E:K(a)+M(T))+% on Iy

w=0onrI1, w=y=N®) on Iy
h=0on Iy, h="nhon Is.

We claim that problem (P) has one and only one solution. For, let
(0(x), w(x), h(x)) be any solution of (P). Define

{(x) =0kx) — %h(x)

&) = plx) - %h(x)
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We have { = 0 and & = 0 on I". On the other hand, by (2.14) and (2.16)
217 V- @,y )N =V - ((0,w,h)VO) — %V (o0, w,h)Vh) =01in Q

and, by (2.15) and (2.16),

2.18) V-0, y, WIVE) = V-0, yr, lYVys) — %v- (@0, y, H)VI) = 0 in Q.

Multiplying (2.17) by { and integrating by parts over Q we have
/ o0, p, )|V Pdaydars = 0.
Q
Similarly from (2.18) we obtain
/ o0, )|V EPdary davs = 0.
Q

Hence
{x) =0, &x)=01in Q.

Thus 0(x), w(x) and h(x) are related by the functional relations

(2.19) 0(x) = %h(x)
_y
(2.20) w(x) = zh(x).
Hence the equation (2.16) can be rewritten
0, v
2.21) Vo lal =h,Zhh)Vh|=0
h h
(2.22) h=0onI4, h="hon I's.

This problem has one and only one solution. For, let

h _
0,y
= Fh) = =t,=t,t |dt.
w=F /“(h 7 )
0

Equation (2.21) under this transformation becomes

Aw=01in Q, w=0o0n Iy, w= F(h) on Is.
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Hence
hx) = F 1 wx)), 0x) = %f ), plx) = %f “w(x)).

By (2.11) and (2.12) we obtain as the only solution of problem (P)
- _ 2
u@)zK‘l%f“Vw@D+JW<N4(%f“%w@»)>+%(f‘%w@D>}

vix)=N"1 (% fl(w(x))>

h(x) = F L w(x)).

3. The functional solutions

The assumptions (2.9) are quite special. To treat more general situa-
tions we use a different definition of solutions suggested by the proof of
Theorem 1 and in particular by the functional relations (2.19) and (2.20)
between 0, w and h.

DEFINITION. We say that a classical solution (u(x),v(x),h(x))iof
problem (P) _is a functional solution if two functions U(k) € C3([0, R)),
V(h) € C3([0, k) exist such that

u(x) = Uh(x)), v(x) = V(h(x)).
THEOREM 2. If
3.1) P, v, k) > py >0

then there exists a one-to-one correspondence between the set {FS} of the
Sfunctional solutions of problem (P) and the set {TPP} of the solutions
UCh), V(h),y, 1) of the two-point problem (T'PP)

3.2 V% = e, v,y

3.3) Kwum%+mmww%+muum:wuum

(3.4 UWO) =0, Uh) =u
3.5) V(0) =0, V(h) =2.
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Proor. We define the map 7 : {TPP} — {P} as follows. Suppose
Uh), V(h),y, 1) € {TPP} and consider the nonlinear boundary value pro-
blem

(3.6) V - (pUh), V(h),h)Vh) =0 in Q
3.7 h=0on I, h="hon Is.

It is easily seen that (3.6), (3.7) has one and only one solution. For, let
3

3.8) w=RMh) = /p(l/{(t)7 V@), t)dt.
0

By (3.1) R maps one-to-one [0, 4] onto [0, R(k)]. Moreover, under (3.8)
problem (3.6), (3.7) becomes

(3.9) Aw=01in Q
(3.10) w=0on I, w=R()on .

Problem (3.9), (3.10) has one and only one solution. Therefore, the only
solution to problem (3.6), (3.7) is given by A(x) = R~ (w(x)). We claim that

(3.11) (u(x), v(x), h(x)) = UN(x)), V(R(x)), h(x)) € {P}.
We have by (3.2) and (3.6)

3.12) V- ((ux),v(x), h(x)Vv) = V - ((UR(x)), V(R(x)), h(x))%wb) =
=7V - (pUR)), V(I(x)), (x))Vh) = 0 in .

Moreover, by (3.3) and (3.6)

3.13) V- |:K(?/L, v, )Vu + vv(u, v, )V + hp(u, v, h)Vh] =

_v. [(K(U(h), VO, S v, v, %Y+ i, Vi, h)Vh} _

=uV - (pUh),V(h),Rh)Vh) =0 in Q.

All the boundary conditions of problem (P) are also satisfied in view of (3.4) and
(3.5). Hence 7 is well-defined. On the other hand, Z is one-to-one. For, let
Uh), V(h),y, 1) € {TPP}, (Z](]L), V(h), 5),})) € ~{TPP} and (u(x), v(x), h(x)) =
ZWUMR), V), y, w), wx), v0x), h(x)) = ZWUHR), V(h), p, ). TETWUMR), V(h), y, 1) =
ZWU),V(h),7,it) we have u(x) =u(x), v(x) =v(x) and h(x)= h(x), but
u(x) = UhX)), ax) =UMK)) and vx) = V(h(x)), 9x) = V(h(x)). Hence
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Uhx)) = Uhx)) = Uh(x)) and V(i(x)) = V(h(x)) = V(h(x)). Thus
(3.14) Uh) = UR), V(h) = V(h).

This implies also y=7% and x = ji. Finally 7 is surjective. For, let
(u(x), v(x), h(x)) = UR(x)), V(h(x)), h(x)) € {FS}. Define

h

3.15) /V(U(t) V), t) (t)dt
0
h
v = / <K(U(t) V@), t) (t) + V@OvUEt), V@), t) (t) + tpU(), V(1), t))
0
h
(3.16) &j/MM&VMJMt
0
and
3.17) Ox) = O(h(x)), P(x) = wlh(x)), Zx) = ().

By (1.4), (1.5) and (1.6) we have
A0 =0, AV =0, AZ =01in Q

with

(3.18) O@=0onl1, ®=Aon I,

3.19) Y=0onl{, W=Bonl),
Z=0onIly, Z=ConlIs

where

h
Az/mmymw%mm
0

B

I
o\:ﬂ

{K(L{(t) V@), t) (t) + VOvU®), V@), t)—(t) +tpU®), V(©), 1) |d

h
_ / PUD, VW), bt

(=}
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and C # 0 by (3.1). Let z(x) be given by the solution of the problem

(3.20) Az=0inQ2, z=00onI1, z=1o0n Is.
We have

3.21) Ox) = Az(x), P(x) = Bz(x), Z(x) = Cz(x).
Setting

(3.22) VZ%“U:%

we obtain

(3.23) Ox) = yZ(x), ¥(x) = puZ(x)

and by (3.15), (3.16), and (3.17) we have 0 = y{ and y = u{ i.e.

h h
(3.24) / V(U(t),V(t),t)%(t)dt =7 / pUD), V@), t)dt
0 0

h
3.25) / |:K(Z/[(t),V(t), t) % O+VEvUd),V@),t) % O+tpU®, V@), t)}dt =
0

h
=pn / pU®), V@), t)dt.
0

Taking the derivative with respect to # in (3.24) and (3.25) we obtain
(3.2) and (3.3). Hence, with y and ux given by (3.22) we have
TUMR),V(R),y, 1) = (ux), v(x), h(x)). O

As animmediate consequence of Theorem 2 problem (P) has one and only
one functional solution if the corresponding problem (7'PP) has one and only
one solution. Moreover, the search of the functional solution of problem (P) is
broken into two steps: (i) to find the solutions (%), V(R), y, 1) of problem
(TPP) and (ii) to solve problem (3.20). Step (ii) contains, so-to-speak, the
geometry of problem (P) and step (i) the nonlinear part.

To give a theorem of existence for the two-point problem (7'PP) we note
that (3.2), (3.3), (3.4) and (3.5) can be rewritten as follows

av  pU,V,h)

(3.26) an U v,k
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a pU,V, h)
(3.28) UO0) =0, Uh)=u
(3.29) V() =0, V(h) = 7.
THEOREM 3. If
(3.30) K(u,v,h) >0, pu,v,h) >0, viu,v,h) >0
(3.31) L Py
w(u, v, h)
and
(3.32) Ny > POy
v(u, v, h)

the two-point problem (3.26)-(3.29) has at least one solution.

Proor. We transform problem (3.26)-(3.29) in a system of two Vol-
terra-Fredholm integral equations. From (3.26) and (3.29) we have

v

(3.33) y=7=

S =

[2]dt

v

where
] - a0.v00.10)
v vU®D), V@), k@)

Moreover, from (3.27) and (3.28) we obtain

h
IS S S AN
(3.84) p=i=— ) (u—l—y/V(t)LJdt-&-/
il o
0

where
{p} _pU@), V@), h(2))

k| kU, VO, k@)

Substituting (3.33) and (3.34) in (3.26) and (3.27) and integrating with re-
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spect to & we have the system of integral equations

h h h
(3.35) U(h)ﬁ/ﬂdt?/vw[ﬂ]dt/t[ﬂ]dt
K K K
0 0 0

h

(3.36) V() = / H dt.
0
From (3.33) we have
v -
. < by : —
(3.37) 0<7<Gs Nh
and from (3.36) and (3.26)
(3.38) 0< V) <Vy=: &1’;}}2
Ny
dy No -
. - < _2Dh.
(3.39) ah (h) < N, vh

Moreover, by (3.34) and (3.37)

1 [_ 9k3N:Ks h2K,
3.40 0<i<M -2
(3.40) SksMy=p7 [% + N2 5
Hence, by (3.35) and (3.27)
2754
(3.41) Uh)| < Us =: MaKzh + % + K2R
1
(3.42) ‘— < Dy =: (VaG2 + h + M>)Ks.

Using (3.38), (3.39), (3.41) and (3.42) we can apply the Schauder fixed point
theorem. For, define

B = {U(h), V(h)) € C°([0,k]) x C°([0,h]); [Uh)| < Uz, V(h)| < Va}
and let 7 : B — C°([0,4]) x C°([0,h)), T = (T1,T2)

h
T U, V) =7 Hdt.
/6
h h h
ToU, V) = i Hdt—y V(t)mdt— tﬂdt.
R ol [
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We have 7 (B) C B. Moreover, proceeding as in the proof of (3.39) and (3.42)
we find that 7(B) is bounded in C'([0,2]) x C'([0,2]) and thus compact in
C°([0, h]) x C°([0, k]) by Arzela’s theorem. We conclude that the two-point
problem (3.26)-(3.29) has at least one solution. O

As a consequence of the theorem just proved and of Theorem 1 problem
(P) has at least one functional solution if (3.1), (3.30), (3.31) and (3.32) are
satisfied.

4. A result of uniqueness

In general [5] the two-point problem (7'PP) has more than one solution.
It is therefore interesting to give conditions under which the solution is
unique. For example, if condition (2.9) holds we have as corresponding two-
point problem

_.ay
V(V)% =7
ooau Ay
K(U)% +Vi(V) an T hp(h) = p
UO0) =0, Uh) =u

V(©0) =0, V(h) =2

and it is easily seen that in this case the solution is unique. In the next
theorem a result of uniqueness is given when x, v and p depend only on
the temperature u. In practical cases the main dependence of x, v and p
is precisely from the temperature. In the proof we use the following
Lemma [1] .

LemmMa 2. If () € C([0, 00)), B(O) > 0 and B'(0) < 0 then the problem
2

’Lg =1+4280), 0(0) =0, O(h) =6 > 0

4.1 i

has, for every y € R', one and only one solution.

p Proor. Simply note that 8(k) > 0 by the maximum principle and that
25 L+ PBO) = PE©O) <. O
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THEOREM 4. If x(u), v(u) and p(u) € C([0, 00)) and satisfy

(4.2) r(u) >0, ptu) >0, v(u) >0
[t
0
4.4) P )v(u) < pw)v'(u)
and
(4.5) M >y >0
v(u)

then there exists one and only one functional solution of problem (P).

Proor. According to Theorem 2 the two-point problem corresponding
to problem (P) is, in this case:

(4.6) V) ZZZ—Z = 7ph)
4.7 %%—s—y\H—h:ﬂ
(4.8) UW0) =0, Uh) =u
4.9) V() =0, V(h) = 7.
We note that

(4.10) y>0

since y <0 is incompatible with (4.2) and (4.8). By (4.3) the function
0=FU)
‘ t
(4.11) FUu) = /&dt
p(t)
0
maps diffeomorphically [0, co) onto [0, co). The system (4.6)-(4.9) becomes,

in terms of # and V,

(4.12) w_ yB(0), V(©0) =0, V(h) =7
dh
do I
(4.13) Wt h=p, 00)=0, 0h) =0 = F(u),

dh
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where
pFLO)
(4.14) BO) = FI0)
From (4.13) we have
ae*  dy
Substituting (4.12) into (4.15) we obtain
de?
(4.16) —E =1t PBO)
4.17) 0(0) = 0, 6(h) = 0.

If (4.4) holds we have £'(0) < 0. Thus, by Lemma 2 problem (4.16), (4.17) has
for every y one and only one solution 6(k; y) and

(4.18) Uh;y) = F10h; 7).
Moreover, by (4.12)

h
4.19) V() = / B )it
0

The parameter 7, still at our disposal, is now used to satisfy the boundary
condition V(h) = v which, by (4.19), reads

h
(4.20) b=y / B 7).
0

To prove that (4.20), as an equation in y, has one and only one solution we
define

h

Go) = 7 / B )it

0

We have G(0) = 0 and G(y) > for all y > 0. Moreover,

h h
.21) GG = / BO )t + 7 / B0 y»g—fa; Dt
0 0
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We claim that g—z(t; 7) < 0. By the continuous differentiability with re-
spect to the parameter y and by (4.13) we have

e, _
(4.22) = V(h)
(4.23) 0,(0) = 0.

On the other hand, by (4.12) and (4.10) we have V(&; y) > 0. Thus, from (4.22)
and (4.23) we obtain

(4.24) 0,(h; ) <0.
Hence, by (4.21) and (4.5)

h
G@) > /ﬁ(@(t, y;)dt > roh > 0.
0

Therefore (4.20) has, for every v, one and only one solution 7. We conclude
that the only solution of problem (4.6)-(4.9) is given by

(4.25) Uh) = F~10(h; )
h
(4.26) V() = 5 / BOE: )it
0

By Theorem 2 there is only one functional solution of problem (P) which we
obtain in the usual way: we solve the problem

4.27) V- (pUMR)Vh) =0inQ, h=00n T, h=hon I
defining

h
w = H(h) = / pUDL.
0

By (4.2) H maps ono-to-one [0, 1] onto [0, w] where w = H(k). In term of w
problem (4.27) reads

(4.28) Aw=0inQ, w=0on Iy, w=won [s.
Let w(x) be the solution of (4.28). We have

(4.29) h(x) = H ™ (w(x))
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and
(4.30) u(x) = Uh(X)) = UH ™ (w(x)))
(4.31) v(x) = V(h(x)) = V(H L (w(x))).

The only functional solution of problem (P) is given by (4.29), (4.30) and
(4.31). O

We stress the difference between Theorem 1, where we found un-
iqueness in the general class of classical solutions {CS}, and Theorem 4
where uniqueness is proved in the smaller class of functional solutions
{FS}. It would be interesting to show that the solution, under the hy-
potheses of Theorem 4, is unique also in {CS}.

5. Appendix

We derive here the equations (1.4), (1.5) and (1.6) entering in pro-
blem (P). We assume the magnetic permeability 1, to be a constant.
Moreover, the pressure p, the magnetic field H and the velocity v are
supposed to have the special form (1.1), (1.2) and (1.3). Using the
Maxwell equation

G.1) J=LvVxH
4r

the magnetohydrodynamic body forces

r=fgy«m
c
by (1.1) take the form
8h 8h

Thus, by (5.2), (1.2) and (1.3) the Navier-Stokes equations reduce to

.3) V. (W) = 0

op o
(5.4) a—lerha—xlfo
5.5) o 0

6.902 (9902
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In view of (1.1) and (1.2), the Ohm’s law pJ = E + v x py,H gives
(5.6) pJ —E.

Moreover, since E is irrotational, we have, taking the curl of (5.1),

(5.7 Vx@VxH)=0
and by (1.1)
(5.8) V- (pVh)=0.

The energy equation reads

3
. (%i 8vk (97)1'
5.9 V-Vu)=E -J + v“%:l (8ack + 69@)6&%

where in the right hand side the first term represents the Joule heating and
the second the viscous heating. Specializing (5.9) in our case we obtain, in
view of (1.1), (1.2) and (5.6),

(5.10) —V - (V) = p|Vh[* + v|Vol?.
This equation, by (5.3) and (5.8), can also be written as follows
V- [kVu + phVh + vwVo] = 0.

Once h(x1,x2) is known as part of the solution of problem (P), we can
compute p(xy, x2) from (5.4) and (5.5).
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