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7/-Schemes and Zariski-Riemann Spaces

SATOSHI TAKAGI

ABSTRACT - In this paper, we will investigate further properties of . Z-schemes
introduced in [Tak]. The category of . Z-schemes possesses many properties of
the category of coherent schemes, and in addition, it is co-complete and com-
plete. There is the universal compactification, namely, the Zariski-Riemann
space in the category of . Z-schemes. We compare it with the classical Zariski-
Riemann space, and characterize the latter by a left adjoint.
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0. Introduction

In this paper, we will investigate further properties of . Z-schemes in-
troduced in [Tak]. The first motivation of introducing . Z-schemes was to
construct a scheme-like geometrical object from various kinds of algebraic
systems, such as commutative monoids, semirings, and etc. However, it
happens to have advantages even in the case the algebraic system is that of
rings. The category of . Z-schemes is much more flexible than that of or-
dinary schemes: let us list up the properties of . Z-schemes, and compare
with ordinary schemes:

(1) Let (Coh.Sch) be the category of coherent schemes and quasi-compact
morphisms. Then, the category (.Z-Sch) of .7Z-schemes contains
(Coh.Sch) as a full subcategory. Also, (#-Sch) is a full subcategory of
the category (LRCoh) of locally ringed coherent spaces and quasi-
compact morphisms (Proposition 2.1.1).

(2) There is a spectrum functor, and is the left adjoint of the global section
functor I : (4-Sch)® — (Rng) ([Tak]).

(3) The inclusion functor (Coh.Sch) — (_Z-Sch) preserves fiber products
(Corollary 2.3.4), and patchings via quasi-compact opens (Proposition
2.1.6).

(4) There is a valuative criterion of separatedness (Proposition 3.4.3) and
that of properness (Proposition 3.4.4).

These imply that .Z-schemes behave much like ordinary schemes. By
contrast, they have more virtues than ordinary schemes:

(5) The category (.#-Sch) is small co-complete (Proposition 2.1.6) and
small complete (Proposition 2.3.3). We don’t need filteredness.

(6) There is a functorial epi-monic decomposition of morphisms of . 7Z-
schemes (Theorem 2.2.12). In particular, we have the ‘image scheme’ for
each morphism.
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Therefore, we need not distinguish pro-schemes and ind-schemes from
schemes anymore, if we work out on this category of . Z-schemes. These
properties give us various profits:

(7) We can consider quotient . Z-schemes whenever there is a group action
on an .Z-scheme. We don’t need any additional condition.

(8) Formal schemes can be treated on the same platform, as . Z-schemes
(Example 3.1.7).

(9) We can think of universal ‘separation’ of . Z-schemes (Proposition 3.3.2).

(10) We can think of universal ‘compactification’ of . Z-schemes, namely,
the Zariski-Riemann space (Theorem 4.1.2). The construction is the
analog of the Stone-Cech compactification.

The key of this extension of the category of ordinary schemes is simple: to
abandon the principal property of schemes, namely, ‘locally being a spec-
trum of a ring’. It is because this condition forces us only to use finite cate-
gorical operation in the category of ordinary schemes, and makes it very
inconvenient. In particular, we have to give up Zariski-Riemann spaces in the
category of ordinary schemes, although it is a fairly nice locally ringed space
and there are various applications. On the other hand, Zariski-Riemann
spaces can be treated equally with ordinary schemes, when we extend our
perspective to the category of . Z-schemes. Moreover, the construction of
Zariski-Riemann spaces appears to be as natural as the spectrum of a ring.

Let us describe the contents of this paper. In § 1, we will prove some
properties of coherent spaces, which we will need later. In particular, a
quasi-compact morphism of coherent spaces is epic if and only if it is
surjective, and its image is closed if and only if it is specialization closed.

In §2, we will discuss the properties of the category of . Z-schemes,
namely we will prove the co-completeness and completeness. The key
lemma is the functorical decomposition of morphisms. This gives us the
upper bound of the cardinality of the set of morphisms with fixed targets,
and hence enables us to construct limits. This is the analog of the con-
struction of co-limits in the category of algebras of various kinds.

In § 3, we define separated and proper morphisms of . Z-schemes, and
give valuative criteria for separatedness and properness. Unlike ordinary
schemes, we don’t have a canonical morphism Spec @x, — X in the
category of . Z-schemes, where « is a point of an . Z-scheme X. Hence, we
had to modify the testing morphisms. The valuative criteria in the cate-
gory of ordinary schemes check the right lifting properties of the com-
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mutative square

Spec K ——= X

|

SpecR ——= §

where K is an arbitrary field and R is its valuation field. The left vertical
arrow is the ‘testing morphism’. In the category of . Z-schemes, we must
replace the testing morphisms to formulate the valuative criteria: namely,
just take the set {&,#} of the generic point and the closed point of Spec R
with a natural induced . Z-scheme structure. Once we have the valuative
criteria, we can construct the universal separation and the universal com-
pactification; the latter is treated in § 4. We note here, that we will not in-
clude ‘of finite type’ condition in the definition of proper morphisms, for we
want to take limits. We emphasize the fact that separated morphisms and
universally closed morphisms are closed under taking infinite limits, while
morphisms of finite types are not.

In §4, we construct the Zariski-Riemann space as the universal com-
pactification using the adjoint functor theorem. Later, we will also consider
‘classical Zariski-Riemann space’ on irreducible, reduced . Z-schemes, as it
happens to be more easier to analyze than the previous Zariski-Riemann
space. This construction is the analog of the conventional one, but with
different flavor: we tried not to use valuation rings when defining it. This
reveals the naturalness of the concept of valuation rings— that it is as
natural as the concept of ‘local rings’ of spectra of rings. Also, note that
what localization is to the spectrum is what separated, of finite type
morphism is to the Zariski-Riemann space. These also imply that the way
of constructing a topological object from rings is not at all unique—we can
consider another ‘algebraic geometry’.

Here, we also compare our previous Zariski-Riemann space with the
classical one. Actually, the topology of the classical Zariski-Riemann space
happens to be coarser: it is, in a sense, the coarsest possible topology. This
property, which we will call ‘of profinite type’, characterizes the classical
Zariski-Riemann space. Though the classical Zariski-Riemann space has a
weaker universality, it is valuable since it gives us concrete descriptions of
its structure and morphisms. Any separated dominant morphism of or-
dinary integral schemes is of profinite type, so that they can be embedded
into a universal proper, of profinite type . Z-scheme.

In this paper, we only constructed Zariski-Riemann space for irre-
ducible, reduced . Z-schemes, since this assumption makes the argument
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much simpler, and it will be sufficient for most of the applications. We
believe that it is possible to extend it to arbitrary . Z-schemes with a little
more effort. We have proved a variant of the Nagata embedding (Corollary
4.6.6). The original version of the Nagata embedding can also be proven,
and will be shown in the forthcoming paper. We decided not to prove it
here, since there are various proofs published already ([Nag], [Con],
[Tem]), and it takes a little more detailed work which will make this paper
more longer if we include it. However, the proof is rather natural and in-
tuitive than the former ones.

We summarized the definition of . Z-schemes at the end of this paper, as
an appendix. This will be sufficient for the reader to go through this paper,
though he hasn’t looked over [Tak].

0.1 — Notation and conventions

The reader is assumed to have standard knowledge of categorical
theories; see for example, [CWM], [KS]. We fix a universe, and all sets are
assumed to be small. The category of small sets (resp. sober spaces and
continuous maps) is denoted by (Set) (resp. (Sob)).

When we talk of an algebraic system, all the operators are finitary, and
all the axioms are identities. Any ring and any monoid is commutative, and
unital. For a ring (or, other algebras with a structure of a multiplicative
monoid) R, we denote by Rg the localization of R along the multiplicative
system S of R.

For any set S, 7(S) is the power set of S, and 27(8) is the set of finite
subsets of S.

When given an . Z-scheme (or, any topological space with its structure
sheaf) X, we denote the underlying space by |X|.

We frequently denote finite summations by >~ =°°, when the range of
the index is not crucial. The same thing can be said for the notation U<
for finite unions.

1. Properties of coherent spaces

In this section, we will investigate some properties of sober and coherent
spaces. Recall that a topological space X is sober, if every irreducible closed
subset of X has a unique generic point. For a sober space X, C(X) is the set
of closed subsets of X. This becomes a complete II-ring; see appendix § 5 for
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further details. A topological space X is coherent, if it is sober, quasi-com-
pact, quasi-separated, and has a quasi-compact open basis.

1.1 — Monic and epic maps

LEmmA 1.1.1. Let o be any algebraic system, and f: A — B be a
homomorphism of a-algebras. Then, f is monic if and only if f is injective.

Proor. The ‘if’ part is clear.

Suppose f is not injective. Then there are two distinct elements
a1, ag € A such that f(a;) = f(az2). Let Ry be the initial object in (o-alg).
Define two homomorphisms g; : Ro[X] — A by X — a; for i = 1,2. Then,
fo1 = fg2 but g1 # go, a contradiction. O

In the sequel, let f: X — Y be a morphism of sober spaces, and
f7:C(Y) — C(X) the corresponding homomorphism of complete idealic
rings (for complete idealic rings, see Appendix).

ProPOSITION 1.1.2.  The followings are equivalent:
@) f is mmjective.
(ii) f is monic.
(i) Any prime element of C(X) is in the image of f7.

Proor. ()« (i) follows from Lemma 1.1.1.

(i)=-(iii): Let x be a point of X. It suffices to show that f *l(m) = m
Let w € f~1(f(x)) be the generic point of an irreducible component of
f ‘%M). Then we have f(w) = f(x). Since f is injective, w = x. This shows
that £~ 1(f(x)) = .

(iii)=(i): Note that Spec C(X) C Im f# shows that {x} = f~1(f(x)) for
any point x of X. If f(x) = f(«') for two points of X, then

{w} = (f@) =f (@) = {o'}.

Since X is sober, x coincides «'. O

ProposITION 1.1.3.  The followings are equivalent:

() f7 is surjective.
(ii) Im f is homeomorphic to X.
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Proor. (i)=(ii): Since f# is surjective, it is epic, hence f is monic.
This shows that f is injective. The surjectivity of f# shows that
FfUf)NImf) =z for any closed subset z of X. Hence f(z)NIm f =
f(2), which implies f(z) is closed in Im f.

(ii)=(@): Since f is injective, f1(f(2)) = z for any closed subset z of X.
On the other hand, f(z) is closed in Im f since f is homeomorphic onto the
image. Therefore, f~1(f(z)) = z, which implies f# is surjective. O

Next, we will investigate the condition when a morphism f : X — Y of
sober spaces becomes epic. Let (IIRng') be the catogory of complete
idealic semirings (see Appendix). First, note that the functor C : (Sob)® —
(IIRng") is fully faithful, since it is the right adjoint and left inverse of
Spec ([Tak]). An object R of (IIRng") is spatial, if R is isomorphic to C(X)
for some sober space X.

REMARK 1.1.4. There exist some non-spatial complete II-rings. Let
C(R) be the complete II-rings of closed subsets of the real line with the
standard topology. Let R = C(R)/ = be the quotient complete II-ring,
where = is the congruence generated by Z = Z° for any Z, where Z° is the
open kernel of Z. Then, R is a non-trivial II-ring, but has no points; see
[Ste].

LemMA 1.1.5.  Let R be an object of (IIRng"), and R[t] be a polynomial
complete idealic semiring with idempotent multiplication.

(1) An element of R[t] can be expressed by a + bt, where a,b are ele-
ments of R and a < b.
(2) A prime element p of R[t] is either of the following:
(@) p = a+ bt, where a,b are prime elements of R and a < b.
(b) p = a+t, where a is a prime element.
(3) If an object R of (IIRng") is spatial, then so is R[t].
@) In particular, a morphism f : X — Y of sober spaces is epic if and
only if f# : C(Y) — C(X) is monic.

Proor. (1) Easy.

(2) Let p = a + bt be a prime element. It is easy to see that @ € R must
be prime. Also, b must be prime or 1, since «t - yt = xyt.

(3) Easy.

(4) The ‘if’ part is obvious, since (Sob)® is can be regarded as a full
subcategory of (IIRng') via C. If f# is not monic, we have two distinct
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morphisms g, h : I1[t] — C(Y) such that f#g = f#h, where I; is the initial
object of (IIRng"). But since I71[¢] is spatial, we conclude that f is not epic.

PrOPOSITION 1.1.6.  The followings are equivalent:

(1) f is epic.

() f* is injective.

(3) f* is monic (in (IIRng)).

4) Im f Nz is dense n z, for any closed subset z of Y.

Proor. (i)« (ii)<(iii) is a consequence of Lemma 1.1.1 and 1.1.5.

(ii)=@{v): For any closed subset z of X, let 2’ be the closure of Im f N z.
Then we have f#(z') = f#(z). Since f# is injective, we have 2/ = z, hence
the result follows.

(iv)=-(ii): Suppose f#(z) = f#(z) for some closed subsets z,z’ of Y. The
equation ff~1(z) = Im f Nz induces

z=Imfnz=Imfnz =2\

1.2 — Coherent spaces

PropoSITION 1.2.1.  Let f : X — Y be an epimorphism of sober spaces,
and X be noetherian. Then f is surjective.

ProOF. Let y be any point of Y, and Z = {y} be the irreducible subset
corresponding to y. Since X is noetherian, f~1(Z) can be covered by a finite
number of irreducible closed subsets: f~1(Z) = U~>*W;. Let ¢ be the
generic point of W; for each i. Since the image of f is dense in Z and Z is
irreducible, at least one of the &;’s must be mapped to . O

The proof of the next theorem requires some preliminaries on ultra-
filters (see [CN], for example). The reader who knows well may skip and go
on to the next theorem.

DEFINITION 1.2.2. Let S be a non-empty set.
(1) A filter .7 on S is a non-empty subset of #°(S) satisfying:
G 0¢.7.
(i) fAe.7 and A C B,then Be.7.
(iii) If A and B are elements of .7, then ANB € .7.
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The set of filters becomes a poset by inclusions.

(2) A maximal filter with respect to inclusions is called an ultrafilter.

A filter 77 is an ultrafilter if and only if @ € 7% or a® € 7/ for any subset
a of S. Also, note that exactly one of a or a is in 77.
For any s € S,

7ws={aCS|sca}

becomes an ultrafilter, which is called principal. An ultrafilter is principal,
if and only if it contains a finite subset of S.
Let . be a subset of 7(S) satisfying

@ 0¢.7.
(i) If A and B are elements of ., then ANB € .7

Then there exists a ultrafilter containing ., using the axiom of choice.

A filter .7 on a non-empty set is prime, if a Ub €.7 implies either
a €.7 or be.7. One can easily prove that the notion of prime filters is
equivalent to that of ultrafilters.

LEmma 1.23. Let X = {x;}, be a set, and X, = {x;} be one-pointed
spaces, regarded as coherent spaces. Let X, =[], X, be the coproduct of
X;’s in the category of coherent spaces. Then, any point of X corresponds
to a ultrafilter on X.

Proor. First, note that X is isomorphic to Spec (][, I'1), where I} is
the initial object in the category of (IIRng). Hence, a closed subset of X,
corresponds to a filter on X, and any point of X, corresponds to a prime
filter, in other words, a ultrafilter on X. O

THEOREM 1.2.4. Let f : X — Y be an epimorphism of coherent spaces.
Then f is surjective.

Proor. Let yy € Y be any point of Y, and Y be the closure of {yo}
in Y. Since f is epic, {y;}, =ImfNY, is dense in Y;. Assume that
Yo Im f NYy. Then, Im f N Yy must be an infinite set, since if it is finite,
then its closure is equal to Uf“m, which is a proper closed subset of
Y. Choose x; € X such that f(x;) =y, for each 1, and set S = {x,},.
Also, let X = [],{x;} be the coproduct of {x;}’s in the category of co-
herent spaces. By Lemma 1.2.3, the points of X correspond to the ul-
trafilters on S. We have the natural commutative diagram



130 Satoshi Takagi

X

1IN

X —f) Y
Next, we define a map ¢: C(Yp) \ {Yo} — S\ {0} by sending Z to
{x € S| f(x)¢ Z}. This is well defined, since f(S) is dense in Yj. Also,
note that Img is stable under taking finite intersections: ¢(Z1)N
o(Z2) = p(Z1 U Zy). 1t follows that there is an ultrafilter 72 on S, con-
taining the image of ¢. Let x be the point of X, corresponding to 2. We
claim that f (x0) = Yo, from which f(@(xg)) = o follows. Indeed, the image
of xy is the generic point of the intersections of Z € C(X)y such that
Xp € f ~1(Z). Hence, it suffices to show that Y is the only closed subset
satisfying the condition. If Z # Y}, then Z is a proper closed subset of
Yo, and xg effl(Z) implies p(Z)° € 72. But on the other hand, ¢p(%) € %,
which is a contradiction to 77 being a ultrafilter. O

COROLLARY 1.2.5. Let f: X — Y be a morphism of coherent spaces.
Then, the image of [ with its induced topology is also coherent.

Proor. The morphism f corresponds to the homomorphism
f#:C(¥)gpt = CX)ept of II-rings. Let R be the image of f#. Then,
C(Y)pt — R is surjective, and B — C(X)y is injective. Set W = Spec R.
Then, f factors through W, with X — W epic (hence surjective by Theo-
rem 1.2.4) and W C Y an immersion by Proposition 1.1.3. This tells that W
coincides with the image of f. O

ExaMPLE 1.2.6. (1) Let Y = |AL| be the underlying space of the affine
line over C, and X = Y(C) be the set of closed points of Y, endowed with a
discrete topology. Then, the natural map X — Y is a morphism of sober
spaces. This is an epimorphism by Proposition 1.1.6, but not surjective,
since the image does not contain the generic point of Y.

On the other hand, we have a morphism alg(X) — Y of coherent spaces:
here, alg is the left adjoint of the underlying functor (Coh) — (Sob)
([Tak]). In this case, alg(X) is just the coproduct [ ], y{x} in the category
of coherent spaces. This is also epic, hence surjective by 1.2.4. The non-
principal points of alg(X) maps onto the generie point of Y.

(2) Let X be as %ove, and set V = |%\%5|, the affine plane over C. Since
there is a non-canonical bijection ¢: C — CZ there exists a map
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¢ : X — V, the image of which is the set of closed points of V. When we
algebraize X, we again obtain a surjective map alg(X) — V. Some of the
non-principal points of X map to a generic point of a curve on V, others map
to the generic point of V. These two examples tell us that the non-principal
points of alg(X) behave like ‘universal generie points’ of X, although the
Krull dimension of alg(X) is zero.

The next theorem is important when we consider valuative criteria.

THEOREM 1.2.7. Let f : X — Y be a dominant morphism of coherent
spaces. Then, any minimal point of Y (that is, the generic point of an ir-
reducible component of Y) is contained in the image of f.

ProoF. Let yy be any minimal point of Y, and {U*}, be the filtered
system of quasi-compact open neighborhood of .. For each A,
f~Y(U* — U*is dominant since f is so. Set U = lim,U”. This is a pointed
space {¥o}, since the underlying functor (Coh) — (Set) preserves limits
([Tak]). We claim that f~1(U>®) — U® is dominant (in particular,
F7HU>) # 0). Since C(U>)epy and C(f ~H(U™)),p, are naturally isomorphic
to lim C(U “)ept and lim C(f “H(U") et respectively, it suffices to show that
the homomorphism

f# 2 1m CU e, — lim O U)o

satisfies f#(Z) =0 = Z = 0. Let Z be an element satisfying f#(Z) = 0.
Since {C(U*)ept}; is a filtered inductive system, Z and f#(Z) can be
represented by an element of C(U%)yy and C(f~1(U*))yy for some 4,
respectively. Since C(U")ept — C(f H(U?))¢pt is dominant, Z must be
Zero. O

COROLLARY 1.2.8. Let X be a coherent subspace of a coherent spaceY.
Then, the closure of X consists of all points which are specializations of
points on X.

Proor. Let Z be the set of points which are specializations of points on
X. Itis clear that Z C X, so we will show the converse. Let y be any point in
the closure of X in Y. Since X is also a coherent subspace, there exists a
minimal point y, of X which is a generalization of 3. Since X — X is
dominant, ¥, is contained in X by Theorem 1.2.7. Since Z is stable under
specializations, ¥ must be in Z. O
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2. The category of . Z-Schemes

In [Tak], we introduced the definition of . Z-schemes. The advantage of
the notion of . Z-schemes is not only generalizing the concept of schemes to
other algebraic systems, but also giving the way to infinite categorical
operations: in fact, the category of . Z-schemes is small complete and co-
complete. A finite patching over quasi-compact open sets, and fiber pro-
ducts commute with those of ¢’-schemes, namely, ordinary schemes.

Notations: from now on, the homomorphism C(Y)q; — C(X)ep asso-
ciated to a morphism f : X — Y of . Z-schemes is denoted by /%, or | f \71.
We use the notation f# for the morphism of structure sheaves

2.1 — Co-completeness

First, we begin with describing what . Z-schemes is like when the al-
gebraic system is that of rings.

ProposITION 2.1.1. Let o be an algebraic system of rings, and
(LRCoh) be the category of locally ringed coherent spaces and quasi-
compact morphisms. Then, there is a natural underlying functor
(2-Sch) — (LRCoh) defined by (X,Ox,px)— (X,@x). Further, this
Sfunctor is fully faithful.

Proor. Let X = (X, 7%, fix) be an .#-scheme. What we have to show
first is that X is alocally ringed space, i.e. @’x , is alocal ring for any x € X.
Let 9, be a subset of “x ,, consisting of germs a such that fyoz(a) > x. We
will show that this is the unique maximal ideal of @'y .

Let a, b be two elements of I¢,,. We have as(a + b) < as(a) + a2(b); recall
that og(a) is the principal ideal generated by a. Hence,

Pxag(a + b) < fyoa(a) + fyoa(b) <x+a =,

which shows that @ + b € WMiy. It is easier to show that ca € I, for any
c € Ox, and a € M,.. Hence, W, is an ideal of Oy .

Suppose (U,a) € @x, is not contained in M,. Set Z = fyoz(a). This
does not contain x. Set V = U \ Z. Since restriction morphisms reflect
localizations (see appendix § 5 for the terminology), a, is invertible, hence
@ is invertible in ?x ;. This shows that @'y, is local, the maximal ideal of
which is %,.
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Let f: X — Y be a morphism of . Z-schemes. It suffices to show that
f*: Oy @) — Ox4 is a local homomorphism for any « € X. Let a be an
element of ¢, where y = f(x). Then,

Braa(f#(@) = Bxlon oz(@) = | | Byas(a).

Since fyus(a) <y, we have |f| ' Byxs(a) < @, which shows that N, C
(f#)7'M,.

Hence, we have a functor U : (Z-Sch) — (LRCoh). It remains to
show that this functor is fully faithful. Let X, Y be two . Z-schemes, and
F=(fl,f") : UX — UY be a morphism of locally ringed spaces. It suf-
fices to show that the following diagram

(03] (fy Llf)- |f|*()'| (/7X

By l l |fl«Bx

Y ———>|fl.7x

Vi,

is commutative. Let a be a section of o;@y. Then

1fI7 o By(@ = {& | My sy D a},  fifx 0o fH (@) = {w| My, O fFa},

where My sy and My, are the maximal ideals of @y ¢, 7x 4, respec-
tively. But the right-hand sides of the both equations coincide, since
f* Oy gy — Ox . s alocal homomorphism for any . O

In the sequel, we fix a schematizable algebraic type . Z = (g, 01, 02, 7)
([Tak]).

DEFINITION 2.1.2. (1) An .#-scheme X is a /-scheme, if it is locally
isomorphic to Spec 'R, for some ag-algebra R.

(2) Let (Z-Sch) be the full subcategory of (#-Sch), consisting of -
schemes.

Proposition 2.1.1 tells that, if ¢ is the algebraic system of rings, then
(¢-Sch) is the category of coherent schemes and quasi-compact morph-
isms, since a morphism of schemes is a morphism of locally ringed spaces.

ProrosiTiON 2.1.3.  The category (7-Sch) admits finite patching via
quasi-compact opens, namely: let Xy,---,X, be C-schemes, Uy C X; be
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quasi-compact open subsets, and ¢; : U;; — Uj; be isomorphisms satisfy-
ing ;o @;; = ¢ on Uy N Uy. Then, there exists a co-equalizer X of
I, Uy = 11 Xi, such that 1[; Xi — X is @ quasi-compact open covering.

Note that, when we speak of a covering, it must be always surjective.

Proor. By induction on 7, it suffices to prove for n = 2: let X, X, be
two /-schemes, and X;—U<—X, be the intersection quasi-compact open
subscheme of X; and X. Let X be the amalgamation X [ [;; Xz of X; and X»
along U. This is well defined, and coincides with the usual topology, since X
is coherent, thanks to U being quasi-compact. This also shows that
{X; — X};_; 5 is indeed a covering. O

The next lemma is peculiar to II-rings.

LEMMA 2.1.4.  Let C* = {C*} be a projective system of II-rings. Let C be
the limit of C*, and m; : C — C* be the natural morphisms. Then, for any
Z € C, the localization Cz along Z is naturally isomorphic to 1Lrn ;((Cl)m 7

Proor. Since Z maps to 1 by the morphism C — (C;),,z, We have a
natural morphism Cy; — (C’t)n}z. This in turn gives a natural morphism
Cz — 1(1212(01)@%

Next, we see that if ¢ : C; — C7 is a endomorphism such that 7,0 = =,
for any 4, then ¢ is the identity. m,p(x) = m;x in (Cl)mz is equivalent to
7;,(Zp(x)) = n;(Zx) in C*. Since this holds for any /, we have Zp(x) = Zz,
which is equivalent to ¢(x) = « in Cy.

Finally, we construct lim;(C"),; — Cz. The map f : lim,C* — Cy is
already defined, hence we only need to verify that f(x) = f(y) implies x = y
in 1im,(C*),,, but this is obvious.

Combining all the arguments, we see that Cj; coincides with
lilni(c)*)mz- O

ProPOSITION 2.1.5. (1) Let {X;} be an inductive system of coherent
spaces, and X = liLn 1X;. Then, there is a natural isomorphism
Ty lgn IaTx,, where 1, : X; — X are the induced morphisms.

(2) Let {X*} be a filtered projective system of coherent spaces, and
X :1£n , X% Then, there is a natural isomorphism tx f:li_rr} ;Vn;fer,:,
where 7, : X — X* are the induced morphisms.

Proor. (1) This follows from the above lemma.
(2) First, there is a natural morphism ty. — 7,,7x. Taking the adjoint,
we obtain f; : n; 11y, — tx. Taking the limit, we obtain lim m;er,: — Tx.
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Next, we show that if ¢ : ©x — 7x is an endomorphism with ¢f; = f; for
any /A, then ¢ is the identity. But this follows from the fact that the pro-
jective system is filtered. We can also construct a natural morphism
tx — lim n;er,;, using the filteredness. Combining all these, we obtain the
required isomorphism. O

ProrosiTION 2.1.6. (1) The category (_2-Sch) is small co-complete.

(2) The category (#-Sch) admits finite patchings via quasi-compact
opens. Moreover, the inclusion functor I : (/-Sch) — (_#Z-Sch) preserves
finite patchings via quasi-compact opens.

Proor. (1) Let {X;} be a small inductive system of . Z-schemes. First,
we will construct the . Z-scheme X = (|X|, @Y%, fx). The underlying space
|X|is given by the colimit of the underlying spaces |X;|. Set || : | X| — |X]
be the associated morphisms. The structure sheaf @'y is defined by the limit
of |;],7x,, as a (o-alg)-valued sheaf on X.

We have a morphism

o lulBy,
ululOx, ~ |ul.oaOx, —

li|*TX;,7

which extends to give o3?x — |1;],7x,. Taking the limit and using Propo-
sition 2.1.5, we obtain

ﬂX : 0610”}( — liﬂlﬂlzhfx,z ~ Tx.

We will verify that restriction maps reflect localizations. Let @'x(U) —
@x(V) be a restriction map, and let Z = U \ V be the closed subset of U.
Let Z, be the inverse image of Z by X, — X, so that we will denote Z by
(Z1);. It suffices to show that if a = (a;), € @x(U) satisfies fyoe(a) > Z,
then a is invertible in @x(V). Since fy as(a;) > Z;, a,; is invertible in
@x,(V;), where V = (V;),. The uniqueneés of the inverse element shows
that a is also invertible in @@ x (V). Thus, we have defined an . Z-scheme X.
We also have natural morphisms z; : X; — X.

We will show that X is actually the colimit. Let j,: X; — Y be
morphisms, compatible with the transition morphisms. There is a unique
natural morphism |j|: |X| — |Y| between the underlying spaces. The
morphisms @y — |j;].7x, give

J* s Oy = limy |, Ox, ~ limy|jl, |ul.Ox, = 1], imlu),Ox, ~ |50

This is the unique morphism which satisfies |j |*sz oj* = ﬁ It is easy to
see that j = (|j],/%) commutes with the support morphisms Sy and fy.
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Thus, we obtained a unique morphismj : X — Y of . Z-schemes, hence X is
indeed the co-limit.

(2) We only have to show that if X is obtained by patching X3, - - -, X, by
quasi-compact opens, then {X; — X} is a covering. By induction, it suffices
to prove for n = 2. There is a surjective morphism X; [ [ X2 — X, hence it
remains to show that:

If R; and R are two II-rings, then any element of the spectrum
of R=R; xRy are in the image of SpecR; — SpecR or that of
Spec Ry — SpecR.

This is easy to prove, so we will skip.

It is clear from the construction that the functor I preserves finite
patching via quasi-compact opens. O

REMARK 2.1.7. Even though small coproducts exist in the category of
Z-schemes, their behavior is somewhat different from those in schemes.
For example, a point of an infinite coproduct X =[], X, does not ne-
cessarily come from a point of some X, i.e strictly speaking, {X, — X} is
not a covering of X.

ExampLE 2.1.8. The spectrum functor is mal-behaved, when we con-
sider infinite product of rings: the underlying space Spec [[, R, does not
coincide with the co-product [ [, Spec R, even in the category of coherent
spaces.

Here is a typical counterexample: Let k¥ be a field, and set R =
[L.cx By, where R, = k[x]/(x"). Then, the spectrum of R, is a point for
any R,, hence Spec [] 1R, must be the set of all ultrafilters over IN, in
particular, its Krull dimension is zero.

On the other hand, the Krull dimension of Spec R is not zero: fix a non-
principal ultrafilter 11 on IN, and define an ideal IR of R as

f=Uwh € N @fnééR; a.e. 1.

Here, P(s) a.e I for a condition P(s) of s means that the set {s| P(s)}
belongs to 1. This is a maximal ideal of R (in fact, any maximal ideal of R is
of this form). On the other hand, define an ideal p of R as

f=(),€p e Foranyc>0, f, € @“hHae. 1.

This is also a prime ideal, and obviously smaller than J)t. Hence, the Krull
dimension of R is not 0. In fact, one can prove similarly that the Krull
dimension of R is infinite.

It is obvious that {Spec R, — Spec R}, is not a covering of Spec R.
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2.2 — Decomposition of morphisms

In this subsection, we prove that there is a functorial decom-
position of morphisms in the category of .Z-schemes. This decom-
position plays an important role in the proof of completeness of
(#-Sch), since it gives an upper bound of the cardinality of a family
of morphisms. Also, note that this decomposition is peculiar to the
category of .Z-schemes.

DEFINITION 2.2.1. A morphism f:X — Y of .7Z-schemes is a P-
morphism if:

(1) |f| is epic, i.e. f71: C(Y)ept — C(X)ept 18 ingective,
@) f*: Oy — f.0x is injective.

Let us mention some trivial facts:

ProrosiTION 2.2.2. (1) A P-morphism is epic.
(2) P-morphisms are stable under compositions.
3) If gf is a P-morphism, then so is g.

These are all obvious, so we will skip the proof.

ProPOSITION 2.2.3. Let {f; : X, — Y,}, be an inductive system of P-
morphisms of .Z-schemes, and set X, = liLn X, and Yy, = liLn ;Y. Then,
the natural morphism f : Xoo — Yo 1s also a P-morphism.

Proor. First, we will see that C(Y,o)ept — C(Xoo)ept 1S injective.
Let Z=(Z)), and W= (W;);, be two elements of C(Y.), with
fYZ) =fX(W). Since f! is defined by (Z,);— (f;1Z,);, this implies
that f;1Z, = f;'W,. Since f; is a P-morphism, Z; and W, must coincide
for all 4, which is equivalent to Z = W. Hence C(Yoo)ept — C(Xoo)ept 1S
injective. A similar argument shows that @y_— f.7x_ is also injective,
so that f is a P-morphism. O

DEFINITION 2.24. (1) Fix a small index category I. Let Y* : I —
(.2-Sch) be a small projective system of .7Z-schemes, and f : AX) — Y* be
a morphism in (,,%-Sch)l, where A : (2-Sch) — (#-Sch)! is the diagonal
Sfunctor. (In the sequel, we simply denote AX) by X for brevity.) Let .7 be
the set of isomorphism classes of the commutative diagram
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X—f>Y‘

e

W

where g is a P-morphism. . is small, from the property of P-morphisms.
Set I(X,Y*) = limwye »W. Then, by Proposition 2.2.3, X — I(X,Y*) be-
comes a P-morphism.

@) Let f : X — Y* be as above. f is a Q-morphism, if X — I(X,Y*) is
an isomorphism.

Roughly speaking, a P-morphism can be regarded as a schematic
surjection and a @Q-morphism as a schematic immersion. Thus, if
X —-I1IX,Y)— 7Y is the PQ-decomposition of a morphism f:X — Y,
I(X,Y) can be regarded as the ‘image scheme’ of f.

The next proposition is purely category-theoretical.

ProposITION 2.2.5. (1) Let f:X — Y* be a morphism from an
2-scheme X to a projective system Y*® of .7Z-schemes. Then, the
morphism h:I1(X,Y*) —»Y* is a Q-morphism.

@) A morphism f:X — Y of .Z-schemes is an isomorphism if and
only if f is a P-morphism and Q-morphism.

Proor. (1) Let g: X — I(X,Y*) be the induced P-morphism. Set
W =IUIX,Y*),Y*), and let i : W — Y* be the induced morphism. Since
n:I1(X,Y)— W is a P-morphism, X — W is also a P-morphism by (1).
Hence, there is a morphism :: W — I(X, Y*) such that 1o 7o g = g. This
implies that : o 7 is the identity, since g is epic. Hence, 7 o 1 o 7 = 7, and this
shows that mo: is the identity since n is also epic. This shows that
I1(X,Y*) — W is an isomorphism.

(2) The proof is similar to (1). O

COROLLARY 2.2.6. (1) Let X Ly 2 7 be a series of morphisms of .#-
schemes. If gf is a Q-morphism, then so is f.

) Let f:X — Y* be a morphism of .#-schemes. Then, the decom-
position f = hg of f into a P-morphism g and a Q-morphism h is unique
up to unique isomorphism.

We refer to the decomposition of (2) as PQ-decomposition.
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Proor. (1) Let h:X — I(X,Y) and f : X — I(X,Z) be the induced
morphisms. By universality, we have a morphism n:I(X,Y) — I(X,Z)
such that 7k =f£. f is an 1som0rph1sm since gf is a Q-morphlsm Hence,
f 7tk is the identity. Also, hf I2h = h and h epic implies that hf nis also
the identity. Hence, % is an isomorphism.

@) LetX LW X Yebea decomposition of f into a P-morphism and a
Q-morphism. Then, there is a morphism z : W — I(X, Y*) by universality.
Since X — I(X, Y*)is a P-morphism, x is also a P-morphism. Since % is a Q-
morphism, (1) tells that = is a Q-morphism, hence an isomorphism. O

On the other hand, it seems to be impossible to prove that Q-morphisms
are stable under compositions, using only categorical operations.

LEmMA 2.2.7.  Let .7 = (0,01, qg, ) be the schematizable algebraic type.
Then:

(1) oq preserves filtered colimats.
(2) oy preserves images: namely, if f : A — B is a homomorphism of o-
algebras, then o1(Im f) = Im (ay f).

Proor. (1) Let {R,}, be a filtered inductive system of g-algebras, and
set Ry, = liLn ,R;. Then we have a natural homomorphism ¢ : liLn ;R —
o1(Rs). We will show that ¢ is bijective.

First, we will prove the surjectivity. For any a € o1 R, a can be written
as > 7 oe(a;) for some a; € R, since ap(R) C oy R generates oy R. Since the
inductive system is filtered, there exists 4 such that {a;}; C R,,. Then, ais
contained in the image of

. [
ukR;, — limuR; — Ry,

hence in the image of ¢.

Next, we prove the injectivity. Suppose ¢(a) = p(b) for some
a=> . oa;), b= Zj a2(by) € lim;oqR;. Then, a and b must coincide in
o1 R, for some oy, which shows that a = b in liLn Ry,

(2) Let a be an element of o;(Im f). Then,

a= Z oaf (a;) = (o1 f) Z az(a;)

for some a; € A. This shows that o;(Im f) C Im (e f). The converse is
similar. O
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ProrosITION 2.2.8. Let f:X — Y be a morphism of .#-schemes.
Then, there exists a decomposition X Lway of f, where g is a P-
morphism, and h satisfies

(@) A C(Y)ept — CW)ept is surjective, and
(i) A" : Oy — h.Ow is stalkwise surjective, that is, 'y ju) —
Ow . 18 surjective for any w € W.

PrROOF. Let R be the image of f~!: C(Y)ept = C(X)ept, and set
|W| = SpecR'. The structure sheaf @y : R ~ C(W)yy, — (c—alg) is de-
fined by the sheafification of

R>Z—Im[f'ov(Z) — ox(D)s,

where S ={a|fyu(a)=1in Rz} is a multiplicative system of
Im[fOy(Z) — Ox(2)).
The support morphism Sy : ca@w — 1y is defined as follows: for any
Z € C(W)ept, 1 @w(Z) is locally isomorphic to
ouIm [ Oy (Z) = Ox(D)]s ~ oy limpry_gIm [y (V) — Ox(D)]s

~ limeay_zIm [0 @y (V) — o1 @x(Z)]s
by Lemma 2.2.7. Since we have a commutative square

a0y (V) —— a10x(2)

ﬁl lh

(C(y)t'pt)v _— (C(X)cpt‘)Z

and the lower horizontal arrow factors through Rz = (%), we obtain a
homomorphism o; @y (Z) — tw(Z). Note that the localization by S does not
affect. It is obvious that the restrictions reflect localizations, hence
W = (W, Ow, fw) is well defined as an .Z-scheme. g : X — W is defined
by the injections ¢! : R — C(X)¢, and

g*: Ow(@) =Im[f 'O y(Z) — Ox(D))s — Ox(B).

It is obvious that g is a P-morphism. 2: W — Y is defined by
h71: C(Y)ept — R and

W Oy (@) = Cwlg Z) = Tml Oy (Z) — Ox(f D,

Let us verify that A% is stalkwise surjective, namely, @y ) — @'wa 18
surjective for any w € W. Let (U, a) be any element of 7y ,,. Since /! is
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surjective, U = ™1V for some quasi-compact open V C Y. The germ a can
be expressed as b/c, where fyaa(c) =1, and b,c¢ is in the image of
@y(V) — @w(U). This implies that c is a unit in @ 4, hence also a unit in
Oy fay- Hence Oy jap — O'w a is surjective. O

COROLLARY 2.2.9. (1) Let f: X —Y be a morphism of .#-schemes.
Then, the W constructed in 2.2.8 is naturally isomorphic to I(X,Y). In
particular, the followings are equivalent:

@) f is a Q-morphism.
(i) [ CV)ept — CX)ept is surjective, and f# : Oy — h.Ox is
stalkwise surjective.

(2) Q-morphisms are stable under compositions.
3) Q-morphisms are monic.

Proor. (1) By Proposition 2.2.8, there exists a decomposition
xtw My of f, where ¢ is a P-morphism, 21 : CY)ept — C(W)ep s
surjective, and h* : @y — h,(Oy is stalkwise surjective. By the universal
property, there is a P-morphism « : W — I(X,Y). Note that I(X,Y) is
isomorphic to X, since f is a Q-morphism. Since 27! is surjective,
wl:CX Jept — C(W)ept is an isomorphism. Also, the stalkwise surjectivity
of h* implies that «* is also an isomorphism.

(2) It is clear from (1).

(3) Obvious. O

Lemma 2.2.10. IfX — Y — Z is a series of morphisms of .Z-schemes,
then we have a natural isomorphism

IX,2)~1I(IX,Y),I[(Y,2)).

Proor. Since W =I1(I(X,Y),I1(Y,Z2)) — I(Y,Z) and I(Y,Z) — Z are
Q-morphisms, the composition W — Z is also a Q-morphism. Hence,
X — W — Z is the PQ-decomposition of X — Z. O

ProposiTION 2.2.11.  The PQ-decomposition is functorial.

ProoOF. Suppose given a commutative square

X] —>)/]

]

Xo——=Y,
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Then, we will show that there is a natural morphism (X7, Y1) — I(Xs, Y2).

By the universality, we have a unique morphism 7(X;, Y;) — I(X1, Y2). On

the other hand, we have again a unique morphism I(X;, Y3) — I(X3, Y2) by

Lemma 2.2.10, hence combining them gives the required morphism

I(X1,Y1) — 1(Xz,Y2). O
Let us summarize what we have obtained in this subsection:

THEOREM 2.2.12. For any morphism f:X — Y of _Z-schemes, we
have a functorial decomposition X — I(X,Y) — Y of f, where

1) X — I(X,Y) is a P-morphism (in particular, epic), and
) IX,Y) — Y is a Q-morphism (in particular, monic).

Moreover, the decomposition of the given morphism f into a P-morphism
and a Q-morphism is unique up to unique isomorphism. Also, this decom-
position is universal: if f is factors as X — W — Y where X — W is a P-
morphism (resp. W — Y is a Q-morphism), then there is a unique morphism
W — I(X,Y) (resp. I(X,Y) — W) making the whole diagram commutative.

REMARK 2.2.13. We know that this decomposition is impossible in the
category of schemes. For example, let & be a field, X = Specklzx, y/x],
Y = Specklx,y] where & and y are indeterminants. The image of the
natural morphism f : X — Y cannot be a scheme: the origin has no affine
neighborhood in the image.

2.3 — Completeness

PropoSITION 2.3.1.  The category (-Sch) is finite complete, i.e. there
are fiber products.

ProoF. The construction of fiber products are similar to that of gen-
eral schemes. Note that we use the fact that quasi-compact open immer-
sions are stable under base changes by quasi-compact morphisms. O

REMARK 2.3.2. Let o be the algebraic system of rings. Then, the
natural inclusion functor (Z-Sch) — (Sch) preserves fiber products. This
is clear from the construction.

We already know that the category of ordinary schemes is not com-
plete. However:
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ProrosiTiON 2.3.3.  The category (2-Sch) is small complete.

Proor. Let X* be a small projective system of . Z-schemes. Let .7 be
the set of all isomorphism classes of @-morphisms ¥ — X*.." is indeed a
small set: if Y — X* is a Q-morphism, then the underlying space of Y and its
structure sheaf is generated by those of X*, hence . is small.

Let X be the co-limit of .. Then, X is the limit of X°. O

COROLLARY 2.3.4. The natural inclusion functor (¢-Sch) — (_#-Sch)
preserves fiber products.

Proor. LetX,Y be ©/-schemes over a ¢/-scheme S. We will show that
the fiber product V = X xg Y in the category of Z/-schemes is indeed that
in the category of . Z-schemes.

Step 1. IfX,Y,S are all affine, then V is the fiber product in (. Z-Sch),
by the adjunction Spec“// : (c—alg) = (4-Seh)® : I'.

STEP 2. Suppose Y, S is affine. Let X = U;X; be an open affine cover of
X. Suppose given the following commutative square:

f

Z—X
)
Y——S

Then, there is a unique morphism f~1(X;) — X; xg Y by Step 1 for each 1,
which patches up to give the morphism Z — X xg Y.

STEP 3. Same arguments as in Step 2 shows that if S is affine, then V' is
the fiber product in (_2-Sch).

STEP 4. Suppose S =U;S; is an open affine cover of S. Set
Xi =X xg8;, Y; =Y xg8;. Then, V; = X; xg, Y; is also the fiber product
in (#-Sch) by Step 3. Note that V = U;V; is an quasi-compact open cov-
ering. Suppose given a commutative diagram as in Step 2, and set
Z; = f~1(X;). This coincides with g~1(Y;). Then we have a unique morphism
Z; — V; for each 1, which patches up to give a morphism Z — V. |

The next proposition is purely category-theoretical.
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ProPosITION 2.3.5. (1) Q-morphisms are stable under pullbacks.
(2) P-morphisms are stable under pushouts.

Proor. Wewill only prove (1): the proof of (2) can be proven by the dual
argument. Consider the following pullback diagram:

7

XT—>

ﬁ;

Suppose f is a Q-morphism. Then the PQ-decomposition

< >

——

f

X D mf = 1067, 30" x
of f gives a morphism w : Imf — T such that wooa(f) =§ and fow =
gof( f ). By the universal property of the pullback, there exists a unique
morphism u : Imf — X7 such that § o u = w and f o u = A(f). The second
equality shows that « is a Q-morphism, hence it suffices to show that « is a
P-morphism. To prove this, we will show that % o o( f ) is the identity. Since

gouooc(f):woa(f):g, and fouoa(f):ﬁ(f)oa(f):fa

the universal property of the pullback shows that uooc(f) is the
identity. U

2.4 — Filtered limits

PROPOSITION 2.4.1. Let X* = {X*} be a small filtered projective sys-
tem of .Z-schemes, and Y be the limit of X°. Then, the underlying space of
Y coincides with the limit lim X *in the category of coherent spaces. The
structure sheaf Oy coincides with the colimit limp; Yoy, where

Y — X’ are the natural morphisms.

ProoF. Let X*° be the limit of the X* in the category of coherent
spaces, and set @y~ =limz;'y., where m; : X — X* is the natural
morphism of coherent spaces. First, we will construct the support morph-
ism fy~. By Proposition 2.1.5, we have a natural map

alnzlﬁ’X/z — n;er,: — lim; n;er,: ™~ Txs.
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This gives a natural map liLn )u(fxlﬂzlé’jx/l) — 7x~. The left-hand side is iso-
morphic to o7y~ since oy is filtered co-continuous by Lemma 2.2.7.
Therefore, we obtain the required morphism fy. : 017y~ — tx~. It is
obvious that restrictions reflects localizations. Hence, we have constructed
an .z-scheme X = (X*°, @x«, fiy~). There are also natural morphisms
m; : X* — X” of _7-schemes, compatible with the transitions.

We will show that X*° is naturally isomorphic to Y. Since we already
have a morphism X*> — Y by the universal property of Y, it suffices to
show that:

() If p : X*°* — X is a endomorphism with 7;¢ = n; for any 4, then ¢
is the identity.

(ii) There exists a morphism y : Y — X with =, = p, for any /.

First, we prove (i). It is obvious that ¢ is the identity on the underlying
space. For the structure sheaves, we have the commutative diagram:

'I'l';l 0))(,\
# &
By
(7xx ﬁxx

o

which shows that ¢ is the identity, since @'y~ = lim O
It remains to prove (ii). There is a natural morphism || : |Y| — |X*|
between the underlying spaces. Since there are morphisms

pf COx = Py ~ W lw|, Oy,

these give morphisms 7;1@y; — |y|,@y. It is obvious that these are
compatible with the transition morphisms, hence we obtain @y~ — v, 7y.
Also, this morphism commutes with ffx. and fy, hence we have a morphism
of . Z-schemes. It is obvious that 7 = p,. O

PROPOSITION 2.4.2.  Let {g; : X* — Y"}, be a filtered projective system
of Q-morphisms of .Z-schemes, and set X** = lim; X* and Y> = lim,Y".
Then, the natural morphism g : X*° — Y is also a Q-morphism.

ProoF. First, we will see that g : C(Y™) oy — C(X™)¢p is surjective.
Since C(X™) ¢t = lim ,C(X*)is afiltered colimit, any element Z of C(X *)ept
is in the image of C(X*)y for some 4. Since C(Y*)epy — C(X%) ¢t is surjec-
tive, there is an element W € C(Y#)yy such that g;'W = Z. Hence,
g7 1n'W = g;'W = Z. This shows that g1 is surjective. A similar argu-
ment shows that @y~ — ¢.7x~ is also stalkwise surjective. O
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3. Separated and Proper morphisms
3.1 — Reduced schemes
In the sequel, the algebraic system is that of rings.

DEFINITION 3.1.1. an .Z-scheme X is reduced, if fyoe(a) = 0 implies
a = 0 for any section a € .

Note that if X is reduced, then the radical of any ring of sections be-
come 0.

PRrOPOSITION 3.1.2.  Let X be an . Z-scheme and Z be a closed subset of
the underlying space of X. Then, there is a reduced .Z-scheme structure
(Z,7z,B,) on Z, referred to as the reduced induced subscheme structure of
Z. Also, there is a Q-morphism Z — X, satisfying the following universal
property:

If Y — X is a morphism of .Z-schemes, with Y reduced and the set-
theoretic image contained in Z, then it factors through Z.

Proor. The structure sheaf 77 of Z is defined by the sheafification of
the presheaf

W limy, 2w x(V)/{a | Bxoz(a) - W < Z},

where the colimit runs through all V' € C(X),; in X such that V + 2 > W.
For any closed W in Z, and closed V in X satisfying V + Z > W, the
morphism o;@x(V) — tx(W)/Z induced from py factors through
1 @x(V)/{a | pxoe(a) - W < Z}. Hence, we can define the support
morphism f, : «;?; — t5. These give the reduced . Z-scheme structure
(Z,07,8,) on Z.

We will give a morphism: : Z — X of . Z-schemes. The map between the
underlying spaces is obvious. For any closed W in X, we have a natural
morphism @x(W) — 1,@;(W) = @z(W + Z), which gives a stalkwise
surjective morphism @y — 1,(?'5. It is clear that this gives a Q-morphism.

Suppose we are given a morphism f:Y — X with Y reduced and
Im f C Z. Then, the morphism f# : @y — f.(7y factors through 1.7,
since Y is reduced. Thus, f factors through Z. O

THEOREM 3.1.3. Let (red.#-Sch) be the full subcategory of .#-
schemes, which consists of reduced .-7Z-schemes. Then, the underlying
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Sfunctor U : (red..Z-Sch) — (7-Sch) has a right adjoint, and the counit
morphism is a Q-morphism.

Proor. Proposition 3.1.2 tells that for any . Z-scheme X, there exists a
Q-morphism # : X — X from a reduced . Z-scheme X', the underlying
space of which coincides with X. Any morphism X — Y of . Z-schemes gives
rise to a morphism X" — Y4 of reduced . #-schemes, by the universal
property. Hence, we have a functor red : (_2-Sch) — (red..Z-Sch). We see
that this is the right adjoint of U. The unit ¢ : Id — red o U is the identity.
The counit 7 is already given. O

ProprosiTION 3.1.4.  Let f : X — Y be a morphism of .7Z-schemes, with
X reduced. Let X — I(X,Y) — Y be the PQ-decomposition. Then, I(X,Y)
s also reduced.

Proor. Since X is reduced, the P-morphism X — I(X,Y) factors
through I(X,Y)". Therefore I(X,Y)* — I(X,Y) is also a P-morphism,
hence an isomorphism. O

DEFINITION 3.1.5.  Amn .Z-scheme X is integral, if @'x(Z) is integral for
any Z.

Note that, in the category of . Z-schemes, integrality is a weaker con-
dition than ‘irreducible and reduced’.

ProrosITION 3.1.6. (1) Let X be a reduced irreducible #-scheme, and
X0~ 21 @ specialization. Then, the restriction map Oxy — Ox g 1S AN
wmjection. Also, Ox ¢ is a field, where & is the generic point of X.

(2) An 2Z-scheme X is integral if X is reduced and irreducible.

3) Let f:X —Y be a dominant morphism of .Z-schemes, with Y
reduced. Then, f* : Oy @) — Ox, is injective for any x € X.

Proor. (1) Let (U,a) be a germ of @x,, which is in the kernel of
Ox a4 — Oxg4,- Then, aly, = 0 for some neighborhood V' of xy. Since X is
irreducible, V is dense in X, hence also in U. This implies that fyus(a) = 0.
Since X is reduced, ¢ must be 0. Therefore, the map @y ,, — @x 4, is in-
jective.

Let a be a non-zero element of “x.. Then, a is invertible, since
Pxoe(a) # 0 and the restriction maps reflect localizations.

(2) Let a,b e @x(Z) be two sections with ab = 0. Then, fyous(a)-
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Pxoo(d) = fxoe(ab) = 0. Since X is irreducible, we may assume that
Pxoz(a) = 0. Since X is reduced, @ must be 0.
(3) Suppose @ € @y s is in the kernel of f#. Then,

|f Y pyoe(a) = BxfFos(a) = 0.

Since f is dominant, we have fiyaa(a) = 0. Y is reduced, hence a = 0. [

ExampLE 3.1.7. Let A be a noetherian ring, and I C A be a non-trivial
ideal. We can consider a colimit X = lim, Spec “A/I" in the category of
#-schemes. This becomes an integral . Z-scheme if A= 1@,7/A/1” is a
domain. On the other hand, the underlying space of X coincides with the
support of I, hence X is not reduced. In fact, X can be regarded as a
noetherian formal scheme.

3.2 — Right lifting properties

DEFINITION 3.2.1. Let % be a category, and I be a non-empty
family of morphisms in . Fix a morphism f: X — Y of . Given a
morphism g : A — B in I, we have a natural map ¢ , : Homy (B, X) —
Homyorr)(9,f), where Mor(%) is the category of morphisms in Z. We
say that f is Z-separated (resp. Z-universally closed, Z-proper) if ¢ , is
mjective (resp. surjective, bijective) for any g € T.

REMARK 3.2.2. The conventional definition of properness includes the
condition ‘of finite type’. However, we dropped this condition here, since it
does not seem to be essential when we discuss about valuative criteria.
Moreover, note that morphisms of finite type are not stable under taking
limits, while the other conditions do.

Here, we list up some properties of Z-separated morphisms, etc. The
proofs are all straightforward.

PRrROPOSITION 3.2.3. Let Z be a category, and I be a non-empty family
of morphisms in %.

(1) Isomorphisms are Z-proper.

(2) Momnics are I-separated.

() The class of Z-separated (resp. Z-universally closed, I-proper)
morphisms are stable under compositions. Thus, we can think of the
subcategory ¢ (L); (resp. Z (L), ¢ (D)) of & consisting of T-separated
(resp. T-universally closed, Z-proper) morphisms.
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@) If Z has fiber products, then #(I);, % (), and % (I), are stable
under pull backs.

(5) If 7 is small complete, then so is (), ¢ (T)s and & (L)p. Also, the
mclusion functor (), — % 1is small continuous for x = 1,s,b.

(6) If gf is Z-separated, then f is I-separated.

(0 If gf is T-universally closed (resp. T-proper) and g is Z-separated,
then f is T-universally closed (resp. Z-proper).

DEFINITION 3.2.4. Let 7 be a category, and Z be a non-empty family of
morphisms in ¢. Let X be an object of 7.

(1) A family {U, — X}, of morphisms with target X is an I-covering
of X, if for any morphism f : A — B inZ and any morphismg: B — X, g
lifts to B — U, for some A:

A

U
|
X

—_—

<~

(2) Suppose & has fiber products. Let J be a family of morphisms in
7. We say J is local on the base with respect to Z, if the following holds:
let f: X — Y be a morphism, and {U, — Y}, be an I-covering of Y. Set
X, =X xy Uj. Then, f is contained in J if f, : X, — U, is contained in J
Sfor any A

Then, we also have:

ProrosiTION 3.2.5. Let Z be a category, and T be a non-empty
family of morphisms in ¢. Then, & (Z); (resp. ' (I)s, & (I)y) s local on
the base.

3.3 — Separatedness
Throughout this subsection, we fix a base . Z-scheme S. The category
of _7Z-schemes over S is denoted by (.7Z-Sch/S). Also, fix a family of

morphisms 7.

DEFINITION 3.3.1. Let (Z—sep..Z-Sch/S) be a full subcategory of
(2-Sch/S) consisting of . Z-schemes, which is T-separated over S.
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ProOPOSITION 3.3.2. The underlying functor
U : (Z—sep..2-Sch/S) — (7-Sch/S)

has a left adjoint, and the unit morphism is a P-morphism.

Proor. Let X be an .Z-scheme over S. Let . be the set of iso-
morphism classes of P-morphisms X — Y, where Y is an . Z-scheme which
is Z-separated over S. We see that ./ is a small set, since the elements are
represented by P-morphisms with the source fixed. Suppose given a
morphism f : X — Z, where Z is Z-separated over S. The PQ-decomposi-
tionX — Z' — Z gives a P-morphism X — Z’, where Z' is Z-separated over
S, since the Q-morphism Z’ — Z is monic. Therefore, f factors through a
morphism in.””. Using Freyd’s adjoint functor theorem ((CWM], p. 121), we
obtain the result. O

3.4 — Valuative criteria

DEFINITION 8.4.1. A Q-morphism is a closed immersion if its image
18 closed.

DEFINITION 3.4.2. Let Z be a family of morphisms in the category of
7-schemes. We say that T parametrizes specializations if the following
conditions hold:

1) For any morphism f : U — V in Z, V is trreducible, reduced and
local: the generic point will be denoted by & and the closed point by n. U is
a one-point reduced .Z-scheme (hence, a spectrum of a field) with its
1mage onto &.

2) Let f:U —V be a morphism m Z, and g,h:V — X a pair of
morphisms with gf = hf and g(n) = h(n). Then, g = h.

3) Let g : X — Y be a dominant morphism between two reduced ir-
reducible . 7Z-schemes, and y €Y. Then, there exists a morphism
f:U—VinZ and a commutative square

U——X

V—Y

such that U maps onto the generic point of X, and n € V maps onto y.
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@4) Letf:U —Vbea mom)h@sm m Z, and Z be a reduced irreducible
#-scheme. If f factors as U 97 1V where g : U — Z is dominant, and

h:Z — V is surjective on the underlying space, then there is a section
V — Z of h.

ProposITION 3.4.3.  Suppose T is a family of morphisms, parametriz-
g specializations. Let X be an .Z-schemes over S. Then, the followings
are equivalent:

(i) X 1is separated over S, i.e. the diagonal morphism A:X —
X xg X is a closed immersion.
(il) X is Z-separated over S.

Note that the diagonal morphism is monie, since it is the equalizer of
n1, 72 : X xg X = X, where 7; is the i-th projection for ¢ =1, 2.

Proor. (i)=-(ii): Suppose there is a commutative diagram

U——=X

/|

V——s3_S
with U — V a morphism in Z. Then we obtain a commutative diagram

—_— X

et

)XXgX

Since 4 is a closed immersion and (f, g)(&)~» (f,g)(#) is a specialization,
(f,9)() is in the image of A. This shows that 7y o (f,g) = 72 o (f,¢) from
condition (2) of 3.4.2. Hence, (f, g) lifts to give a morphism % : V' — X since
A: X — X xg Xisthe equalizer of 71, m2, and & coincides with f = 71 o (f, g)
and g = m o (f, 9). Therefore, f and g must coincide.

(ii)=-@): It suffices to show that the image of 4 is stable under special-
izations, by Corollary 1.2.8.

So let A(x) ~»y be a specialization, and Z = {x} be the closed subset of
X, with the reduced induced subscheme structure. Also, let W be the
closure of A(Z) in Y, with the reduced induced subscheme structure. Then,
by condition (3) of 3.4.2, we have a commutative diagram
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U A X

CoL

V—s W — X xg X

where U — VisamorphisminZ. Let u be the image of U — X, and y be the
image of the closed point # of V' by the morphism /#:V — X xgX. Set
f =mhand g = neh, where 7; : X xg X — X is the ¢-th projection. Since X
is Z-separated over S, f and g must coincide. Therefore, & factors through X,
since 4: X — X xg X is the equalizer of 71, 72. This shows that y is in the
image of 4. O

PROPOSITION 3.4.4.  Suppose T is a family of morphisms, parametriz-
g specializations. Let g : X — S be a morphism of .Z-schemes. Then, the
followings are equivalent:

() X is universally closed, i.e. X xg T — T 1s closed for any .7-
scheme T over S.
(ii) X 1s Z-universally closed over S.

Proor. (1)=-(ii): Suppose the following commutative square is given:

U——X

b

V—=F

where U — V is a morphism in Z. Let U — V xgX be the induced
morphism, py € V xg X be the image of U, and Z = {p,} be the closed
subset with the reduced induced subscheme structure. Since X is uni-
versally closed, the image of Z — V is closed, hence there is a section
1:V — Z by condition (4) of 3.4.2. Composing : with Z — X gives the re-
quired morphism.

(ii)=-@): Since universally-closedness is stable under pullbacks, it suf-
fices to show that f : X — S is closed, i.e. the image of f is stable under
specializations. Let f(x)~» s be a specialization on S. Set Z = m C X and
W = {f(x)} C S be closed subsets, with the reduced induced subscheme
structures. Then, condition (3) of 3.4.2 implies that there exists a morphism
U — V in 7 and a commutative diagram

U——27——X

N

V—"sW—=>SF
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with s in the image of V' — S. Since X is Z-universally closed, there exists a
morphism V — X making the whole diagram commutative. Since the
generic point & of V is contained in Z and V is reduced, this morphism
factors through Z. This shows that s is in the image of Z — S. O

Now, we will give a family of morphisms which parametrizes special-
izations.

DEFINITION 3.4.5. Let T, be a family of morphisms f: U — V such
that:

1) There is a valuation ring R, and V = Sp~ecR = {&,n} C SpecR
with the induced topology, where & and n are the generic point and the
closed point of Spec R, respectively.

(2) The structure sheaf @y of V 1is defined as follows: the ring of
global sections is R, and Ov ¢ = K, where K 1is the fractional field of R.
Py 1Oy — 1y is defined by

1 (@=R)
a9 {n} 0#a<,)
0 0O=a)

3) U is the spectrum of K, and f : U — V 1is the canonical inclusion.
It is obvious that quasi-compact open coverings are Ly-coverings.
ProposiTION 3.4.6.  The above I, parametrizes specializations.

Proor. We will verify the condition of Definition 3.4.2.

(1) Obvious from the definition.

(2) The maps between the underlying spaces obviously coincide, hence
we only have to show that the two maps ¢, h" : Ox, = Oy, coincide,
where x is the image of #. Set 1 : @y, — @'y ~ K. This is injective, hence
19 = 1h** shows that g# = h.

3) Let g : X — Y be a dominant morphism of two reduced irreducible
z-schemes, and x, o be the generic points of X, Y, respectively. xy maps
to yo by this morphism, since it is dominant. Let y; be any point of Y. We
have a injective morphism

Oy =Y g = X -

Set K = (?x4,. Then, there is a valuation ring R of K, dominating @y ,,.
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This gives a morphism «: U =SpecK — X and v:V = S[;ecR —Y
making the following diagram commutative:

U X
V Y
satisfying u(&) = xp and v() = y1.

(4) Let V = SpecR, and suppose U — V factors through a reduced
irreducible . Z-scheme Z, with U — Z dominant and g : Z — V surjective.

Let 2y be the generic point of Z, and z; be a point in Z such that g(z1) = #.
Then, we have a commutative diagram of dominating morphisms

u
o

—_—
v

0V.7) —_—> 0Z.:1

|

Oveg——>0z: —> Oy

All arrows are injective. Since the composition of the second row is the
identity, we have @y ~ 7z ,,. Since a valuation ring is maximal among
dominating morphisms, the arrow of the upper row must be an isomorph-
ism. This gives a section V. — Z of g. O

REMARK 3.4.7. Suppose X is irreducible and reduced, and K is the
function field of X. In this case, we can strengthen the valuative criteria as
follows: let Z; = {Spec K — V'} be the subfamily of Z;, consisting of all
morphisms the sources of which are Spec K. Then,

(1) X is separated over S if and only if X is Z;-separated over S.
(2) X isuniversally closed over S if and only if X is Z;-universally closed
over S.

This is easily seen, by taking x in the proofs of Proposition 3.4.3 and
Proposition 3.4.4 as the generic point of X. We will make use of this ob-
servation in Subsection 4.4.

REMARK 3.4.8. In this article, we only use Z-separatedness and Z-
properness for describing the valuative criteria. However, the reader may
know that other properties of morphisms can also be formulated by the
right lifting properties with respect to other families 7 of morphisms, even
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in the classical algebraic geometry. For example, let Z be a family of
morphisms Xy — X of affine S-schemes, where X is a closed subscheme of
X defined by a nilpotent ideal. Then, a S-scheme Y is formally unramified
(resp. formally smooth, formally étale if it is Z-separated (resp. Z-umni-
versally closed, Z-proper). Y is unramified if it is formally unramified and
of finite type over S. Y is smooth (resp. étale) if it is formally smooth (resp.
formally étale) and of finite presentation over S ([EGA4], §17). We will
treat these subjects in the future, and the category-theoretical arguments
in this paper will be its base.

4. Zariski-Riemann spaces

In this section, we will construct a universal proper . Z-scheme for a
given .Z-scheme, which is known as the Riemann-Zariski space. The
construction is somewhat difficult than the universal separated scheme
constructed previously, since we cannot use the PQ-decomposition to
bound the cardinality of the morphisms.

4.1 — Zariski-Riemann spaces

ProposiTiON 4.1.1.  Let f : X — Y be a morphism of .#-schemes. Then
there exists a decomposition X — Z — Y of f, such that:

(1) Z — Y 1s a closed immersion.

(2) Universality: if X — Z — Y is another decomposition of f with
Z — Y a closed immersion, then there is a unique morphism Z — Z
making the whole diagram commutative:

X—Y

X

Z >7
Further, the image of f is dense in Z, and 77 — (7 is injective.

Proor. Let .7 be the set of all isomorphism classes of series of
morphisms {X — Z, — Y} of _Z-schemes, where Z, — Y is a closed im-
mersion. Then.”” is small, since closed immersions are Q-morphisms. Let Z
be the limit of {Z;}. Then Z — Y is also a closed immersion, since proper
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morphisms and @Q-morphisms are stable under taking limits. The uni-
versality is clear from the construction. It remains to show that X — 7 is
dominant. We may assume that X — Y is a Q-morphism. To see this, it is
enough to show that there is an . Z-scheme structure on the closure X of X in
Y. We define the structure sheaf @5 by the sheafification of

Welim, o Oy ker[f*: Oy(V) = Ox(FV)].

Since 117y (V) — ty(W)/X = tx(W) factors through o;7y(V)/ ker f # we
obtain the support morphism fy : 11”5 — 7. We also have the natural
morphisms X — X and X — Y, which shows that X — Z is indeed domi-
nant. We also see that @ — “x is injective, hence @5 — 7z is injective.
On the other hand, @y — @ is stalkwise surjective, which shows that Z is
actually isomorphic to X as an . Z-scheme. O

THEOREM 4.1.2. Fix an .Z-scheme S, and Let (prop..Z-Sch/S) be the
Sfull subcategory of (2-Sch/S), consisting of .Z-schemes proper over S.
Then, the underlying functor (prop..#-Sch/S) — (.2-Sch/S) has a left
adjoint.

ProoF. Let X be an.Z-scheme over S, and.”” be a set of isomorphism
classes of dominant S-morphisms f : X — Y, with Y proper over S, and
Oy — f.(?x injective. From Proposition 4.1.1 and Freyd’s adjoint functor
theorem ([CWM], p. 121), it suffices to show ./ is small.

Let f : X — Y be a dominant S-morphism, with Y proper over S.

STEP 1. The points y of Y are parametrized by the commutative
squares
Speck(z) — X

]

VeS8

where Spec x(x) — V is a morphism in Zy which is described in Definition
3.4.5. y is given by the image of the closed point by the unique map V' — Y:
this is true, since the set of points in Y given by the above diagram is stable
under specialization, hence closed. On the other hand, f is a dominant map,
hence any point of Y must be given by the above diagram.

STEP 2. Note that the set {x(x)} .y is a small set. This implies that the
set of isomorphism classes of morphisms in 7 of the form «(x) — V, where
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x € X, is also small. Let # be the closed point of V. Then, @y, is also a small
set, and the morphism V' — S is determined by the map @g ) — Oy,
Summing up, we see that the set of isomorphism classes of the above
commutative squares are small. Since the points of Y are parametrized by
these morphisms, the set of isomorphism classes of the underlying spaces
of Y’s are small.

STEP 3. Since @y — f.(7x is injective, the set of isomorphism classes
of Y’s (as . Z-schemes) is also small, ditto for the set of morphisms X — Y.
This shows that . is a small set, and we have finished the proof. O

We will denote the above left adjoint functor by ZRs.

REMARK 4.1.3. The above functor and its construction is known as the
Stone-Cech compactification.

4.2 — Embedding into the Zariski-Riemann spaces

In the sequel, fix a base . Z-scheme S.
First, we confirm basic facts.

ProPOSITION 4.2.1. Let X,Y be a scheme over S.

1) If X — ZRg(X) is a Q-morphism, then X is separated.

(2) If there is a Q-morphism X — Y, with Y proper over S, then
X — ZRg(X) 1s a Q-morphism.

@) If X — ZRs(X) is a Q-morphism and Y — X is a Q-morphism,
then Y — ZRg(Y) is a Q-morphism.

(4) Let {X*} be a filtered projective system of .#-schemes over S such
that X* — ZRs(X?) is a Q-morphism for any i If X =lim,X’, then
X — ZRg(X) is also a Q-morphism.

Proor. (1)-(3) are straightforward. We will only prove (4). Since
X* — ZRg(X?) is a Q-morphism, X — lim; ZRs(X *) is also a Q-morphism,
by Proposition 2.4.2. This morphism factors through ZRg(X) since
1131 ; ZRs(X " is proper, hence X — ZRg(X) is a Q-morphism. O

ProposITION 4.2.2.  Let X, Y be an .#-scheme over S. Let f : X — Y be
a dominant Q-morphism of _Z-schemes over S, with Y proper. Then, f is
an open tmmersion if and only if 1 : X — ZRg(X) is.
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Proor. Letn:ZRg(X) — Y be the canonical morphism. Note that 7 is
proper, since Y is proper over S. Also, since f is dominant, = must be sur-
jective.

First, we will show (*): ZRg(X) \ «(X) = 7YY \ f(X)). It is obvious that
the left-hand side contains the right-hand side, so we will show the con-
verse. Assume that there exists u € ZRg(X) \ «X) such that n(u) is in the
image of f, say n(u) = f(x). Since 1 is dominant, there is a point £ € X such
that (&) specializes to u. Also, since f is a Q-morphism and

f©©) = m®)~»n(u) = f(x),

we see that & specializes to x. Let W, W/, W” be the closure of {¢}, {#(&)},
{f (&)}, respectively, with induced reduced subscheme structures. We have
a series of local homomorphisms

Owr f@) — Ow @) — OWa

and these are injective since W — W” is dominant. Also, these are sur-
jective since f is a @Q-morphism, hence isomorphisms. Therefore, the
homomorphism

OW atw) = OWr awy — OWr

implies that @y, dominates @ . Let B be a valuation ring of
K = Ow s dominating Oy ,. Consider the following commutative
square:

Spec K —— ZRg(X)

R

SpecR —— S

Then, there are two morphisms Sp~ecR — ZRg(X) which send the closed
point of SﬂecR to «(x) and u, respectively. This contradicts to the fact that
ZRs(X) is separated over S.

Now, suppose f is an open immersion. Since f is a Q-morphism,  is also
a Q-morphism. Moreover, the right-hand side of (*) is closed, hence #(X) is
open. This implies that 7 is an open immersion.

Conversely, suppose 7 is an open immersion. Then, the left-hand side of
(*) is closed, and 7 being proper and surjective implies that

M(ZRs(X) \ 1X)) = Y \ f(X)

is also closed. Hence, f is an open immersion. O
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COROLLARY 4.23. IfY — X is a closed (resp. open) immersion, and
X — ZRs(X) is an open immersion, then Y — ZRgs(Y) is an open
TMmersion.

PrOOF. Let Y be the closure of Y in ZRg(X). Then, Y — Y is an open
immersion to a proper . Z-scheme over S. Then, Proposition 4.2.2 tells that
Y — ZRs(Y) is also an open immersion. O

We want to know when X — ZRg(X) is an open immersion for a
morphism X — S of Z/-schemes. Note that the condition ‘of finite type’ is
crucial for the open embedding. We will see from now on, what happens if
drop off the condition.

ProrosITION 4.2.4.  Let X — S be a morphism between affine schemes.
Then, X — ZRg(X) is a Q-morphism.

Proor. LetS = Spec“A. It suffices to show when X = Spec A[x;];c.,
the spectrum of the polynomial ring of coefficient ring A with infinitely
many variables.

For any finite subset A of A, set X4 = SpecAlx,] . These can be
embedded into a proper scheme Y over S. Even if A4; D A is an inclusion
between finite subsets of 4. We need not have a morphism Y4 — Y
extending X — X“2: we only obtain rational maps. However, when given
a fixed Ay, blow up all the indeterminancy locus of Y — Y2, where A
runs through all the subset of /4; and we obtain another proper scheme Y1
Replacing Y by Y for each A, gives a filtered projective system {Y4}
of proper schemes over S, extending the projective system {XA/}. The
morphisms X4 — Y4 are Q-morphisms, hence

X =lim X" — Y =1lim , ¥
is also a Q-morphism, and Y is proper. |

ExampLE 4.2.5. Let R = Z[x,],en be a polynomial ring with infinitely
many variables, and set A™ = Spec . We will see that A* cannot be
embedded as an open subscheme of a proper .Z-scheme. We have a
surjection R — Q, hence there is a closed immersion Spec Q — A>™. We
have a natural dominant immersion Spec QO — Spee Z, which is not an open
immersion. This shows that A* — ZR,(A) cannot be an open immersion
by Corollary 4.2.3, although it is a Q-morphism. This tells that, we may not
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be able to obtain an open embedding if we drop the ‘of finite type’
condition. The decomposition which Temkin gave does not give the
embedding ([Tem]).

As a corollary, we obtain

COROLLARY 4.2.6. The infinite-dimensional projective space P =
Proj R is not proper.

Proor. We have a natural open immersion A* — P>, which shows
that P> cannot be proper. O

4.3 — Classical Zariski-Riemann space as an .-#-scheme

So far, we have constructed a universal compactification ZRg(X) of a
given scheme X. However, since we constructed it by the adjoint functor
theorem, it is difficult to understand its structure. Also, the topology may
be very different from what we expect; we already have the notion of
Zariski-Riemann spaces of a given field K containing a base ring A, but
ZRgpec 4(Spee K) may not coincide with this conventional one.

Therefore, we would like to construct a more accessible . Z-object; its
topology should be more ‘algebraic’, so that it coincides with the conven-
tional one in simple cases. These will give the class of . Z-schemes ‘of
profinite type’, which describe the pro-category of ordinary schemes.

In the sequel, we fix a field K, and any . #-scheme X is reduced and has
a dominant morphism Spec K — X. This implies that X is irreducible.
Moreover, we consider only dominant morphisms, unless otherwise no-
ticed.

DEFINITION 4.3.1.  Let S be an .-Z-scheme with a dominant morphism
SpecK — S.

1) Set
My = PTCS) e, x (P (KN {0} \ D).

The addition on //ég 1s defined by taking the union. The multiplication on
5 is defined by

{(Zai, )} - {Zgy, 09ty = {(Zi - Zgj, 00 U o)} ;-
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Both two operations are associative and commutative, and the addition is
idempotent. The distribution law holds, and there is the additive unit
0 = (. This is also the absorbing element with respect to the multiplication.
However, there is no multiplicative unit, hence .//ég fails to be an idem-
potent semiring.
©2) Forany (Z,a) € C(S)er x (7 (K \ {0})\ 0), a set Z[o] is defined by
the subset of S, consisting of all points s € S which satisfies either
() seZ, or
(i) The maximal ideal Mg s is not in the tmage of Spec “'g (o] —
Spec 7'g .
) Let a={(Z;,0)}; and b = {(Wj,/)’j)}j be two elements of ///5g We
write a < b if:
(@) NiZilo;] > NWilB;1, and
(b) For any i and any s € S\ Zlu], set Js={j|s €S\ W}
Then for any map o : Js — Ujey,B; such that a; € f;, (oj‘l)j generates the
unit ideal in s [u;)lo; ;.

This relation < is reflective. It is also true that < is transitive, but this
seems to be difficult to prove it at this moment, so we will not use this fact.

(3) Define =~ to be the equivalence relation generated be the relation <,
namely: a ~ b if and only if there is a sequence a = ag, ay,---,a, = 0 of
elements of //45 such that a; < a;;1 and a; = a1 for each 1. Let
S = 5] ~ be the quotient set.

PROPOSITION 4.3.2. The addition and the multiplication on /3
descend to .25, and 75 becomes a II-ring with these operations.

Proor. We will divide the proof in several steps.

StEP 1. We will show that the addition descends to.#5. To show this, it
suffices to show that if a; < b1 and as < bg, then a; + as < b1 + De. Set a; =
{(Zivai)}igm’ az = {(Zlﬂ o{i)}i>m’ by = {(VVﬁﬂj)}jgn? and by = {(V[/J'Vﬁj)}jwz‘
It is obvious that N;Z;[o;] D ﬂjo[ﬂj]. Take arbitrary ¢ and s € S\ Z[o;]. We
may assume ¢ < m. For any ¢ : Js — Ujes,f; such that a; € 8}, (aj’ 1)j§n gen-
erates the unitideal of “g, S[O'j_l]jgn, since a; < by. Hence (aj‘ 1)j generates the
unit ideal of s s[o; 1. This shows that a; + az < by + Ds.

STEP 2. We will show that the addition descends to .#°. To show this, it
suffices to show that if a; < as and by < bg, then a; - by < as - be. Set a; =

{(Zi7(x7:)}i§7n7 ag = {(Zia ‘xi)}i>m7 bl = {(ijaﬂj)}jgw and b2 = {(VV]'nB_;')}j>n'
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Sinee Ni<pZilo] D NiswZiloi] and N, WilB;1 D Ny Wil B;1, we have

nismg. . Wilo; U1 D N>™mZ. . Wilo; U B;]

hi<n J>n
For any iy < m,jo < mand any s € Z;, - Wj,[oi, U ;, ], set
Jo={@.)|i>m,j>n,s €S\ Z-Wila; U1}

Leto:Js — Ujij’f(cxi U f;) be a map such that ¢ € «; U f3;. Suppose for any
1 > m, there exists j = j(¢) > n such that o;;; € «;. Then, (ai;(li))i generates
the unit ideal in ﬁ’s,s[aio][ffi}(li)]i, hence (al;l)ij generates the unit ideal in
g slai, U ﬁjo][aigl]ij. Onthe other hand, if thereisai; > m suchthato;; € f;
forallj > n,then (ai} ); generates the unitideal in (’T?‘“S_,s[ﬁjo][o—;j J;, which leads
us to the same conclusion as above. This shows that a; - b; < as - bs.

STEP 3. Set 1= {(1,{1})}. It is obvious that a < 1 for any a € . /5.
This shows that 1 is the absorbing element with respect to the addition.

We will show that 1 is the multiplicative unit. It suffices to show
that a<1-a. Set a={(Z;,a)};. Then, 1-a={Z;,;U{1}};. Note
that Zila; U{1}] = Zile;]). For any ¢ and se S\ Zwl, set Js=
{i1seS\Zjlul}, and let o:J; — Ujes (2 U{1}) be any map with
gj € 0;U {1}. Here, we see that (g;'); generates the unit ideal of
s sleilloy 1]; in any case.

STEP 4. It remains to prove that the multiplication on ./° is idem-
potent. To see this, it suffices to show that a < a2 for any a € /Zg . Set
a={(Z;,o)};. Then

('(2 = {(Zl -Zj7 o; U ocj)}w- D {(Zu fxi)}i = Q.
This shows that a < a2. O
Note that, < and < coincide in 5. From now on, we just write (Z, o)
instead of {(Z,x)} for brevity.
DEFINITION 4.3.3. (1) There is a natural homomorphism
COS)ept — 7> (Z+—(Z,{1}))

of II-rings. This induces a morphism |r|: Spec. 75 — |S| of coherent
spaces.
(2) Let p be an element of Spec.//és, and s = |z|(p). Set

R, =Cgslac K| (1, {a}) £ pl.
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ProrosiTioN 4.3.4. (1) R, ts a valuation ring of K.
(2) Forany a € K\ {0}, (1,{a}) < p if and only if a¢ R,,.
(3) R, dominates O'g .

Proor. (1) Assume that there is an element a € K\ {0} such that
neither @ nor ¢! is in R,. Then this implies (1, {a}), (1, {a71}) < p. Hence,

1= {a)+ 1 {aPH<p

which contradicts to p being prime.

(2) It suffices to show the ‘only if’ part. Assume that thereisaa € R,
such that (1, {a}) < p. Then, there are a finite number of x;’s such that
(1, {x;}) £ p and a € g [x;];. This is equivalent to saying that a~! is in-
vertible in @ ([x;];{a "1, hence

H(l, {eih) = @, {wi}) < @, {a}) <p.

Since p is prime, at least one of the (1, {x;})’s must be in p, but this is a
contradiction.

(3) It suffices to show Mg, C @5 NW,, where Nig, and N, are
maximal ideals of @5 ; and R, respectively. Assume there is an element
a € Mg \ M. Then, ¢! € R, hence (1, {a"1}) £ p. On the other hand,
(1,{a"'}) = (Bg(a),{1}) from the proof of Proposition 2.1.1. Also,
Bs(@) < s, since a € Mg Combining these, we have (1,{a"1}) <p, a
contradiction. O

DEFINITION 4.3.5. (1) Let ZR/ (K, S) be a set of triples (s, R, $), where
s € S, R is a valuation ring of K, and ¢ : @ss — R is a dominant homo-
morphism.

(2) The above proposition gives a map ¢ : Spee. 75 — ZR'(K,S)
defined by p— (n(p),R,, ¢), where ¢ : gy — R, ts the natural homo-
morphism.

(3) Conversely, if we are given an element R = (s,R,¢) of ZR/ (K, S),
then set pg € (Y as the ideal generated by {(Z, {1})}ng and

{(1’ {x})}wﬁR

ProposITION 4.3.6. (1) Let Z be a closed subset of S, with a quasi-
compact open complement, and o be a non-empty subset of K \ {0}. Then,
Z,o) <prifand only if Z <s, oroa ¢ R.

(2) The ideal pr is prime. Thus, we have a map v : ZR/ (K,S) —
Spec (.

(3) ¢ s bijective, and the inverse is y.
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ProoF. (1) The ‘if’ partis pbvious. Suppose (Z,0) < ppwith Z £ sand
o C R. Then, (Z,a) < {(Z;, 1)}1Zf7<”8 u{(Q, {bi})}f;’}. Since @5 [a] C R, we
have s¢ Z[«]. This implies that Js C {i| %> m}. Hence, (b 1), generate the
unit ideal of 7y [a][b;'];. But since b;¢ R for any 4, b;* must be in the
maximal ideal i of R, a contradiction.

(2) Suppose (Z,a),(W,B) ¢ pg. Then (1) tells that Z £ s and W £ s.
Since s is a prime ideal of C(S)pt, we have Z - W £ s. Also,a C Randf C R
implies that o U f C R. Combining these, we have (Z,«) - (W, )¢ pg. It is
obvious that 1 £ pg, hence py is a prime ideal.

(3) First, we show that w o ¢ is the identity. Let p be any element of
Spec (.75)!. Then,

(Zoyepe=Z< s or adp(p) < (Z,0) € yp(p).

Next, we show that ¢ oy is the identity. Let (s, R, $) be any element of
ZR/(K,S). Then,

aceR & (1, {a})gé I/I(R) = ac R,/,(R).
Also, it is obvious that n(y(R)) = s, so that ¢ o w(R) = R. O
REMARK 4.3.7. By Proposition 4.3.4 and Proposition 4.3.6, we can give
a topology on ZR/(K,S) induced from Spec.75. We can see that the to-

pology has an open basis of the form U(Z,«), where Z € C(S)yt,
ae 7 (K\ {0\ 0, and

UZ,a) = {(s,R,$) € ZR/(K,8) | Z % 5,4 C R}.

By this topology, ZR/ (K, S) becomes a coherent space. From this, we can
also see that < in ./ is in fact transitive. Note also that this definition of
Zariski-Riemann space coincides with the usual definition when S is an
affine ¢/-scheme.
DEFINITION 4.3.8. Set X = ZR/(K, S).
(1) The structure sheaf @x on X is defined by
U—{aecK|a € R, foranyp € U}.

It is obvious that this is in fact a sheaf.
(2) The support morphism Py : 017x — tx 18 defined by

TU,10%) > (Hi—= {0 {7 D

where f;’s are non-zero generators.
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We will verify that (X, @x, fx) is an .-Z-scheme.

ProposiTION 4.3.9. (1) The support morphism fy is well defined.
(2) The restriction maps reflect localizations.
@) Foranype X, Ox, =R,

Proor. (1) It suffices to show that {(1,{f/'P}; <{(, {gj‘l})}j if
()i < (gj);- Assume {(1, {f; '}, 4 {Q, {g]fl})}j. This implies that there is
avaluation ring R of K with /"1 € R for some 7, and gjfl ¢ R for any j. This is
equivalent to g; € Mg. (fi); < (g); tells that " = Zj a;;g; for some m and
some a;; € I'(U,7x). Let s € S be a point corresponding to E. Then (g;);
generates the unit ideal in ﬁg_s[f[l][gj]j, but this cannot happen since
gj € Ng.

(2) Let V.C U be an inclusion of quasi-open subsets of X, and
Z = U\ 'V be the closed subset of U. Let f € I'(U, ©x) be a section with
Bx(f) > Z. This implies that f~! € R, for any p € V, hence f is invertible
in I'(V, 7).

(3) It is obvious that ©x, C R,. For the converse, let a € I, be any
element. Then, the closed set Z corresponding to {(1,{a})} does not con-
tain p. Let U be the complement of Z. Then a € I'(U,Ox) C Ox,. O

REMARK 4.3.10. (1) There is an alternative way of defining the
structure sheaf @x: namely, @y : % — (Rng) is defined by

{00} N Nes\z,1e(K; O g 5loi]),

where Ie(K; @g4[a;]) is the integral closure of g s[«;] in K. We can easily
see that this definition is equivalent to the previous one, once we know that
the integral closure of a given domain is the intersection of all valuation
rings containing it. This implies that we can characterize the Zariski-Rie-
mann space without using the notion of valuation rings. However, the
arguments get longer when we try to prove other properties, if we start
from this definition.

(2) Note that ZR' (Spec K, SpecA) coincides with the conventional
Zariski-Riemann space, if A is a subring of K; there is a 1-1 cor-
respondence between points of ZR/ (Spec K,SpecA) and valuations
rings of K containing A. Its open basis is given by the form
U(ay,---,ay,), where aq,---a, are elements of K and Ulay, -, a,) is
the set of valuation rings containing Alai, --,a,]l. See [Mat] for
example.
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4.4 — Zariski-Riemann space as a functor

Now, we focus on the map 7« : ZR/ (K,S) — S. We have already seen
that |z] : |[ZR/(K,S)| — |S| is well defined as a morphism of coherent
spaces. We will see here that n is well defined as a morphism of . 7Z-
schemes.

ProprosITION 4.4.1. (1) The canonical inclusion
" T(U,0%)>a—ac nU,O0%)

gives a morphism n : ZR'(K,S) — S of . #-schemes.
(2) mis a P-morphism: in particular, 7 is surjective.
(3) = is proper.

ProoF. (1) In order to see that (z, 7%) is a morphism of . Z-schemes, it
suffices to see that the diagram

“
= ™
0 0ss — .00 Ox

asl is

7S TxTX

is commutative: namely, we must see that {(1, {ﬁl})}i = {(Ps(f)i, D} for
(f1); € 11%. Let p be any element in U; U(1, {f[l}). Then there is a domi-
nant morphism 7, — R, with f;"! € R, for some i. Assume that
s = n(p) € Ps(fi);- This is equivalent to saying that f;" are in the maximal
ideal of g . But this contradicts to g, — R, being dominant. The
converse can be proven similarly.

(2) It suffices to show that C(S),; — Spec 8 s injective, but this is
obvious from the definition.

(3) From Remark 3.4.7, it suffices to show that when we are given a
commutative square

Spec K ——= X

|k

S[;eCR . S

we have a unique morphism Sp~ecR — X making the whole diagram com-
mutative. Set s = h(), where 7 is the closed point of Spec R. Then, the
dominant morphism @5 ; — R determines a point « of X = ZR/ (K ,S). The
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isomorphism @y, — R gives the required morphism Sp~ecR — X. |

REMARK 4.4.2. The reader may notice that (2) follows immediately
from (3) and = being dominant. However, we gave a different proof here,
since the valuative criterion already uses the fact of (2).

From now on, we refer to this proper morphism 7y : ZR' (K,S)— S as
the classical Zariski-Riemann space associated to S.

DEFINITION 4.4.3. Let T and S be .#Z-schemes, and 7ny:Y =
ZRIK,T) - T, nx:X=ZR/(K,S)— S be the associated classical
Zariski-Riemann spaces. A morphism f : T — S of .Z-schemes induces a
morphism f : Y — X of Z-schemes as follows:

(1) The morphism |f| : |Y| — |X| of the underlying spaces are defined
by

(t,R,9)— (ft), R, $of™),
where f7 : Ogs — Oy is the dominant morphism. In terms of 1I-rings,
this can be expressed as

83 {Z, )}~ {(fZ,0)} € 4T,
which shows that | f | is indeed a quasi-compact morphism.
(2) The morphism f# Ox = |f.COy is defined by the canonical in-
clusion. It is easy to see that |f| By of* =f 1o fx.
Hence, the map S — 7R/ (K,S) induces a functor
ZRf(K, ) : (#-Sch) — (proper morphism of . Z-schemes).
We will call this functor the ZR functor.

4.5 — Morphisms of profinite type

Our next aim is to express the ZR functor as a left adjoint, namely to
clarify the universal property of the classical Zariski-Riemann space.

ProposiTioN 4.5.1. Let f : T — S be a morphism of .#-schemes, and
f:ZR/(K,T) — ZR/(K,S) be the induced morphism. Then, f is separated
(resp. universally closed, proper) if and only if f 18 1mjective (resp.
surjective, bijective) on the underlying spaces.
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This is just the translation of the valuative criteria, so we will omit the
proof.

DEFINITION 4.5.2. Let f: T — S be a morphism of .#-schemes, and
f:ZR/(K,T) — ZR/(K,S) be the induced morphism.

(1) f is of profinite type, if f is a Q-morphism.
(2) f 1s strongly of profinite type, if f is an open immersion.

Of course, f is separated if [ is of profinite type. The next character-
ization of morphism of profinite type is obvious.

ProOPOSITION 4.5.3.  Let f: T — S be a morphism of .Z-schemes. The
followings are equivalent:

@) f is of profinite type.
(i) For every Z € C(T)qy, there exists {(Z;, o)}, e?f(C(S)Cptx
(T (K\ {0}) \ 0)) such that:
@ Ni(fZley] = Z.
(b) For every t € Z, set I; = {i |t € f71Z;}. Then for any map
o1y — Uicr, o such that o; € oy, (07 1), generates the unit
ideal of O'ryla; ;.

Roughly speaking, an .Z-scheme X of profinite type over S has the
coarsest topology, which makes the map X — S quasi-compact, and the
domain of meromorphic functions are quasi-compact open: here, a domain
of a meromorphic functiona € Kis {x € X | a € Ox,}.

COROLLARY 4.5.4. For any .7-scheme S, Set X = ZR' (K, S). Then,
the natural morphism my : ZRI(K , X) — X is an isomorphism.

Proor. It follows from Proposition 4.5.3 that 7g : X — S is of profinite
type, which is equivalent to 7y being a Q-morphism. On the other hand, 7y is
bijective since 7g is proper. It is obvious that ny induces isomorphism on
each stalks. This implies that 7y is an isomorphism. O

We will verify some basic facts of morphisms of profinite type.
PRrOPOSITION 4.5.5. (1) Let A be a ring, and B be a finitely generated

A-algebra. Then, Spec B — Spec A is strongly profinite.
(2) An open 1mmersion is strongly profinite.
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@) If X=UX; is an quasi-compact open cover of X, then
{ZRf(K,Xi) — ZRf(K,X)}Z- is an quasi-compact open cover of
ZR/ (K, X).

(4) Morphisms of profinite type (resp. strongly of profinite type) are
stable under compositions.

(5) Morphisms of profinite type (vesp. strongly of profinite type) is
local on the base: let f : T — S be a morphism of .Z-schemes, S = U;S; be
an quasi-compact open covering of S, and T; =8S; xg T. Then, f is of
profinite type (resp. strongly of profinite type) if and only if T; — S; is of
profinite type (resp. strongly of profinite type) for any 1.

6) Let f:T — S be a separated morphism of .7Z-schemes, and
T = U;T; be a quasi-compact open covering. Then f is of profinite type
(resp. strongly of profinite type) if and only if flr, is.

(T) Let S be an . Z-scheme, and {X*} be a filtered projective system of
#-schemes over S. Set X = lim , X% Then X — S is of profinite type if
X* — S is of profinite type for any A

Proor. We will only show (1), (6) and (7); the others are easy.

(1) Set B =A[xq,---,x,]. Then, ZRf(K, Spec B) is isomorphic to the
open set U1, {x,---,a,}) of ZR/ (K, SpecA).

(6) The ‘only if’ part follows from (2) and (4). Suppose f|. is of profinite
type. Then ZR/(K,T;) — ZR/(K,S) is Q-morphism for any 7. Since f is
separated, we see that ZR/(K,T) — ZR/(K,S)is also a Q-morphism, since
{ZRf (K, T}, is an quasi-compact open cover of ZR/ '(K ,T), from (3).

(7) Since ZR/(K,X*) — ZR/(K,S) is a Q-morphism for any A, and Q-
morphism is stable under taking filtered projective limits by Proposition
2.4.2, it suffices to show that ZR/(K,X) — lim,ZR/(K,X*) is an iso-
morphism.

Since C(X)ept = lii)n C(Xi)cpt, we have a natural isomorphism

lim, 7/ (C(X P, x (P (K \ 0)\ ) = 7/ (CX)ep, x (7 (K \ 0)\ D)

which yields lim;. X" ~_7*, namely, ZR/(K,X) — lim, ZR/ (K, X%) is
an isomorphism on the underlying spaces. Since every stalk of both sides
is a valuation ring of K, the morphism of structure sheaves is also an
isomorphism. |

COROLLARY 4.5.6. (1) A separated morphism of (-schemes is of
profinite type.

(2) A separated, of finite type morphism of C'-schemes is strongly of
profinite type.
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Proor. We will just prove (1), since the proof of (2) is similar. Let
X — S be a separated morphism of Z-schemes. From (5) and (6) of
Proposition 4.5.5, we may assume X = SpecB and S = Spec A for some
domains A and B. B is the colimit of all finitely generated sub A-algebras
{B;}, and Spec B, — SpecA is of profinite type, by (1). Then, (7) of Pro-
position 4.5.5 shows that Spec B — Spec A is also of profinite type. O

DEFINITION 4.5.7. (1) Let (K/Int) be the subcategory of (.#-Sch),
consisting of irreducible reduced .-#-schemes X with a dominant morph-
ism Spec K — X. The morphisms in (K/Int) are dominant morphisms,
under Spec K.

(2) Let (PrPf) be the category of proper, of profinite type morphisms of
(K/Int), and the arrows being commutative squares.

(3) There is a target functor U;:(PrPf) — (K/Int), sending
(f: X—S8)to S.

THEOREM 4.5.8. The ZR functor ZR/(K,-) is the left adjoint of Us.

PrOOF. The unit ¢ : Id = Uy o ZR/(K, ) of the adjoint is the identity.
The counit 7y : ZR/(K,S) — X for a proper, of profinite type morphism
f:X — S is given as follows: Since f: X — S is of profinite type and
proper, f : ZR/(K,X) — ZR/(K,S) is an isomorphism. Then, 7y is de-
fined by

. -1 . b
7R/ (K, S) L= 7R (K, X) 5 X.

These two natural transforms ¢ and 5 give the adjoint ZR/(K, ) 4 U;. O

4.6 — The embedding problem revisited

In this subsection, we will construct a compactification functor from the
ZR functor, and characterize it by the universal property.

DEFINITION 4.6.1. A Q-morphism f : X — Y of #-schemes 1is strict,
if for any quasi-compact open subset U of X and a section a € @'x(U),
there exists a quast compact open subset V of Y and a section b € @y(V)
such that:

G U=f"V, and
d) f*() = a.
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In particular, an open immersion is strict.

LEMMA 4.6.2.  Comnsider the pushout diagram of .#-schemes:

X Y
yl l.@
S T

namely, T =S ]_[X~Y. Suppose f is an open tmmersion (resp. strict Q-
morphism). Then, f is an open immersion (resp. strict Q-morphism,).

f

—

—_—

f

Proor. We will only prove for the case f is an open immersion. In this
case, C(X)y is alocalization (C(Y)epe)w of C(Y)qp along some W € C(Y ) p.
Since

C(T)cpt = C(S)cpt ><C(X)cm C(Y)Cpt7

in the category of II-rings, C(S)qy is the localization of C(T)y along
(1, W) € C(T)cpt. Hence, the map | f|: S| — |T|is an open immersion on the
underlying space.

Let us show that f is strict Q-morphism. Suppose a € s(U) is a section
of S for a quasi-compact open set U of S. Pulling back a by g gives a section
g7 (a) € Ox(g71U). Since f is strict, there is a quasi-compact open V € Y
and a section b € @y(V) such that f~1V = ¢~ U and g#(a) = f#(b). Then,
(U, V) gives a quasi-compact open subset of 7', and (a, b) € @7(U,V) gives
a section. This section (a, b) maps to a via f #, hence f is strict. O

DEFINITION 4.6.3. (1) Let T — S be a dominant morphism of irre-
ducible, reduced .7-schemes, and K be the function field of T. The (clas-
sical) Zariski-Riemann space ZR/(T,S) of T — 8 is defined by the pushout
of the following:

ZRY(K,T) — ZR/ (K, S)

|

Y
T o e ZRf(T, S)

(2) Let S be an irreducible reduced .-7-scheme. We denote by (Int/S)
the category of irreducible, reduced . 7Z-schemes dominant over S, and
dominant S-morphisms.
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3) Letf: T — T' be a morphism in (Int/S). Then f naturally induces
a morphism ZR/(T,S) — ZR/(I",8) from the universal property of
pushouts.

PROPOSITION 4.6.4. (1) ZR/ (T, S) is proper and of profinite type over S.
@) T — ZR/(T,8) is a Q-morphism (resp. open immersion) if T — S
s of profinite type (resp. strongly of profinite type).

Proor. (1) Let K be the function field of 7', and set X = ZR/ (T,S).
Applying the ZR functor ZR/ (K, -) to the pushout diagram of the definition
of ZR/(T, S) yields the following pushout diagram:

ZR!(K,ZR! (K, T)) — ZR/ (K,ZR/ (K, S)) — ZR/ (K, S)

| l

ZRI (K, T) ——— = ZR/ (K, X)

This is indeed a pushout, since ZR/(K,-) is a left adjoint and hence pre-
serves colimits. This shows that the right vertical arrow is also an iso-
morphism, which tells that X — S is proper and of profinite type.

(2) This follows from Lemma 4.6.2. Note that ZR/ (K, T) — ZR/ (K, S)
is a strict Q-morphism if 7 — S is of profinite type, or strongly of profinite
type. O

This proposition shows that ZR/ (+,8) is functor from (Int/S) to the full
subcategory (PrPf/S) of (Int/S) consisting of irreducible reduced . #-
schemes, proper and of profinite type over S.

THEOREM 4.6.5. ZR/(-,S) is the left adjoint of the underlying functor
U : (Int/S) — (PrPf/S).

ProoF. Theuniter : T — ZRf (T, S)is the canonical morphism, for any
T € (Int/S). The counit 7y : ZR/(X,8) — X for a proper, of profinite type

morphism X — S is defined as follows. Consider the pushout diagram:

ZR(K,X) —ZR/(K, S)

| l

X ZR/(X,S)

LxX
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Since X is proper and of profinite type over S, the upper horizontal arrow is
an isomorphism, hence the lower arrow is also. Define 7y as the inverse of ix.
These two natural transforms ¢ and 7 give the adjoint ZR/(-,S) 4 U. O

In particular, we have:

COROLLARY 4.6.6. Let X — S be a separated morphism of integral -
schemes. Then, there exists a proper, of profinite type morphism X — S of
_A-schemes with a Q-morphism 1: X — X. Moreover, this embedding 1 of
X is universal, and 1 is an open immersion if X is of finite type over S.

This is a variant of Nagata embedding ([Con]). Note that from Propo-
sition 4.2.2, X — ZRg(X) becomes also an open immersion, if X is sepa-
rated, of finite type over S.

REMARK 4.6.7. There are previous constructions of Zariski-Riemann
spaces for ordinary schemes; for example, see [Tem]. We can see without
difficulty that our construction coincides with them. However, the proof
will be somewhat technical and takes some time to check that these are
equivalent, since the definition is very different: the previous one is defined
by the limit space of admissible blow ups. The comparison will be treated in
the forthcoming paper.

5. Appendix: The definition of . Z-schemes

In this section, we will briefly review the definition of . Z-schemes, when
the algebraic system o is that of rings. For the general definition and
detailed proofs, we refer to [Tak].

Before we start the definitions, we will explain the intuitive idea and the
essential differences between . Z-schemes and ordinary schemes.

(1) The fundamental property of ordinary schemes is that the global
section functor admits the left adjoint, namely the spectrum functor:

Spee : (Ring) = (Sch)® : I'.

This enables various construction of schemes, such as fiber products.
However, the construction of the co-unit X — Spec I'(X) of the above ad-
joint does not actually use the axiom of schemes that it is locally isomorphic
to the spectrum of a ring; it just uses the property that the restriction
functor corresponds to localizations: let us describe it more explicitly. Let
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x be a sheaf of functions on a space X. When there is a function f € @, it
determines the zero locus f(f) = {f = 0} on X. This correspondence is the
intuitive idea of the support morphism defined below.

When the function f is restricted to an open set V such that
VN B(f) =0, then f], is nowhere vanishing. Therefore, f must be in-
vertible in @@y (V). This is formulated below as the property which we refer
to as ‘restrictions reflect localizations’.

These setups enable us to construct the counit morphism. This is why
we put emphasis on these properties.

(2) On the other hand, we stick on to coherent underlying spaces, when
defining . Z-schemes. This is because coherent spaces have good properties
in nature, and we can take limits and colimits in the category of coherent
spaces. This shows that we do not have any reason to ‘forget’ the coherence
properties, even when we consider limit and colimit spaces. We believe that
this restriction is not wrong, since we have already seen in §1 that there
are various benefits because of this.

DEFINITION 5.1.8. (1) An idealic semiring is a set R endowed with two
operators + and -, satisfying:

(a) R 1isacommutative monoid with respect to + and -, with two unit
elements 0 and 1, respectively. Further, R is idempotent with respect to +:
a+a=aforany a € R.

(b) The distribution law holds: (a + b)c = ac + be for any elements
a,b,ceR.

(c¢) 0 is the absorbing element with respect to the multiplication:
0-a=0forany a € R. 11is the absorbing element with respect to the ad-
dition.

Note that an idealic semiring has a natural ordering, defined by
a<bsa+b=0

(2) An II-ring is an idealic semiring with idempotent multiplications.
This is conventionally called a distributive lattice, used in Stone duality.
(3) The category of II-rings are denoted by (IIRng).

DEFINITION 5.1.9. (1) A topological space X is sober, if any irreducible
closed subset Z of X has a unique generic point &5, namely, Z = {&4}.

(2) A sober space is coherent, if it is quasi-compact, quasi-separated
(namely, the intersection of any two quasi-compact open subset is again
quasi-compact), and has a quasi-compact open basis. We denote by (Coh)
the category of coherent spaces and quasi-compact morphisms.
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(3) Fora sober space X, C(X) is the set of all closed subsets Z of X. This
becomes an idealic semiring, defining the addition as taking intersec-
tions, and the multiplication as taking unions. Moreover, this semiring is
complete, i.e. admits infinite summations. The category of complete 11-
rings is denoted by (IIRng?).

(4) Fora coherent space X, C(X)cy is the set of all closed subsets Z of X
such that X \ Z is quasi-compact. This becomes an idealic semiring.

The correspondence X — C(X)y gives an equivalence of categories
(Coh)® — (IIRng): the inverse is given by R Spec R, where Spec R is
the set of prime ideals of R with the well known topology. This is the Stone
duality.

DEFINITION 5.1.10. (1) For a ring R, let o1(R) be the set of finitely
generated ideals of R, divided by the equivalence relation generated by
I -1 = 1. This gives a functor (Rng) — (IIRng), where (Rng) is the category
of rings.

(2) For any ring R, og: R — o1(R) 1is a multiplication-preserving
map, sending f € R to the principal ideal generated by f. This map gives
a natural transformation, and preserves localizations.

(8) Let X be a coherent space. A (Coh)®-valued (in other words,
(ITIRng)-valued) sheaf tx is defined by U — limyV, where V runs through
all quasi-compact open subsets of U, and the inductive limit is taken in
the category of coherent spaces, not in the category of topological spaces.

We are finally in the stage of defining . Z-schemes.

DEFINITION 5.1.11. (1) An . Z-scheme is atriple (X, @'k, fx) where X is
a coherent space, 7'x s a ring valued sheafon X, and fy : 010x — tx 1S Q
morphism of (IIRng)-valued sheaves on X (which we refer to as the ‘sup-
port morphism’. Here, o1(7x is the sheafification of Uw— a1@x(U)), sa-
tisfying the following property: for any two open subsets U DV of X, the
restriction maps reflect localizations, 1.e. the map @'x(U) — @x(V) factors
through @x(U)z, where Z = U \ 'V is a closed subset of U and @'x(U)y is
the localization of @x(U) along

{a € Ox(U) | Pyaz(a) > Z}.
() Let X = (X|,Ox,px) and Y = (|Y|, Oy, Bx) be two .#-schemes.

A morphism f:X —Y of .#-schemes is a pair f = (|f],f7), where
Ifl:1X| = 1Y| is a quasi-compact morphism between wunderlying
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spaces, and f* : Oy — f.(0x is a morphism of ving valued sheaves on
Y which makes the following diagram commutative:

f#
Oy — |fl.Ox

b l id

Ty Tﬁ' | fleTx

(8) The spectrum functor Spec”z : (Rng) — (%-Sch)® from the cate-
gory of rings to the opposite category of .#-schemes, is defined as follows:
for a ring R, the underlying space is defined by X = Spec R. The structure
sheaf x is the sheafification of U — Ry, where Z = X \ U is the com-
plement closed subset of X, and Ry is the localization along

{aeR|(a)> 2}

The support morphism Py : 01Px — tx s the canonical isomorphism.
Hence we set Spec“ZR =X, %, fx)

For a homomorphism f:A — B, we have a morphism Spec‘/B —
Spec A, as is well known.

The spectrum functor is the left adjoint of the global section functor
I : (#-Sch)® — (Rng).

REMARK 5.1.12. (1) There are some differences in the notation with
that of [Tak]: in the previous paper, the category of II-rings is denoted by
(PIIRng). Also, the sheaf 7x is denoted by t%. This is because we are
comparing them with those of sober spaces in [Tak], and hence had to
distinguish the notation. However, this is not necessary in this paper.

(2) In [Tak], presheaves on a coherent space X is defined as a functor
C(X)pt — (Set). In this paper, most of the presheaves are described in a
usual way, namely, we attach algebras to each open subsets of X. However,
in some of the definitions and arguments, we describe sheaves as a functor
from C(X)p to simplify the argument. These two ways of descriptions are
essentially the same.

The basic ideas of this paper came up during the stay in Jussieu Uni-
versity. We would like to express our gratitude to their hearty supports
during the stay, especially to Professor V. Maillot and Professor G.
Freixas. Also, the author owes a lot to Professor A. Moriwaki and collea-
gues in the HAG seminar, who gave precious chances of discussions.
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