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Riccati Differential Equation for Hypergeometric
Differential Equation

TAKAHIRO NAKAGAWA

ABSTRACT - In this paper, we study the solutions of the Riccati differential equation
collesponding to a p-adic differential equation which is solvable on the generic
disc. As an application, we consider the Grothendieck conjecture for Riccati
differential equations. We see that the Riccati differential equation for some
globally nilpotent differential equation with coefficients in Q(¢) have, for almost
all prime number, a solution in I¥,(¢), but do not have any algebraic solutions.

1. Introduction

Let p be a prime and K a complete non-archimedean valued field with
mixed characteristics. In this paper, we consider the solutions of the Rie-
cati differential equation for a p-adic differential equation L which is sol-
vable on the generic disc D(f,17) (see the Definition 2.5).

We attach the Riceati differential equation C(L), for each linear ordinary
differential operator L in section 3. Let £ be the completion of K(t) under the
Gauss norm. We see that a solution of the Riccati differential equation C(L),
for L on E is connected with a bounded solution of L at the generic point.

Let bddKer;(L) be the vector space consisting of the bounded solutions
of L. If its dimension is one, then C(L); has a unique solution on E. In
particular if we can reduce L modulo p, then C(L); has a solution on the
rational function field K(¢) over the residue field K of K.

Let L be an n-th order linear ordinary differential operator with
coefficients in Q(f). The Grothendieck conjecture (in its simplest form)
asserts the following statements are equivalent (see [Put]):

(i) the equation L(y) =0 has n linear independent (over Q)
solutions which are algebraic over Q(?).

(ii) For almost all p, the equation L(y) = 0 has % linear independent
solutions over the field I¥,(t”) in the field IV, ().

(*) Indirizzo dell’A.: Mathematical Institute CHIBA University, 263-8522 Japan.
E-mail: tnakagaw@g.math.s.chiba-u.ac.jp
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Van der Put studied the Grothendieck conjecture for non-linear differ-
ential equations. He proved that the differential equation 3’ = (1/?)y +1 has
no algebraic solutions but there exists a solution in I, (?) for all primes p. He
also proved that the conjecture is true for some Risch equations [Put], [Put2].

We will prove the following theorem.

THEOREM 1.1. Let L be a monic differential operator with coeffi-
cients in Q). We assume that when we regard L as a p-adic differ-
ential equation, L is solvable on the generic disc D(t,1) for almost all
prime p, and the dimension of the vector space which consists of the
bounded solutions of L is one. If L has no algebraic solutions, then
C1(L) modulo p has a solution on I',(t) for almost all prime p and no
algebraic solutions.

In particular some hypergeometric differential equations satisfy the
condition of Theorem 1.1.

The author is grateful to Professor S. Matsuda for his helpful advice
and thank referee for his suggestion.

2. Notation
2.1 — Analytic elements

Let K be a complete non-archimedean valued field with mixed char-
acteristics and K the residue field of K. Let K(¢) be the field of rational
functions. For a polynomial f = 3 a;t’ with coefficients in K, we set

2.1 |flo = max|a;|.

The field of rational functions K(¢) has the Gauss norm | x|, defined by
|flo = lglo/ IRl if f=g/h and g,k € K[t]. Let E be a completion of K(t)
under the Gauss norm. An element of ¥ is called an analytic element. The
derivation d/dt of K(t) is extended to E. We regard (&, d/dt) as a differ-
ential field.

Fora € E and r € R, let

2.2) D@, r")={z€E||z—al,<r}
and

2.8) D@,v)={2€E||z—al, <r}.
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We define the ring of analytic functions on the disc D(a, ) to be

Ala, )= {i a,c—a)" € El[lx—all

ay, € B, lim |a,|s" =0 for all 0§s<aﬂ}.
N—00
n=0

We define the subring E[[x — a]], of the ring of analytic functions .A(a, 1) by

0<n<oo

Ellx —ally = {Zan(x —a)" €Ellx—all| sup |a] <oo}.
n=0

ProposiTioN 2.1 ([Christol, 2.5.1]). We define a ring homomorphism
7: K — Ellx — t]ly so that, for f € E,

(d/d®)"(f) dt)”(f )

B —Elle—tlof— Y ———— @-1"

n=0

Then t is an isometric isomorphism from E to the subfield of El[x — t]]y
consisting of elements f which satisfy:

24) w((d/dt)(f)) = (d/dx)((f)).

2.2 — Differential modules

Let (H,D) be a differential field of characteristic zero and Cy the
constant field of H. We say differential field (L, D’) is a differential ex-
tension of (H,D)if L > H and D'|; = D. An H-differential module (M, V)
is a free H-module M of finite type endowed with a Cy-linear homo-
morphism V(D) which satisfies V(D)(am) = Da.m + aV(D)(m) for a € H
and m € M.

Let (M, V) be an H-differential module and L a differential extension
of H. An H-linear map s : M — L is said horizontal if s(Vm) = D(s(im))
for m e M. We denote the Cpy-vector space by Homg(M,L):=
{s € Hom¢, (M, K) | s is horizontal}.

ProPOSITION 2.2. Let (M,V) be an H-differential module. For any
differential extension L/H,

(2.5) dim¢, (Homy(M, L)) < dimg (M)
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REMARK 2.3. By the existence of Picard-Vessiot field of H ®c, CZ,Z“’ ,
there exists a differential extension L/H such that equality (2.5) holds
(see [PS)).

PRrROPOSITION 2.4. Let G be a matrix in M, (E). There exists a unique
matrie U of GLy,(E[[x — t]]) such that

2.6) Uue)=1,, (d/de)U)=(GU.
Let {G;};.n be the sequence of matrix in M, (E) defined by
GO = In» H—l (d/dt)(G ) + G G.

Then we have

U:iGz(x_t)

=0

DEFINITION 2.5. Let (M, V) be an E-differential module of rank . Let
e1, -, en be a basis of M and G =(g;) the matrix such that

V(D)e; = Z gijej. We say (M, V) is solvable over D(¢,r) if the matrix U

which is defmed by (2.6) is an element of GL,,(A(t, ).

For a differential field (H, D) which satisfies K(t) ¢ H C E, we call an
H-differential module (M, V) is solvable over D(t,r) if the E-differential
module (M ®y E, V) is solvable over D(t, r).

3. Riccati differential equation

Let (H, D) be a differential field of characteristic zero and Cy a constant
field of H. Let L = D" — g,D" ! — ... — g1 be a differential operator with
coefficients in H. Then (M, V) = H[D]/H[D]L is an H-differential module
of rank n. Let G be the matrix of representation of V(D) with respect to the
basis 1,---,D" 1 of (M, V), i.e,

0 1 0 0
0 0 1 0
3.1) G=|:
0 1
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We suppose that L has a decomposition
L=LioR, Li,Re H[D]and R is monic.

We write R =D"—¢.D"'—... —¢;. Since the canonical morphism
M = H[D]/HIDIL — HI[D]/HID]R is surjective, the induced morphism
(HID]/HIDIR)" — M is injective.

Let fi,---,f, (resp. L, ---,l;) be the dual basis of the basis
1,D,---,D" ' of M (resp. (H[D]/H[D]R)). If we regard (H[D]/H[D]R)" as
a submodule of M" then each [; is a linear combination of f;. In fact, by the
definition of dual basis, we have

A bil
l

3.2) “l=c fz
lk fn

such that C = {c; ;} is the k x n matrix defined by
3.3) D" =D e 1D er  (modR).

In particular ¢j;1 = ¢; and if j < k then ¢; j = J; ;.

Let F/H be a differential extension such that dim¢, (Homy(M, F)) =
dimy (M) (see Remark 2.3). Let sy, .. ., s, be a basis of Homy (M, F). By the
equality (3.2), we have

si)  selly) -+ su(ly) s1(f1)  s2(f1) -0 su(f1)

6.4 81(:l2) salo) - Sn(:l2) _ 81(:f2) so(f2) - Sn(:fZ)
510 s2l) - sulp) si(f) sa(f) o sulf)
Operating D on both sides the equation (3.4), we have
0 S0 sil))  s2(ly) -+ su(ly)
1 : s1(le)  sa(le) - su(le)
1 ¢ sile) s2lp) -+ sulli)
0 e 91 s1(f1)  s2(f1) oo su(f1)
1 e 92 si(fe) s2(fz) - su(f2)
- |po)-c | | |
0 1 og, Sl(fn) SZ(ﬁz) s S%(ﬁl)
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Since the matrix (s;(f})); ; is invertible, we have

0 -0 0 g1
1 : g2

- - |C=DC)-C
1 ¢ 0 1 gy

Therefore we have the equations

C1Ckpu + D(C1p) — g1 — CLpr1k1 — - — CLuGn = 0,
Cip + C2Ckpn + D(C2y) — g2 — Cor19k+1 — - — C2nfn = 0,
3.5) .
Cle—1. + CkClen + D(Cr) — Gt — Chokr19k+1 — =+ — ChmGn = 0.

We define the differential system C(L),, in k-variable y1, . ..,y by

Y1k +DWY120) — 91 = Y1ht19k41 — - — Y1nGn =0,
3.6) Yin +Y2Yrn + DY) — 92 — Yo st19k41 — - — Y2 Gn = 0,
Yi—1m + YeYrn + DWYkn) — 9 — Y k19611 = — Ykngn =0

where y; ; (1 <¢ <k, j > 1) is defined inductively by
yii=1Ly1=0 @5k,
Y1.m+1 :D(yl,m) +?/k,m-y17 yj,erl :D(yj,m)"'yk,m-?/j + yjfl.,m (2 S] < k)

By definition, the vector (cy, - - - , ¢;) is solutions of differential system C(L);,.
In particular, C(L), is a differential equation

(3.7 YY1+ DY) —g1 — Y1292 — - — Y1 gn =0
where ¥ ; is defined inductively by

yi1=1, Yimr =DWiw) + Y1.m Y1

Conversely we assume differential system C(L), has a solution
(c1,---,cr) € H*. Let F/H be a differential extension which satisfies
dime,({y € F | (DF — D" — . —¢1)y = 0}) =k (see Remark 2.3). If
y € F satisfies the equality (D* — ¢, D* 1 — ... — ¢;)y = 0 then we have
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Y Y
Dy Dy
G ) =G.!C
DVL;Iy Dk;ly
Y 0 1 e 0 Y
Dy 0 1 0 Dy
= D(0C) ) +1C.
DF-1y €1 G2 cr) \ D1y
] Dy Dy
Dy D?y D?y
=DlO)| . +icl | =
Dkfly Dky Dny

Therefore y satisfies a solution of differential equation

3.8) D"y =g, D" 'y + gu1D" Py + -+ g1y.

By proposition 2.2, we have a decomposition

39  D'—g,D"'—...—g, € HDI(D" — ¢ D1 — ... —¢y).

As a result, we have the following proposition.

ProPoOSITION 3.1.  Let H be a differential field such that the character-
istic of H is zero. Let L = D" — g, D" ' — ... — g1 be a differential poly-
nomaial with coefficients in H.

There is a one to one correspondence between a k-th order differential
operator R € H[D] which satisfies L € HIDIR and a solution of differ-
ential system C(L);, in H".

If there exists a differential polynomial R = D* — ¢ .DF1 — ... —¢;
such that L € H[D]- R then (c1,cs,...,c;) € H* is a solution of C(L).
Conversely, if (c1,cz,...,c:) € H* is a solution of C(L); then the differ-
ential polynomial R = D¥ — ¢, D1 — ... — ¢, satisfies L € H[D]- R.

By induction, we have the following lemma.
Lemva 3.2. We assume H=E. Let L=D"—¢,D" ' — ... —g; be a

differential polynomial with coefficients in E. If |g;ly < 1forj=1,---,n,
then, for any solution y € E of C1(L), we have |y|, < 1.
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ExaMPLE 3.3. For a differential operator L = D? — goD — g1 of rank 2,
C(L); is a Riceati differential equation ¢ + ¢’ — g; — ge¢ = 0. Young con-
sidered in this case [Young].

4. Analytic element solution of Riccati differential equation

Let L be a differential operator with coefficients in £ and D = d/dt .
Let C(L);, be the differential system defined by L. We suppose that L is
solvable on D(t,1) (i.e., E[D]/E[D]L is solvable on D(t,1)). We denote the
vector space which is generated by the solutions of (resp. the bounded
solutions) of L by

Kery(L) = {y € A(t,1) | 7(L)y = 0},
(resp. Kerbdd:(L) = {y € Ellx — tllo | t(L)y = 0}).

In general, since L is solvable on D(t, 1), we have dimg(Kerbdd;(L)) > 1 by
[Robba, Theorem 3.5]. If dimg(Kerbdd;(L)) < n — 1, then there exists a
monie differential operator R € E[D] such that L € E[D]R and Ker;(R) =
Kerbdd;(L) by [Robba, Theorem 2.6].

ProposITION 4.1. Let L € E[D] be a monic n-th order differential
operator which is solvable on D(t,1).

() Ifk=dimg(Kerbdd (L)) <n —1, then C(L), has a solution on E.
(i) If1 = dimg(Kerbdd (L)), C(L); has a unique solution on E.
(iii) Ifthere exists fundamental system of solutions yi, ...y, of L at
t such that y; is exactly of log-growth i — 1 (see the definition of log-growth
wm [C-T]) then, for each j, C(L); has a unique solution over E.

ProoF. There exists a monie differential operator R € E[D] such that
L e E[D]R and Kery(R) ={y € El[x—1]] | 7(L)y =0 and y is log-growth 7}
by [Robba, Theorem 2.6]. By Proposition 3.1, there exists a solution of
C(L), on E where k = deg(R). The uniqueness of case (ii),(iii) is confirmed
by [Dworkl, Theorem 1]. O

By [D-R, Theorem 2.4.3 (iii)], we have the following proposition.
ProPOSITION 4.2. Let L € E[D] be a monic n-th differential operator

whaich is solvable on D(t,1). Assume k = dimg(Kerbdd (L)) <n — 1. Let S
be the set {a € K | L has no pole on. D(a,17)}. Then there exists a solution
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(Y1, ..., yr) € E* of C(L);, such that
{a € S| dim(Kerbdd(L)) > dim(Kerbdd, (L))} C

{a@ € S| y; is not analytic on D(a,17) for some 7}

5. Hypergeometric differential equation and Riccati differential
equation mod p

Let p be a prime number and D = d/dx. For a,b,c € Q N Z,, we set the
hypergeometric differential operator

c—1+a+bdbx ab

(5.1 L(a,b,c) = (1 — ) a1 —x)

We assume the following condition:
(5.2) ¢c—a,c—b,b,a all lie outside Z.
(5.3) ceQ—-{0,-1,-2,...}.

By [Dwork2, p. 11, Remark], we see the Riccati differential equation

9 , ¢c—A+a+dx B ab
(5.4) Y +y + o) Y x(l—x)_o

has no rational solutions.

For a rational number a € QNZ,, we set y, € [0,p — 1] such that
U, = —a (modp). According to Dwork, we say (a, b, c) € Q is split (resp.
unsplit) if up, < min{u,, 1} or u, > max{u,, 1} (resp. p,<p,<py Or
Uy <o <p,)- There exists an integer m such that

p—1
(.5) Fo=p" (a ”)(b n) @ € 7wl — pZylal,

n=0
where (a,n) is defined

( )_{1 (n = 0)
V= Vaa+ D)@t n—1) >1).

If (a, b, ¢) is split, then F' is uniquely determined. Since F' is a solution of

hypergeometric differential equation

C—(l—l-a—i—b)xD_ ab
x(l —x) x(l—x)

(5.6) (D2 + )y =0 (mod p),
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by Lemma 5.2, F'/F is a solution of the Riccati differential equation

c—(1+a+bx ab

(1l —x) y_oc(l—x)_
Under the special condition, Dwork proved that if (a, b, c) is split, then
L(a, b, c) has a unbounded solution and if (a, b, ¢) is unsplit, then L(a, b, ¢)
has two independent bounded solutions (see [Dwork2, Theorem 6.6, 9.4]).
We consider solutions of the Riccati differential equation (5.7).

6.1 v +y + 0 (mod p).

LEmmA 5.1. We assume that (a,b,c) € (QN Zp)3 1s unsplit. Then the
Riccati differential equation (5.7) has infinite solutions.

ProoF. In this case, the hypergeometric differential equation (5.6)
has solution

min{sy,u} (a,n)(b,n) n

n=0

max{y.i } (a’ n)(b, TL)

(¢, m)n! ot (u,v € Tp(?))

n=,+1

max{s,.u}
with m € 7 which satisfies p™ > ' Mm" € Zplal—pZylx]. By
n=p,+1 (C, 7’L)7’I,

Lemma 5.2, the Riccati differential equation (5.7) has infinite solutions. [

LEMMA 5.2. Let R=D"—g,D" ' — g, D" 2 —...—g; be a differ-
ential operator with coefficients I',(x). Then R has a decomposition
R=Q - —c)where Q € I'y)(@)[D] and c € I'y(x) if and only if ¢ € IV, (x)
1s a solution of the Riccati differential equation C(R);.

PrROOF. Assume that R = (D" ! +b,_1D" 2+ .-+ b;)(D — ¢) where
b1, -+, bu1,c € Ip(x). Comparing the both sides, we have the equalities

In :C_bn—l

n—1
In-1 = ( 1 )C(l) + Cbnfl - bn72

n—1 . n—2 ) )
9i = (n_i>c(7“)+(n_i_l)c(nzDbn_ﬁ—---+C'(1>bi+1+cbi—bi1

—-1 -2 2
o — n -2 | " "y, 14+ bs + cbs — by
n—2 n—3 1

g1 =c"V 4" Dp, 1+ 4 Dby + chy.
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We set ¢, C, by

/
Cimt1 = Cp, +CCpyy €1 =1

m m—1 o
G =3 (") o™ —

1=1

We have the equality

n—1

—g1—Cag2 — = Cufy = Cuy1 + Cy +Zcibi'

i=1

To prove that cis a solution of C(R);, we have only to prove C,, = 0for all m.
We use induction on m. For m = 1, C; = ¢1¢® — ¢2 = 0. Therefore the case
m = 1is true.

We assume that the assertion is true for m =k — 1.

=
I
Ll

k-1
k-2 ) .
= < - )(Ck—i-HC(l_l) +ep_ic?) — ccy,

k—2 k-2 .
< > + ( . ))ckmc“l) + ¢V
1—1 1—2

k-1 k—1 )
( i1 )Czcmc(”) + ¢ = Gy, — e +

I
SM

This completes the induction.

Conversely let cel',(x) be a solution of C(R);. We define
bi,...,by1 € )(x) as above. Then we have the decomposition
R=D"14+b, D" 2+ +b)D —c). O
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LEMMA 5.3. We assume that (a,b,c) € (Q N Zp)3 1s split. The Riccati
differential equation (5.7) has a unique solution if and only if

(5.9

ate(l — x)—1+ﬂa+/tb—ﬂc
F2

(-1
) #0 (mod p)

ProOF. Substituting y =2+ F'/F for y in the Ricecati differential
equation (5.7), we have
! J—
24 ( F' c—(a+b+ 1

2—+—)20 (mod p).

(5.10) F (1 —x)

Substituting z = ha#(1 — a) 14 /F2 for z in the Riceati differential
equation (5.7), we have

2
(5.11) whe(1 — go) " HHHatH—He I% +1' =0 (mod p).

We suppose & # 0. By this equality,

(1)’ xhe(l — x)—lﬂlaﬂlb—ﬂc

Z 2

(6.12) 7

(mod p).

The differential equation (5.12) has a solution if and only if

xhe(1 — x)*lﬂlaﬂtb*ﬂc

(5.13) 7 € Fy@P) @ aly(@?) @ ... @ P21, (xP)
ie.
(-1
He(1 — o)~ L HHta Ty =4
(5.14) (x ( wjm ) —0 (mod p).

O

PropoSITION 5.4.  We assume that u, = p — 1 and (a, b, ¢) is split. Then
the Riccati differential equation (5.7) has a unique solution F'/F.

Proor. Let v, be a valuation of I7,(x) with respect to a prime ideal
xlx] of I[x]. Since p — 1 = u, > max{y,, 4} by assumption, v,(F) = 0.
Therefore we have

/ (1 — )~ T Ha i —He
(5.15) Ve ((}1) ) — 2, (mﬂ d 92,2 ) —p—1.

Since there exists no & € F(x) which satisfies (5.15), we have h = 0. O
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6. Algebraic solution of Riccati differential equation

Let L be a monic differential operator with coefficients in Q(f) and
D =d/dt. For almost all prime p, we can reduce L modulo p. If we can
reduce L modulo p, then we denote L modulo p by L,.

THEOREM 6.1. (i) If L has an algebraic solution, then C(L), has an
algebraic solution.

(i) We assume that for almost all prime p, L is solvable on the
generic disc D(t,1) as a p-adic differential equation. If C(L), has a ra-
tional solution then L has an algebraic solution.

(iii) We assume that for almost all prime p, L is solvable on the
generic disc D(t,1) and dim(bddKer,(L)) =1 as a p-adic differential
equation. Then for almost all prime p, C(L); has a solution in [, (). And if
C(L)1 has an algebraic solution, then L has an algebraic solution.

Proor. If L has an algebraic solution then there exists an algebraic
function % such that L € Q@#)™[D)D — k). Hence the Proposition 3.1
implies (i).

Suppose that C(L); has a rational solution y. By Proposition 3.1, we
have L € Q@)[D](D — y). Let p be a prime such that when we regard L as a
p-adic differential equation, L is solvable on the generic disc D(f,1) and
that we can reduce L and D — y modulo p. By [DGS, 3. Proposition 5.1], L,
is nilpotent. And by [DGS, 3. Theorem 2.1], (D — ), is also nilpotent and
therefore has a solution of I, (?). Since for all almost prime p, (D — ), has a
solution of I',(t), by Honda’s theorem([Put2, Proposition 2.2]), D — % has an
algebraic solution. This implies (ii).

We will prove (iii). By Lemma 3.2 and Proposition 4.1(i), for all almost
prime p, C(L); has a solution on I',(¢). We assume that C(L); has an al-
gebraie solution y which is not a rational function. Let G be the Galois
group which corresponds to a finite Galois extension of (O(¢) contains y. For
all 0 € G, () is a solution of C(L);. Since y is not a rational function, C(L),
has at least two algebraic solutions. By Proposition 3.1, this implies
dim(bddKer;(L)) > 1. This is a contradiction. O

COROLLARY 6.2. Let L be a monic differential operator with coeffi-
cients in Q(t). We assume that for almost all prime p, when we regard L as
a p-adic differential equation, L is solvable on the generic disc D(t, 1) and
dim(bddKer,(L)) = 1. If L has no algebraic solutions, then C(L), has a
solution on IV,(t) for almost all prime p and no algebraic solutions.
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