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The Behavior of Rigid Analytic Functions Around Orbits
of Elements of C,

S. ACHIMESCU (*) - V. ALEXANDRU (**) - N. POPESCU (*)
M. VAJAITU (*) - A. ZAHARESCU (¥)(**%)

ABSTRACT - Given a prime number p and the Galois orbit O(x) of an element x of C,,
the topological completion of the algebraic closure of the field of p-adic numbers,
we study the behavior of rigid analytic functions around orbits of elements of C,,.

Introduction

Let p be a prime number, Q, the field of p-adic numbers, @p a fixed
algebraic closure of Q,, and C, the completion of @p with respect to the p-
adic valuation. Let O(x) denote the orbit of an element € C,, with respect
to the Galois group G = Galeu(Cp/Q)). We are interested in the behavior
of rigid analytic functions defined on E(x) = (C, U {oo}) \ O(x), the com-
plement of O(x). The paper consists of five sections. The first one contains
notations and some basic results. In the second section we study the zeros
of rigid analytic functions, which are not rational, around finite sets of C,
and, in particular, around orbits of algebraic elements of C,, see Theorem
1 and Corollary 1. The next section is concerned with the transcendental
case. One has a similar result of a theorem of Barsky, see Theorem 2, and
then we prove that if all the points of O(x) are singular points for a rigid
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analytic function F' then one has lim inf, ., |F(z)| = 0, see Theorem 3. In
section four we give a few examples of rigid analytic functions on E(x) with
and without zeros. The last section is concerned with some remarks related
to zeros on a corona.

1. Background material

Let p be a prime number and Q, the field of p-adic numbers endowed
with the p-adic absolute value | - |, normalized such that [p| = 1/p. Let Q,
be a fixed algebraic closure of (O, and denote by the same symbol | - | the
unique extension of | - | to Q,. Further, denote by (C,, | - |) the completion
of (Qp, | - |) (see [Am], [Ar]). Let G = Gal(Q,/Q,) endowed with the Krull
topology. The group G is canonically isomorphic with the group
Galeont(Cp/Qp), of all continuous automorphisms of C, over Q,, see
[APZ2]. We shall identify these two groups. For any x € C, denote
O(x) = {o(x) : 0 € G} the orbit of x, and let Q@[Zc] be the closure of the ring
Qplx] in C,.

For any closed subgroup H of G denote Fix(H) ={x € C,:0() =2
for all ¢ € H}. Then Fix(H) is a closed subfield of C,. Denote
H@x)={0€G:o(x)=x}. Then H(x) is a closed subgroup of G, and
Fix(H(®@) = Q,x).

The map o-»a(x) from G to O(x) is continuous, and it defines a
homeomorphism from G/H(x) (endowed with the quotient topology) to
O(x) (endowed with the induced topology from C,) (see [APZ1]). In such a
way O(x) is a closed compact and totally disconnected subspace of C,,, and
the group G acts continuously on O(x): if ¢ € G and t(x) € O(x) then
o *x 1(x) := (o7)(x).

Now, if X is a compact subset of C,, then by an open ball in X we mean
a subset of the form B(x,e)nX, xe€C,, ¢>0 where B(x,¢) =
{y € C), : |y — x| <e}. Let us denote by Q(X) the set of subsets of X which
are open and compact. It is easy to see that any D € Q(X) can be written
as a finite union of open balls in X, any two disjoint.

DEFINITION 1. By a distribution on X with values in C, we mean a map
u: QX)— C, which is finitely additive, that is, if D= CJ D; with
DieQX) for 1<i<n and D;ND;=0 for 1 Si;éjzln, then
w(D) = 21 w(Dy). (See also [MS].)
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The norm of x is defined by ||¢|| := sup{|u(D)| : D € QX)}. If ||u|| < o0
we say that i is a measure on X.

DEFINITION 2. Let D be a infinite subset of Pl(Cp). A function
f D — Cy s satd to be rigid analytic (or Krasner analytic) on D provided
that f is a uniform limit with respect to the topology of uniform con-
vergence on D of a sequence of rational functions on D. (See also [FP],
[Am].) We denote by A(D, Cp) the set of all rigid analytic functions defined
on D.

The set X C C,, is said G-equivariant provided that o(x) € X for any
x € X and any ¢ € G. (X = O(x) is such an example.)

DEFINITION 3. Let X be a G-equivariant compact subset of C, and i a
distribution on X with values in C,. We say that u is G-equivariant if
wWo(B)) = a(u(B)) for any ball B in X and any o € G.

REMARK. On a Galois orbit O(x) there exists a unique G-equivariant
probability distribution with values in Q,, namely the Haar distribution
7., see [APVZ1] and [APZ2].

According to [APZ2], a rigid analytic function defined on a subset D of
IPI(CP) is said to be equivariant if for any z € D one has O(z) C D and
fle@®@) =o(f(z)) for all g € G.

Let A%(D, C,) be the set of equivariant rigid analytic functions on D
with values in C,, and AS (D, C,) the subset of those that vanish at co when
oo €D.

2. The algebraic case

Let S be a finite set in C,, and let F : P(C,)\ S — C, be a rigid ana-
lytic function which is not rational.

We study the zeros of such functions around S. In particular, one
considers S of the form O(x) = {a(a) : 0 € G = Galepu(C,/Q,)} the orbit
of o € Q. Let us recall the analogue of a classical result of Picard.

ProprosiTION 1 (see [AR]). Let F = ianX" € Cp[[X,X‘l]] be a

Laurent series that has infinitely many cogﬁficients a, # 0 for n<0 and
such that Ry :=limsup, la_, V" =0 ie 0 is an essential isolated
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singularity for F. Then there are infinitely many critical radii v; strictly
decreasing to 0 and for each ¢ >0, y € Cp, the equation F(x) =y has
mfinitely many solutions 0< |x| <e.

For F as above, we define R} :=sup{r >0: |a,[r'" — 0, n — oo} =
1/limsup,, ... |an|1/ ", by the Hadamard formula, see [AR]. One has the
following result.

THEOREM 1. Let S be a finite setin Cp andlet F : PY(C,)\ S — Cpbea
rigid analytic function. If F is not rational then F has infinitely many
zeros 1 any neighborhood of at least one point of S.

Proor. For the sake of simplicity we suppose F(co) = 0. Let us con-
sider the Mittag-Leffler decomposition

(1) F() =) F.@) = ZZ

aesS aesS n>1

|b<a) ‘

h F.(2) b nd
where 2) = an
“ gl(zfa)

number ¢ and any a € S. It is easy to see that this condition is further
equivalent to |b§f)|1/ " — 0, when n — oo. Because F is not rational there
exists e € S such that F, is not rational. In such a way from (1) one has

— 0, n — oo, for any positive real

(2) F) = Fo(2) + H(),

(a)
where H(iz)=>_ >

aeS n>1 (Z - )n

denote A = |y| |H(e)|. Tt is clear that Ry = lim sup [b@Y" = 0 and
R; =sup{r>0:[b " -0, n — 0o} =co. (We note here that
b(“) =0, for any n > 0, by (1).) Because F, is not rational we have that e
is an essential isolated singularity for F,. By Proposition 1 we have that
F, has infinitely many critical radii »; strictly decreasing to 0 and for
each y € C, the equation F,(r)=vy has infinitely many solutions
0<|x — e] <¢. One knows that lim sup,_,, |Fe(z)| = co. Then there exists
ea > 0 such that if 0<e<ey and |z —e| < e<eq we have |H(R)|<A + 1.
Let zy € B(e,¢) such that |F,(z¢)] > A + 1. In fact one has

We have y := H(e) is well defined and

lim sup |Fe(z)] = oo =limsup,_|F.(2)|,

1= 2¢8(e,r;)

where S(e,r;) is the sphere centered at ¢ and of radius ;. There exists



The Behavior of Rigid Analytic Functions Around Orbits ete. 197

21 € S(e, |20 — e]), |20 — e| = 7; a critical radius, such that |F(z1)| # [Fe(z0)]
because |F| is not constant on the spheres of radii r;, which are the critical
radii, and F, has zeros on these spheres. It is clear that |F(z¢)| = |F.(z0)|.
Two cases may appear:

(@) |Fe(z1)| <|Fe(z0)| soone has |F'(z1)| < max{|F(21)|, A+ 1} <|F,(20)| =
|F'(z0)|.
(i) |F(z1)] = [Fe(z1)] > |Fe(z0)| = |F(20)|.

This implies that |F| is not constant on S(e, ;) so F" has zeros on this
sphere. The proof is now complete. |

COROLLARY 1. Let a € Q,\Q, be an algebraic element and let
F . Pl(Cp) \ O(a) — C, be a rigid analytic function. If ' is not rational
then F has infinitely many zeros in any neighborhood of at least one point

of O(a).

REMARK. If F: PY(C))\ O(x) — C, is a rigid analytic function that is
equivariant and is not rational, then it takes any values in any neighbor-
hood of O(«), so all the conjugates of « are essential singular points of F'.

In what follows we give another proof of Theorem 1 without the ana-
logue of the classical result of Picard, by exploiting the fact that F, given
above has a Weierstrass product and it is uniquely determined by its fa-
mily of zeros. So, let F' be as in Theorem 1. Let us consider the Mittag-
Leffler decomposition

(@)
3) FR =Y = (Zﬁ—m

aeS aeS n>0

(@) @
where f,(z) = > r_ and 10 — 0, n — oo, for any positive real
o Z—a) &

number ¢ and any a € S. This condition is equivalent to having |b§f>|1/ "0,
when n — oo. Suppose F(oo) # 0 and F(0) # 0. It is easy to see that there
exists e € S such that f, is not rational. In such a way f, has the following
decomposition (see [L])

(4) fo=cJ(1--2)

n>1 c—e

where ¢ is a nonzero constant, a, € C, such that |ai| > |az| >--- >
|ay| > ..., lim,_ |a,| = 0 and each |a;| appears in the decomposition of f,
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only a finite number of times. Let us consider

(5) F=fi+g,9= Y fo

aeS\{e}

One has lim sup,_,, |fe(2)] = co and denote A = |g(e)| <oo. There exists
&4 > 0 such that if |z — e| <eq then |g(z)| <A + 1. We have the following
result that implies Theorem 1.

PROPOSITION 2. Let f. be as above and let ¢ > 0. Then there exists
zp € C, such that:

1) |20 —e|<eand | f,(z0)] > A + 1.
2) there exists z1 € C), |20 — 21| <|20 — €] and |f.(z1)] <|fe(20)]-

Let us see that Proposition 2 implies Theorem 1. We choose a positive
real number ¢ such that e<e¢y and e< inf{le —a|: a # e, a € S}. Because
|fe(20)] > A + 1 and |g(z0)| < A + 1 one has |[F'(zo)| = |fo(20)] > A + 1. From
|20 — 21| < |20 — e| <& we have |21 —e| <& 80 |g(z1)| <A + 1<|f.(0)| and by
| fe(z1)] <|fe(z0)| one obtains |F(z1)| <|F(z9)|. On the other hand there are
no elements of S \ {e} in the closed ball B[y, |21 — #o|] and even in the open
ball B(zy, ). But the function F is defined on B(zy, ¢) and |F'| is not constant
on this open ball so F' has zeros in B(e, ¢), see also [AR].

Now, let us give the proof of Proposition 2. As we know, the sequence
(|an|)p>1 is decreasing and its limit is zero. We choose zo of the form
20 = e + as(1 + u) with s sufficiently large and |u| <1, u # 0 that will be
chosen later. One has

(6) ﬁ(z)—6ﬁ< z_g) Cﬁz_e_al

i=1

SO

1 as(1+u) —
(7) fe(zo) =
0 11 as(1 +u)

It is clear that |as(1 + u)| = |as|. Now, if |a;| <|as| then |as(1 + u) — a;] =
|as(1 4+ u)| = |as|, and using (7) we have

s(1+
® fGol = el TT | 252020

lag > las|

Let us give an explanation about the form of zy as above, zo = ¢ + as(1 + u),
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with |u| <1. If there exists z; that satisfies |29 — 21| <|z0 — e| and | f,(z1)| <
| fe(20)| then |e — 21| = |e — o] so on the sphere S(e, |e — z¢|) the function
| fe(2)| is not constant and this implies that |e — z| is the same with one of the
moduli |as|, s >1. In such a way one has zy=e+as, |[{|=1 and
21 =20+ ast, |t'|<1,ie 21 = e+ ast+1t). Denote |as| = r;. Let us com-
pute | f;(z0)| and | fo(21)|. We factorize

o0

9) 1@ = e [[ S = W@HLG),
i=1
where
z—e—Q;

(10) hs(z) = —
|e+1;[—rs c-e

and

(11) He = [ =24
jesajlzr, ¢

In (10) the product has a finite number of factors. Let us see that |H| is
constant on the sphere S(e, 75), because if |H| is not constant then H; has
zeros on this sphere that is not the case. The inequality | f,(21)| <|fe(z0)| is

equivalent to |hs(z1)| <|hs(z0)| that is equivalent to s(1) ‘ <1. Because
|zo — e| = |z1 — e| it results that
hg(z1) _ H ’zl—e—aj‘: 1 20 — 21 ’<1'
le+aj|=rs e le+aj|=rs fo—€—0a
There exists j and a; with |e +- a;| = 7y such that ’1 B ‘ <1, which
20— € —
2o—e—ay
means|z0—z1|:|z0—e—aj|<|e—z0| so‘—’:‘ . e‘<1
0 —

Again, one obtains ’ 0 ‘ =1s0z9 — e = a;(1 +w), with |w| <1, for some

a; with |aj| =7,=las| ie. zo=e+a;+aw, with |w|<1. Denote
p=min{|zo — e — a;| : |e + aj| = r,}. We take z; such that |29 — 21| < pand
R0 —

for at least a j such that |20 —e —a;| = p one has ‘m_l’
8 0—€—a
%.<1 This implies |f.(z1)] <|fe(z0)| and also |20 —z1| < p =

0—€—a

|20 — e — aj| <|z0 — e|. So z1 = 2o + ast’ will be determined such that for
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R0 —
20— € —
must have the residual image equal to 1. Th1s implies

(12) <ﬂ) _ <a_) W7 =1,
00y 0—€— 0y

so the condition that determine z; is

(13) - <Z°;“f)

In such a way z; is determined by zo. It remains to find z,
20 = e + as + asu, with |u| <1, such that | f,(zo)| is big enough (> A 4+ 1) and
le — 20| = |as| with |ag| small enough.

If in the decompositon of |f;| as in (8) one has |a;| > |as|, then

20 — 21

some a; with |20 — e — a;| = p, —
: : 2o —e—a,;

- 1‘ <1. For this

1 - W )
|as(1 4+ u) — a;] = |a;| so ‘% ||a§|| > 1. This implies
(14) |fe(z0)| = My x M,
a; as(1+u) —a;
where My =|c| [] |—|and M. = [] |t
T il 05 jai=la,) | G5+ %)

1) We see that M, is large enough as soon as a; is small enough that
means s is large enough.

as(L+u) —a;| i B @
2) One has m —‘ as(1+u)’_‘(1+u) o where
w=1+u is also a unit in U1(C,).
Now, let 6 € (0,1) and denote
(15) Us(Cp) ={z:2=1+y, |y|<d}.

Then Us(Cp) C Ui(Cp) and the factor group Ui(C,)/Us(C,) is an infinite
group (because of the residual field of C, that is [, i.e. infinite). Denote
= #{a; : |a;| = |as|}. Because U1(C,)/ U(;/ms("(*p) is infinite we can find

)
> —, for each 1 <1 < m.
S

=1+u e Uyi(C,) such that )(1 +u) — —
From this one obtains ®s

as(1+u) —

- )

|a;|=|as|
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so by (14) we have
(16) [fezo) > lel ]

lai[>|as|

Yils

S

Finally it is clear that for s large enough, by (16) one has | f.(z¢)| > A + 1,
and the proof is done.

3. The transcendental case

Let © € C,. For any ¢ > 0 denote B(x,e) = {y € C,, : |[x — y|<e} and
Blx,el ={y € C, : | —y| < ¢}. For any 0 > ¢ > 0 also denote E(x,¢,0) =
{yeB(x,9):|ly—t|>e for all teO@)NB(x,0)} and Elx,&d]l={y¢e
Blx,0]: |y —t| > ¢, for all t € O(x) N B(x,d)}. The complement of E(x, ¢, J)
in B(x, 9) is denoted by V(x, ¢, 9). Both sets E(x, ¢,0) and V(x, ¢, d) are open
and closed, and one has: N,V (x,¢, d) = O(x) N B(x,d). Denote E(x,0d) =
U.E(x, e 0) = B(x,0) \ O(x) and Elx, ] = UElx, ¢, 6] = Blx, 0]\ O(x). For
anyx € C,and e > 0 denote H(x,e) = {0 € G : |o(x) — x| <e} and H[w, ¢] =
{0 € G:|ol®) — x| <e}. Let S, (respectively S,) be a complete system of
representatives for the right cosets of G with respect to H(x,¢) (respec-
tively Hlx, ¢]). Then E(x, ¢, 0) = Uses,B(a(x), &) N B(x, d).

(When 6 = oo we drop o in the above notations and obtain the standard
notations and results as in [APVZ1].)

Let J be a fixed positive real number and let F' : E[x, 6] — C,, be a rigid
analytic function such that the set of real numbers {&||F| g, .5} s=en0 18
bounded. (Here [|F|| g, . 51 = SUD.cpy .5 [1F(2)].)

By the Mittag-Leffler Theorem (see [FP]) one can write:

F) =FP @ +FY@
where

(f) |
FO () — a® cC | N
(@) § g = 0_(90))n, Gy € Cp 7 0,

aeSe p>1
a(@)eB@,0) T

and
FP@) = ) Zb@}g(z o@)", bY, € Cp, b 15" — 0,

o€Se
a(x)eB(x. r>) -

for any z € E(x,¢,0). It is easy to see that F;a)(z) = F;e/)(z) for any
0<éd<e<d,so F;g) (2) has analytic continuation on the entire B[x, J], which
we denote it by Fa(z). Denote F'1(z) = F(z) — Fa(2).
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One also has

FP@ = > Fi@),
rr(mf)fg&.d)

0 a, ot
) a
where FY'(2) = Z>:1 @ o@)” o
obtains n=

— 0. By Cauchy’s inequalities, one

17) [a¥] < &' 1P | prees) =

n,o
&'NF = Fallgr . 00 < & max{||F|| gr o 515 1 F2l B con }> 7> 1
The Mittag-Leffler’s decomposition is unique, so, for any 0 <&’ <e¢ one has

FP )= Y. F{)@, z€Elxeod
€S, t=6
rr(x)i(x)eB(r )

(here 7 = 6 means t € gH(x, ¢)) and so for any o(x) € B(x, )
(F) (s)

(18) e i D B ol

n>1 €8, 1= m>1
(x)eb’(w)

Since |z —a(x)| > ¢, and |o(x) — t(x)| <e, it follows that |z —1(x)| =
|z — o(x)| and so:

al). a®),
G — @) i @) — o)\
9 (& — o(x) (1 - W>
alé). m+k—1\ o) — alx) 1k
(z—a(x))m;< )[ 2z — o(x) }

If we denote m + k = n, then by identifying the coefficients of the terms
of degree n in (18) and (19) one obtains:

(20) af, = Z( ) a®, (@) — o@)),

1€y 1=6 k=0
r(t)eB(C{))

where n > 1.
Now for any % > 1 one defines a sequence {x,,},, of measures on
O(x) N Blx, 0] by the equality

(21) Hye = Z asf,)a ’ 50(%)7

€S,

where J, denotes the Dirac measure concentrated at y € C,,.
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By (20) one obtains, for n = 1:

“(16,2; = Z a(ﬁ;), 0<é <e.
ot
This equality further implies that for any ball B of radius &', ¢ < & <J, one
has 4 ,(B) = p; »(B) whenever ¢ < ¢. Then by (17) and the Banach-Stein-

haus Theorem (see [R]) there results that the mapping
B-»u(B) = lizn 1 .(B)

(where B runs over all the open balls of O(x) N Bl[x,J]) defines a p-adic
measure on O(x) N B[z, d]. One says that ¢ = 1 is the measure associated
to the rigid analytic function F'. Here we remark that if || F| g, . 5 is uni-
formly bounded for any 0 <¢<J one has u = 0.

Furthermore, for n = 2, by (20) one obtains

ap) = Y [af) + af) () - o@))].

reSF, Ji=6

w@)eB@.0)

If Bis an open ball of O(x) N Blx, 5] of radius &', by the previous equality and
(21) there results that

fo,(B) — 115, B) = > | 3 af)a(@) — o))

€S €S, t=6
a(x)eB (x)eB(x,0)

and so by (17) one has:
|tz o (B) — g (B)| < &€'||Fl|gp 0 57 < eM

where M = sups. ..o &l F| g5 <00, by hypothesis. Then by (17) and the
Banach-Steinhaus Theorem, there exists a measure u, on O(x) N Blx, J]
defined by

1o(B) = lim p15 ,(B),

for all the open balls B of O(x) N B[x, 6]. In the same manner for all n > 3
one can define a measure #,, on O(x) by:

:un,(B) = h}’n :una(B)

Next, by an easy computation it follows that for all » > 2, one has
||| < Me"™1, and so p, =0 for all »>2. In what follows we shall
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prove that

1
(22) Fi(z) = / Edﬂ(t)7 z € Elx, 0]
0@)NBlx,0]
Indeed, with the above notations and using (17) one has:

ay),
INOEEY e

G€Sg

1
Fie) - / mdﬂl_,;(t)‘

O(x)NBl[x,0] o@)eB@,0)
(23) ) "
PO Pp
& S Ge—o@)" |

a(x)eB(x,0)

for any z € E(x,0). If d = dist(z, O(x) N B(x, 0)) > 0, for any 0<e<d from
(23) and (17) one has

(24)

1 e n—1
Po- [ | <swix(3) ol

n>2
O@x)NBlx,0]

which tends to zero when ¢ tends to zero.
By the definition of i = 1, (see (21)) one has

1 . 1
/ o dut) = }15% / o dpy (@)

O(x)NBlx,d] O(x)NBlx,d]

By (24) and the analytic continuation principle one obtains (22). Finally one
has the following result, which is similar to a theorem of Barsky (see [B] and
[APVZ1)):

THEOREM 2. Let x be a transcendental element of C, and let 6 be a
fixed positive real number. Let F : Elx, 0] — C, be a rigid analytic func-
tion such that the set of real numbers {e||F|| g, . 5} sses0 1S bounded. There
exists a unique p-adic measure uy on O(x) N Blx, o] such that F' has the
following integral representation

(25) F(z)=Gk®)+ / idﬂﬁ«(tx z € Elx, d],
O(x)NBlx,0]

where G(z) is an entire function on Blx, d], and the representation of F' is
unique.
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REMARK. Itiseasy toseethatif F has a singular point ¢ € O(x) N Blx, 6]
then ||F|| g, . 5y— 00, & — 0 s0 one has lim sup,_, [F'(2)| = oo and moreover F
is transcendental over C,(z). Indeed, if the reverse is true one has uz =0
and F' has no singular points on O(x) N Blx, 6], which is false.

One has the following result.

THEOREM 3. Let x be a transcendental element of C,, and let 6 be a
fixed postitive real number. Let F' : Elx, 0] — C, be a rigid analytic func-
tion such that all the points of O(x) N Blx, ] are singular points of F'. Then
lim inf, ., |F(z)] = 0.

Proor. Let us suppose the reverse. One has lim inf,_, |[F(z)| > 0
so there exists M >0 and ¢ >0 such that |F(z)|>M for any
z € Blx,d'1\ O(x). For the sake of simplicity, let us suppose d = ¢'. (We can
work with the restriction of F' to E[x,d'].) By definition, F is a limit (in
uniform convergence on each E[x, ¢, 6]) of rational functions of the form

. P9)
(26) F@) = Jim 57,

without poles in E[x, ¢, 6]. Fix 0 <e < J and let ny; be a natural number such

that

<M
Elx,e,0]

QY

for any n > ny. Because |F'(z)] > M, for any z € El[x,¢,J] one obtains
‘P§f>(z)

’ > M, for any z € Elx,¢,0], so F' is a uniform limit of rational

Qif)(z) PO(z)
functions without zeros and poles in E[x, ¢, 6]. Denote Gﬁ?(z) = ’("T One
has Q@)

1 1 1 1
- _ _® - el a0
e I Latcry P o S L

1
for any n >ny; so 7 is rigid analytic on Elx, 6]. Two cases may appear:
1
I) The function —
(I) The function 7

1
7o 0 on O(x) N Blx, ]. Since x is transcendental over Q,, O(x) has limit

1
points inside B[x, ] (see [APZ1]), and this forces 7 to be identically zero,
which is a contradiction.

has analytic continuation on O(x) N B[x, ] and then
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(II) % has singular points on O(x) N Blx, d]. Let us suppose that x is
a singular point. As in the above considerations one obtains a sequence
(Ynw)n>1 such that y, — x and ‘%(yn)
false. O

— 00 ie. [F(yy)| — 0 that is also

REMARK. The hypothesis that « is transcendental over Q, is really
needed in the statement of Theorem 3. Situation is completely different if a
is algebraic. Indeed, if x = o is algebraic over Q,, one can take F = 1/P,,
where P, is the minimal polynomial of o over (Q,,, and then the conclusion of
the theorem is obviously false for such #'.

COROLLARY 2. If F is as in the above Theorem and a € C, then there
exists a sequence z, € C, \ O(x) such that lim,_. F(z,) = a.

Proor. We apply Theorem 3 for /', = F — a. O

REMARK. One could say that the points of O(x) N Blx, ] are essential
singular points for F'.

COROLLARY 3. Let x € Cp, be a transcendental element and 6 be a
fixed positive real number. Denote D = U,cqB(a(x),0)\ O(x). Let F €
A%D, Cp) be a rigid analytic function that is equivariant and such that
x is a singular point of F, i.e. F does not have analytic continuation to
UsegB(o(x),0). Then lim sup, , |F(z) =occ and lim inf, ., |F(z)] = 0.
Moreover, for any a € Q, there exists a sequence (zy),>1 € Cp \ O(x)
such that lim, .. F(z,) =a, so all the points of O(x) are essential
stngular points for F'.

4. A few examples of rigid analytic functions with and without zeros

1) In this section we give an example of a rigid analytic function
such that it has no zeros on PI(CZ,) \ O(x). For, let x € C \ @p, and let
(en)n>1 be a strictly decreasing sequence with limit 0. Denote H, =
{0 € G:|o®) —x|<e,} and S,, = (Hy/Hni1)etr be a complete system of
representatives on the left for H,/H,.;. Let us define the following
sequence of rational functions

n x — o) " z—
(27) fn(z):H H(l_z—a(ﬂc)>:H Hm,nzl

i=1 oeS;
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For any ¢ >0 the sequence (f,),>1 is uniform convergent on
Cp \ UseaB(a(x), ). It is easy to see that

fn@ =@ ] (1 S "(”)) — fDh(2),

€811 &= O-(x)

z—u
where h,(z) = _

@= M ow
any ¢ > 0 there exists n; such that ¢, <J for any » > ns. In such a way one

has |f,(?)| = |fn,(?)| as soon as dist(z, O(x)) > J. Moreover

e -1= ] (1_9;:583) ~1

One has f,,1(2) — fu(2) = fu(2)(h(2) — 1). For

Jesrﬁrl
B x — o(x) x—olx) x—t(x)
(28) - J;S;Hl 2z —o(x) + Ugsjm z—o@) z— )
—o(x)
+ _ 1 #Sn+1 x g .
( ) JEI;L 2 —o(x)
By (28) one obtains
x—0o@)| en1
— < <
(29) |hn(z) 1| > oigﬁl z—o@) |~ o )

for any n > ns and any z with dist(z, O(x)) > 6. Clearly, (29) implies
lim,, . |y (2) — 1| = 0 uniformly in z. We have

(30) |fu1R) = u@)] = [ ;@] - [hn(®) — 1] < | f,(R)] -

En+1
(S )

that tends to 0 as soon as 7 — oo uniformly in z, dist(z, O(x)) > J. By (27)—
(30) one defines

(31) f) = lim f,(2),

that is a rigid analytic function on Pl(Cp) \ O(x). Moreover x is a singular
point of f, so f does not have analytic continuation to the entire O(x).

It remains to prove that f has no zeros in C,\ O(x). For, let z €
C, \ O(x) such that f(z) = lim,,_. f,(2) = 0. Let us suppose ¢ = |z — «|. If
& = o@) ‘ <1 so ‘ i) =1 and |h,_1(R)| =1. It
2z —o(x) 2z —o(x)
follows that for any n > ns

&, <0 one has ’

|fu(@)] = | fu; )],



208 S. Achimescu - V. Alexandru - N. Popescu - M. Vajaitu - A. Zaharescu

where ns = max{k : g, > J}. It is clear that | f,,(z)| cannot be small enough
as soon as |z — x| = J, with J fixed, which means that f has no zeros.

2) Now, we give an example of a rigid analytic function that has in-
finitely many zeros around O(x). For, let us consider the same notations as
above and let (o,,),>1 be a sequence from @p such that |x — a,| ~ &, for any
n > 1, via the theorem of Ax-Sen, see [Ax]. Then we define

n a(x) " 2=y
(32) F,@)=]] H(l_za(ac)) 11 1_[,2—(7(96)7

i=1 ¢€S; i=1 ¢cS;

Using the same arguments as above it is easy to see that (F,(2)),>; is
uniformly convergent on C, \ U,eq B(a(®), 9), for any J > 0, and denote its
limit by F'(z), which is rigid analytic on ]Pl(Cp) \ O(x) and has (a,,),,>1 as the
set of zeros.

3) Another example of rigid analytic function that has zeros in every
neighborhood of any of its singular points is the trace series of a trans-
cendental element of C,,, for more details see page 38 of [APZ2].

REMARK. The above examples satisfy the following properties:
limsup,_, | f(2)| = oo and lim inf, ., |f(2)| = 0.

5. Some remarks related to zeros on a corona

Let f : Pl((‘ip) \ O(x) — C, be an arbitrary rigid analytic function that
is equivariant with respect to G and f(oc) = 0. For any positive real
number ¢ consider the Mittag-Leffler decomposition of f on E'(x,¢) :=
Pl(‘(,f‘,p) \ Uges, B(a(x), ), where S, is a complete system of representatives
of G with respect to the subgroups H(x,e) = {0 € G : |o(x) — x| <e}:

a/(")

(33) =32 Goo@r

€S, n>1

where aﬁf), = a(aﬁf)e) and eis the neutral element of G, see [APVZ1]. In what
follows we consider ¢, the fundamental sequence of all distances on O(x),

more precisely the image of the following function: d: O(x) — R,
d(e(x)) = |o(x) — x|, which is continuous and its image is a strictly de-
creasing sequence (g,),>1 With limit 0. Fix ¢ > 0. There exists a unique m

such that ¢, <e<ey_1, m > 1. (One can consider gy = co.)

1 1
Denote y = - Then |z — x| > ¢ if and only if |y| < = We have the
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following identity
n
, k-1
(34) (2};) :Z(’”k )ak, la| <1.
>0 >0
For =" , 0 #e, the condition |a|<1 means that |z —x|<
o(x) —x

MiNges, o4e |0() — |, which means that for a fixed positive real number ¢

1 1
with ¢, < é&<gy,_1onehase, <e&<|z—x|<ep_1, so— <yl <= Usmg
(34) in the above conditions one obtains -

1 1
@=a@)" (5 _ sa)" ( P x>n
1 n+k—1 z—x 1k
(35) " (@ —o@)" k;( k > [a(m) - x]

X (z — x)k.

I ’I’L+k—1
()

= (x _ a(x))il+k

Let us define f(y) = f(z) with y = . i - as above. From (33) and (35) one

has
(36) Fo) =3 aiy"+ > by 8,
n>1 k>1
where
( l)k © (n+k—1)
77 g k
37 b = k> 0.
&7 Z Z; (@ — a(x))"* -

Because f is equivariant by (37) we have the following upper bound

38 b(ﬁ) < |CL§;",)8| _ 1 | %)e| 1 A( )
(38) Ik\_igl? ok =g S < f:8),

m—1 gm—l gm 1 m 1

n>1

(e)
where A(f, ¢) = sup <| o |> The inequalities (38) give us

(39) So=lim Y P <

k—oo 8,m 1
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Now, from Cauchy’s inequalities

(40) @] < & fll e
one obtains |a§f?e|l/" < e||f||]1§/,gp 5 SO
1 1 1
(41) R :=- G2 2k,
T limsup, . | & Em-1

which means thatf(y) is a Laurent series on the corona R; <|y|<R7. In
such a way the zeros of f () on the above corona are the same as the zeros of
f(z)in the corona ¢, <& < |z — x| <é&p_1.

REMARK. In the previous examples 1)-3) from Paragraph 4, f
associated to f has no zeros in the above corona. Moreover, in example 2)
the zeros of f are precisely on |z| = R or |z| = R>. In the case x € Q,itis
easy to see that RJT = 00 s0 the finite zeros of f are precisely on |z| = R?'
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