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A Convergence Theorem for Immersions with L2-Bounded
Second Fundamental Form

CHEIKH BIRAHIM NDIAYE (*) - REINER SCHATZLE (*)

ABSTRACT - In this short note, we prove a convergence theorem for sequences of
immersions from some closed surface X into some standard Euclidean space R™
with L?-bounded second fundamental form, which is suitable for the variational
analysis of the famous Willmore functional, where n > 3. More precisely, under
some assumptions which are automatically verified (up to subsequence and an
appropriate Mobius transformation of R") by sequences of immersions from
some closed surface 2 into some standard Euclidean space R" arising from an
appropriate stereographic projection of S" into R" of immersions from 2 into S™
and minimizing the L?-norm of the second fundamental form with n > 3, we
show that the varifolds limit of the image of the measures induced by the se-
quence of immersions is also an immersion with some minimizing properties.

1. Introduction and statement of the results

The question of convergence in a suitable sense of sequences of im-
mersions with L?-bounded second fundamental form and the regularity of
the support of their varifolds limits are very important issues in the study
of geometric variational problems arising from submanifold theory. A very
well known example where this plays an important role is in the study of
the celebrated Willmore functional who was (to the best of our knowledge)
first considered in various works by Thomsen [11], and subsequently by
Blaschke [1]. In 1965, Willmore [12] reintroduced, and studied it within the
frame work of the conformal geometry of surfaces. The motivations of the
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study of Willmore functional stem from many areas of science. For ex-
ample in molecular biology, it is known as the Helfrich Model [4], and is
interpreted as surface energy for lipid bilayers. Another field where it
plays an important role is solid mechanies. In fact, it arises as the limit
energy for thin-plate theory, see [2]. Finally, in general relativity, the
Willmore functional appears as the main term in the expression of the
Hawking quasilocal mass, see [3].

In [7], J. Langer proved a convergence Theorem (after reparame-
trization) in the C'-topology for sequences of immersions with LP-bounded
second fundamental form with p > 2. A crucial point in his argument is the
fact that thanks to Sobolev embedding Theorem, such immersions are C!
since p > 2. This latter point is not true for p = 2, as 2 is the borderline in
the Sobolev embedding Theorem. Furthermore, as noticed by J. Langer
[7] his result is no more true when p = 2. For these reasons, the issue of
convergence theorem for sequence of immersions with Z2-bounded second
fundamental form which is suitable for the variational analysis of the
Willmore functional is not a trivial matter.

In this note, we prove a convergence theorem for a sequence of im-
mersions from some closed surface 2 into some standard Euclidean space
R"™ (n > 3) with L?-bounded second fundamental form, which is suitable for
applying the direct method of Calculus of Variations to study the Willmore
functional. In fact our convergence theorem (see Theorem 1.1 especially
Corollary 1.3) has been used in the study of the Willmore boundary pro-
blem by R. Schitzle [8], see section 4, last paragraph of page 290.

In order to state our result in a clear way, we first fix some notation. In
the following, we use R", n > 3 to denote the standard n-dimensional
Euclidean space, g.,. for its standard metric, R™*! the standard (1 + 1)-
dimensional Euclidean space and S" its unit sphere. We use the notation
enr1 to denote the north pole of S”, namely e,.; :=(0,---,1) € R"*.,
Furthermore, we will use the following Mébius transformation @ : R"*! U
{oo} — R™ U {oo} defined by the following formula

(1) B@) = €41 +2 —— L
% — ental
The restriction of @ to S will be called the stereographic projection of S”
to R" U {oo}. For x € R", > 0, B,(x) will denotes the Euclidean ball of
R™ with center x and radius ». Moreover for » > 0, D, will stand for the
open disk of R? of diameter r. We identify R” with R* x R" %, and denote
by 11 the projection of R” onto the R? factor. For k a nonnegative integer,
H* denotes the Hausdorff measure and £F stands for the Lebesgue
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measure. Given X a closed surface, and f : X — R” an immersion we set
97 := f*(geue) the pull back of the standard metric g, by f. Furthermore,
for an immersion f : ¥ — R", we use the notation I;Vf to denote its mean
curvature vector, Ay to denote its second fundamental form, s, the in-
duced area measure on 2 by f, namely dy,, is the volume form associated
to g, and ur = f( Hg,) the varifold image of the immersion f, namely
f(,ugf) = (x —>H0(f 1(90))7{2Lf(2) We recall that u, —f(ﬂg ) is an
mtegral 2-varifold on R", see [9] for more informations. Given an integer
rectifiable 2-varifold i on R", we use the notation A, to denote its weak
second fundamental form and spt 1 to denote its support, see [5] for more
informations. For X a space, A C X, and x a measure on X, we use the
standard notation x|A to mean the restriction of 1« on A. We also use the
notation diam (A) to denote the diameter of A.
Now having fixed this notation, we are ready to state our main result
which reads as follows:

THEOREM 1.1. Let X be a closed surface, and fy, : X — R", n >3
be a faomily of immersions. Assuming that

1) f |Ay, | dyg, < E, u, — wasvarifolds, w integer rectifiable 2-vari-

fold, spt 1 compact, |Am| Ky, — Vas Radon measures with gy, := gy, , and
A n — Afm

2) There exist & >0, p; >0, such that 1if we denote by
{eg,k=1,--- K} Csptu, the finite number of bad points of sptu
verifying v({xy}) > &, then for every x € spt u\ UK B, (xy), we have there

exists r(x) > 0 such that p|B,q)(x) = % 1) and this decomposition is
i=1

unique up to relabelling and the 1 (x) 3s are Cl-graphs in B, ().

Then, (up to a subsequence) there exists my depending only on E, n,
2, sptu, v, p;, &, and the bad points xi,---,xx, namely my=
mo(E,n, X, spt u, v, p1, 0,21, -, &g) >0, such that for every m > my,
we have the existence of a closed surface X,°, an immersion
Fp : 200 —sptp € R" such that

/‘Lsptﬂ\uk B (qc,\)> (90 — HO(le(x)))HZL m(zm,pl)7 and

[ s, < [ 14t

2, ”n sptu
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where Xy, , = f, (spt i\ UK B, (). Moreover, defining 2 =
O\ F YUK | B, () for m > mg, we have that the surface X7° verifies
(still for m > my)

20~y

m, py m, py-

REMARK 1.2. As already said in the abstract, the assumptions of
Theorem 1.1 are automatically satisfied for a sequence of immersions (up
to a subsequence and an appropriate Mobius transformation of R") arising
from an appropriate stereographic projection of S” into R" of immersions
from X into S" and minimizing the L?-norm of the second fundamental
form. In fact up to a subsequence, apart of spt i« compact, all the hypotheses
in 1) follows from the minimizing property and the monotonicity formula as
in (9) below. Moreover, up to an appropriate Mobius transformation of R”,
the compactness of sptu follows from a straightforward adaptation of the
argument of Proposition 2.1 in [8] and the discussion right after until
formula (2.7). On the other hand, the assumption 2) follows directly from
the argument of Proposition 2.2 in [8].

Thus, we have the following corollary:

COROLLARY 1.3. Let X be a closed surface, and f,, : ¥ — R", n >3
be a faomily of immersions arising from the stereographic projection
@ :S" — R" U {oo} of immersions from X into S" where @ is as in (1).
Assuming that

2 : 2
/|Afm| d’ugfm —)f inf /|Af| d,uf as m— —+ oo,
2 P

: X — R", f immersion

then up to a subsequence and an appropriate Mobius transformation of
R", we have that the same conclusions of Theorem 1.1 hold.

REMARK 1.4. We would like to point out that, if in addition the surface
2 in Theorem 1.1 is orientable then the corresponding limit surface 277 is
orientable as well. The same remark holds also for Corollary 1.3.

2. Proof of Theorem 1.1

In this section, we present the proof of Theorem 1.1 from which Cor-
ollary 1.3 follows as already pointed out in Remark 1.2. We start by making
two definitions following J. Langer [7].
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DEFINITION 2.1. Let X be a closed surface, q a point of X,
f: 2 —R" an immersion, n >3, and A : R" — R" an Euclidean iso-
metry which takes the origin to f(q) and whose differential takes
e, =(0,0,---,0,1) to the tnward normal to f at q. We define U, 4 to be the
q-component of (I o A=Y o £)"X(D,), namely the connected component of
(T o A1 o f)"N(D,) containing q.

DEFINITION 2.2. Let X be a closed surface, f : 2 — R" an immersion,
n > 3, and r, o positive real numbers. We say that f : X — R" is an (v, «)-
immersion if for every q € X, (A™" o f)(U,.q) is the graph of a C*-function
h : D, — R"72 satisfying | Vh|| ~ < «, where A is the Euclidean isometry
in the definition of U, 4.

Now having fixed these definitions, we are ready to make the proof of
Theorem 1.1. We divide the proof in 3 steps.
Proor oF THEOREM 1.1

STEP 1. In this step, we show that, for every x € sptu \ UK B, (xx),
there exists %V(ac) > p, > 0 (where 7(x) is as in Theorem 1.1) such that (up
to a subsequence), we have that there exists closed pairwise disjoint disks
D, x) i=1,---,I, and for every 1%, the sequence of measures
Moy (20 := H? L fm(Dm i(x)) N B;, (x) verifies the following properties

3,

2) o i) — p;(x) weakly as varifolds in B, (@),

() spt () — spt () locally in Hausdorff distance in B;, (x),

and

(4) p|By, (@) = Zw)

In order to achieve (2)-(4), we first recall that the Willmore energy of f;, is
defined by W(fy,) := i J |Hm|2dugm and is (thanks to the Gauss-Bonnet
>

theorem) related to [ |Am|2d,ugm by the following formula
P
1
(5) WU = [ 1Ay, + 72,
P

where I?m is the mean curvature vector of f,, and y(2)is the Euler-Poincaré
characteristic of X. Thus, from the assumption of L?-bounded second fun-
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damental form, we infer that

(6) W) + / A, 2dp,, < E,
P

where E depends only on E and X. Next, we take 0 <&y <& to be fixed later.
Thus, by assumption, we have that for every k =1,---,K, there holds
v({wy}) > &&. Hence, it is easy to see that, for every x € spt i\ UK B, (w),
there exists 4r(x) > 3p, > 0 such that

v(B,, (v) <&

. . 2
Now, since by assumption we have |A,,|"y, — v as Radon measures, then
for m large enough, we get

AP dp,, < (B, @)<é.
B/’x @

Hence, applying the graphical decomposition Lemma of L. Simon, see
Lemma 2.1 in [10], we have that for every « € spt u \ U{f:lB,,1 (x1,), and for m

I
large enough, wal(Bﬂx (@)= Z D,, i(x) where Dm,i(-%') yi=1,---, I;n y I;n <CFKE
i=1

are closed pairwise disjoint sets. In addition, the following properties hold:
there exist affine 2-planes L, ;(x) C R", smooth functions u? . : Q,, ;(x) C

m,i
7L K"Y ’
L (@) — @), where Q,,;(x) = Q) () \ U

i@ @), QN (@) are
simply connected and open, d,, ; () are closed pairwise disjoint disks, with

1

p*1|uicn,i| + |Vu;°§m.| < C(E,n)el™,

and closed pairwise disjoint pimples Py, ;1(x), - - -, Py, m (x) € D,y i(x) which

are disks such that

(7) S Dy i) \ szl i) = graph(uy, ;) N By (),
and
I 1
(8) Z dem(fm(Pm,i,j(%))) < C(E, n)et p,.
=1 =1

On the other hand, using (A.16) in [6], we obtain
(9) r2u,, (B () < CW(f,) Vr>0,
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where w,, = = fu(n,)=@— HO(f H@)HE | fu(2) and g, =gp, =
17 (Geue)- Thus, we derive

(10) r2p,,(Bo(x)) < C(E,n, %), Vr>0,
and
I;n J’C”L
(11) Z Zﬂm(fm(Pm.i,j(x))) < C(E, n, 2)80/)2.
i=1 j=1
Now, since

Hz(gmph(uj;‘i)ﬂB%(x)) <4\/1+ |Vu;§“\ix EZ(HL”17i(x)(graph(ufn7i)HB%(ac))

(12) —
<V1+CE, n)g wg/)i,

then, using (8) combined with the diameter bound of L. Simon [10] and (6)
(which give the area control of f,(Py, ; j(x)) the image by f,, of the pimples
P, ; j(x)), we obtain

(13) 1y, (D @) < (1 + C(E, me™) wpp? ¥ i

Next, using the monotonicity formula (A.6) in [6], we infer that

Py, (D @) N f (Bo@))) < 1—96 (1 + 02y, (Do i) N £, By, () +

+CA+67H / \H,,[*dp, ,,

B/’x (%)

9
< 16+ 0 1y, (D @) + C1 + o e,

1
for ¢ such that B,(x) C Bs,.(x), and for every ¢ > 0. Now, we take 1< 5
4

9
and choose 0 such that E(l +0)<1+ % Next, we come to the choice of
& that we choose depending only on £, n and ¢ such that 0 <&y <&, and
(thanks to (13))

tg, (D (@) N £, (B (x)))
<

= 1+

In particular

(14)  fu: Dui@) NS, (Bin(@) — By (@) is an embedding.
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Now, setting,
:umi(x) = H® Lfnz(Dm,i(x)) N B;%(QC) = Uy, Lf;;z(Dm,l(x)) N B%{%(.’)c) =
= f( /ng) | fin(Dyi(@)) N B:‘x/;_r(x)y

and applying again the monotonicity formula as in (9), and using the fact
that I < CE, we can suppose that up to a subsequence I}/ = I, and for
every 1

Ho i) — 1;(x) weakly as varifolds in B% (),

spt i, ;(x) — spt ;(x) locally in Hausdorff distance in ngTﬂ. (),

and

I
#lBu.@) = (@),
1=1

as desired.

REMARK 2.3.  Wewould like to point out that p, depends not only on x but
alsoon £, n, sptu, v, &, p; and {x1, - - -, xx }. However, for the sake of clarity
in the exposition, we have chosen to emphasize only the dependence to « .

STEP 2. In this second step, we show the existence of m positive de-
pending only on £, n, X, sptu, v, &, p; and the bad points «;,, k =1,--- | K,
namely 7y = mo(E,n, X, spt i, v, &, p1, %1, - -, g) > 0 such that for every
m > 1y, we have the existence of an immersion F, : Xy, ,, — sptu C R”
with the following property

(15) HF, = Gm(x)Hz LFm(Zmpl) < i,

m

where _
Gn(@) = H'F, @), ©€ Xy ).

For this end, we first use the fact that spt u is compact to infer that there
exists al,---,aN € sptu\ UK B, (xx) such that sptu\UE B, () C
U,ZXZIB,,QJC (x*) with N depending only on sptu, p; and the bad points x;,
k=1,---,K. Now, to continue, we recall that from the arguments of the
proof of Step 1, we have that for every k=1,---,N, there exists
m) = m(axk, E,n,%, p,) depending only on a*, E, n, p,« , and & such that for
every m > m), there holds:

f,;l(B,,xk (x*)) decomposes into finitely many closed pairwise disjoint
sets D, ;(ab),
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and that for every m > mj and 1,
the set Dm‘i(ack) contains closed pairwise disjoint disks P,, ;. j(ack),

verifying

J"
Frn(Dyi(ac®) \ Y; ‘”kl’le,i, j(ack)) is a graph of a smooth function,

and for every m > my, i and j,

the image by f,, of the pimples P,,; ; () (namely fy (P ; ("))
has very small diameter.

Now, setting m := manN:1 mg, and recalling that N depends only on spt u,
p; and the bad points x, k =1,---,K and for every k=1, --- N, p,+ de-
pends only on ¥, E, n, v, sptu, &, p; and the bad points 1, - - -, 2x (see
Remark 2.3), we have that my depends only on E, n, sptu, v, &, p;, and
X1, -, &g, namely my = mo(E,n, spt u, v, py, €, %1, - -, &g). Next, we have
that by replacing the image of the pimples Py, ; j(x*), namely f;,(Py,; ;(@"))
(for k =1,---,N and m > my) by extensions of the graphs, we obtain new
immersions fm : Zm,p, — R still for m >y, where we recall that
2y = Im Yspt e\ LJ,CK:IB,,1 (a)). We point out that fm does not depend on
the good points ¥, k =1,---, N, since for each a*, we have replaced the
corresponding image (by f,,) of the pimples and the result gives f,,. On the
other hand, we have that the extensions can be done so that the fm’s
obtained are (%,C(E,n)q‘ﬁ“) -immersions with p< minff:1 p,(for the
definition of these type of immersions see Definition 2.2), and up to taking
my bigger, we have that for m > m, the following holds:

(16) T¥,q)(fn(Zm,p,)) isverycloseto T; ( FnZm. »), foreveryqe Xy, , .,

where for every q € 2, oo Tt ) (frn(Zom, s )) and TM q)( fm(Zmi /11)) denote
{'espectively the tangent space of f,,,(2.,,)) at f,.(q) and of f,,(X, ,,) at
fn(@). In addition, we have that thanks to (7), the extensions can be done so
that after replacing the image by f,, of the pimple P,,; ;(x"), namely
fin(Pri (@), we stay in the bigger balls B, (¢%), and this for every
k=1,--- N . Now, using (16) and the existence of nearest point projec-
tion, we infer that there exists a projection

11, :fm(zm,pl) —)f‘m(zm,pl)a

still for m > 7. Next, given any point z € f,,(2 m.p,), We have there exists ¢
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andx € {x!,--- aN }suchthatz € f,,(Dyy,.i(x)) N By, (x). Now, using again (16)
and the fact that sptu,, ;(x) — spt p;(x) locally ‘in Hausdorff distance in
Bs, (%), see (3) in Step 1, we have that there exists mg > M depending only
on' E, n, 2, v, sptu, &, p; and the bad points wx,---,xx (namely
my = mo(E,m, X, v,spt i, py, €, 21, - - -, &k)) such that, for m > my, we have
that by following a smooth transversal field to f,,, we can project z to a point
Qn(2) belonging to spt u;(x). We claim that this process gives a well-defined
map @, : fm(Zm, ) — sptuform > my.Indeed, let us suppose that m > 1y
and z € f,(Dy,.i (Y1) ﬂfm(Dmyj(yg)) N B:s/)yl (y1) N B:s,yyz (y2) for two different

4 4
points y; and y2 € {x!,--- 2"} and show that by this process we obtain a
unique value for @,,(z). In order to do that, we argue as follows. First of all,
using (14), we infer that z fm(Dm,i(?/l)) N Dm,]’(yz)) N Bs/)yl ¥ N B3/)y2 (y2).
i i

Thus, we have that there exists 0 < % and [ such that

(17) Dy, i) N Dy, ;)N Dy i(2) #0 and  By(z) C Bsy, (Y1) N Bsy,, (y2).

4 4

Infact, since z € f,,(D, i(y1) N D,y j(y2)), then there exists a point ¢ such that
(18) q € Dy i(y1) N Dy j(y2) and 2z = f,().

On the other hand, we have also that z € Bs,, (1) N B3y, (y2). Now, from

16 4
. . 3
z € By, (y1) N B3y, (y2), we infer the existence of 0<% such that
T 1

By(z) C Bs,, (y1) N Bsy, (y2). Next, since z =f,(q) and z € B, (z), then
= = 4

q € [;,}(Bs,.(2)). Now, using Step 1, we have the following decomposition for
4
[ (B,.(2)
Iz
(19) I B, @) = Dy i@
i=1

Thus, from (19), we infer that there exists [ such that ¢ € D, ;(z). Hence, we
have proved the existence of [ and 0 with the desired properties. To continue
the proof of the claim we first define

Mom i j1W1, Y2, 2) 1= HZ| fn (D i@1) N Dy j(y2) N Dy y(2)) N B, (y1) N
4
N Bsyy, (Y2) N Bs@Tz(Z).

3p,

Now, from Step 1 and the fact that 6 < 3

, we get

Honij1Y1, Y2, 2) — 1y(2) weakly as varifolds in By(z).
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On the other hand, using again Step 1 and the fact that By(z) C
B, (y1) N Bs”’ﬁ (y2), we infer that
v 1
Honi 1 Y1, Y2, 2) — 1;(y1) weakly as varifolds in By(z),
and

um7i,_7-,l(y1,yz,z) — ;{j(yg) weakly as varifolds in By(z).
So, from the uniqueness of varifolds limit, we have that y;(z) = w;(y1) =
#;(y2) in By(2). Thus, by the uniqueness up to relabelling of the decom-

4 .

position of x, and the fact that p, < §7ﬂ(yi) for 1 =1,2, we have that
1i(y1) = 1;(y2) in By, (y1) N By, (y2). Hence, the projection @y, is well-de-

4 4
fined for m > my. Thus, we have that there exists 1y depending only on £,
n, X, sptu, v, &, p;, and &1, - - -, xx such that for every m > 1y, the fol-
lowing composition is very well defined

Fm = Qm olly, Of;w

Now, from the hypothesis that the 1V’s are C'-graphs and the uniqueness of
the decomposition, we infer that F, : X, , — sptu C R" is an immersion
for every m > 1. Furthermore, setting

Gu@) = H'F, @), € Xy ),
for m > 7y and using the definition of F,, we have

1z, = G Y H? [Fr(En ) < i,
for m > g as desired.

STEP 3. In this step, we finish the proof of Theorem 1.1. To do so, we
first use Step 2 and fill the regions corresponding to the bad points, namely
the set UkKile (@x), to obtain (for m > 1) a closed surface 27’ and im-
mersion F, : 2° — sptu C R" such that setting

(20) S = Zp \FLH U By, (@),
and recalling that
Zm:/’l = VQI(Spt M \ UszlBﬂl (xk))’
we obtain
Fy = Fm n Xy ,,
(21) and

0
mel = Zm‘pl )



246 Cheikh Birahim Ndiaye - Reiner Schitzle

still for m > 1. On the other hand, from the definition of F,, (see Step 2)
and (21), it is easy to see that

(22) / |AFm |2dlugpm g / |Afm ‘Zdlugm + Ems

2o, 1 2o, ’n

with ¢, — 0 as m — + oo. Now, using assumption 1), we have also that

(23) / Ay, |2d,ugm — / \Aﬂ|2dy as m— + oo.

Emwl Sptﬂ\UszlBﬂl ()

Next, since ¢y, k = 1,- - -, K are the bad point of spt u verifying v({wxy}) > &
fork=1,---, K, then we have

(24) [ ara< [ 1At

spt\UK_| B, () sptu

Thus, from (15), (21)-(24), we infer that there exists m depending only on
E, n, ¥, v, sptu, &, p; and the bad points x,---,xx, namely
my = mo(E,n, 2, spt 1, v, 8, p1, 21, -+, %k), such that my > my and for
every m > my there holds:

plsptu\ UK B, (@) > (x — HO(F @) HE [ Fp(Z, ) and

/ |AF'm, |2dlugpm S / |Aﬂ ‘Zdlu

Zm, n sptp

Hence, since mq > my, then (21) completes the proof of the Theorem. O
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