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On the Fixed-Point Set and Commutator Subgroup of an
Automorphism of a Group of Finite Rank

B. A. F. WEHRFRITZ

ABSTRACT - Let ¢ be an automorphism of a group G. For G polycyclic, Endimioni and
Moravec in [1] discuss the relationship between the fixed-point set C($) and the
commutator subgroup [G, ¢] of ¢ in G. Here we extend these results to soluble
groups satisfying various rank restrictions.

Suppose ¢ is an automorphism of the polycyclic group G. Endimioni and
Moravec in [1] prove the following.

i) If Cs(¢) is finite and ¢ has order 2, then [G, ¢]' is finite.
ii) If Cq(¢) is finite, then so is G/[G, ¢].
iii) If |¢| is finite, then so is the index (G : [G, ¢].Cx()).

Of course Cg(¢) denotes the set of fixed points of ¢ in G, [G,¢]=
(97199 :9 € G) and [G, ¢]is a ¢-invariant normal subgroup of G. Here we
generalize these results to groups with some sort of rank restriction.
Generally our groups at least have finite Hirsch number and satisfy
something weaker than the FAR condition. We must start by defining
these terms.

If a group G has a series of finite length each factor of which is either
locally finite or infinite cyclic, then the number of infinite cyclic factors in
such a series is an invariant of (G, which we call the Hirsch number of G (it is
also sometimes called the torsion-free rank of G). This is the weakest of the
rank restrictions considered here. The structure of groups with finite
Hirsch number is discussed in many places (e.g. see [3]). From our point of
view the most convenient description of the structure of such a group is
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given by Lemma 4 of [6]. A group satisfies min-p for the prime p if its p-
subgroups satisfy the minimal condition on subgroups. An FAR group
(that is, a finite-abelian-ranks group, also called an S, group) is a soluble
group with finite Hirsch number that satisfies min-p for every prime p. See
for example [3] for a discussion and alternative definitions of the class of
FAR groups. In particular all soluble groups of finite (Priifer) rank are
FAR groups. The following summarises our main conclusions in this paper.

THEOREM. Let ¢ be an automorphism of the finite extension G of a
soluble FAR group. Then the following hold.

i) If Cg(@) is finite and ¢2 =1, then [G, ¢ is finite.
i) If Cg(@) s finite, then G/[G, @] is finite.
iii) If ¢ has finite order, then the index (G :[G, ¢1.Ca($)) is finite.

In fact we can weaken the FAR hypothesis in the theorem considerably
in many places. For i) it suffices to assume only that G is a group with finite
Hirsch number (even in a weak sense). For iii) it suffices to assume that G
is a soluble-by-finite group with finite Hirsch number satisfying min-p for
all primes p dividing the order of ¢. However we do need some min-p
hypothesis; suppose G is the direct product of the cyclic groups (a;;) of
order p for : > 1,7 =1, 2 and p any (fixed) prime. Define ¢ : G — G by
a1 = a;; and a;pp = a0 for each ¢ > 1. Then ¢ is an automorphism of G
of prime order p with [G, ¢] = Cg(¢) = (asn : © > 1). Thus (G : [G, ¢].Cs(¢))
is infinite. Trivially G has Hirsch number 0. As Endimioni and Moravec
point out in [1], we do need ¢ of finite order in iii), even if G is free abelian of
rank 2. Note that iii) implies that G /[G, ¢] is isomorphic to a finite extension
of a section of Cg(¢); see Remark 6 below.

We are unable to weaken the FAR condition in ii) in general, though we
can in special cases. Note that ii) implies that Cs(¢) is finite for every ¢-
invariant section S of G. If ¢ has finite order (with Cs(¢) finite) it suffices
for ii) to hold to assume that G is just soluble-by-finite with finite Hirsch
number, see Remark 7. If ¢ has prime order, then it suffices simply to
assume that G has finite Hirsch number, since Theorem 1 of [6], for ex-
ample, reduces the problem to the soluble-by-finite and hence previous
case. A (torsion-free)-by-finite group with finite Hirsch number is always a
finite extension of a soluble FAR group, so this case is also covered. Of
course if G satisfies the conclusion of iii) and Cg(¢) is finite, then again
G/|G, 4] is always finite.

If in ii) the order of ¢ is infinite, then we do need some sort of min-p
condition, even if ¢ acts fixed-point freely on G. For example, let G
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denote the cartesian product of the additive cyclic groups (a;) of order
p', where p is any prime and i = 1,2, ..... Define ¢ : G — G by (e;a;)¢ =
((e; + pe;_1)a;), where the e; are integers with ey = 0. Then ¢ is easily
seen to be an automorphism of G of infinite order with Cx(¢) = (0) and
[G, ¢] = pG. In particular G/[G,¢] is infinite and trivially G is abelian
with Hirsch number 0. Clearly G is uncountable, but if D < G denotes
the direct product of the (a;), then H = |J D¢ " gives a countable
i>1

counter example. Finally the converse of ii) is false, even if G is poly-
cyclic and ¢ has prime order, see Example 8 below.

By removing from our proof of the above theorem the complications
caused by the presence of finite rank but infinitely generated sections, one
can use our methods to construct somewhat shorter proofs of i), ii) and iii)
than those given in [1]; this is especially the case with iii).

LEMMA 1. Let G be a group with a series of finite length, each factor of
which is either periodic or infinite cyclic. If ¢ is an automorphism of G with
Ce(9) finite and ¢* = 1, then |G, @] s finite.

Part i) of the Theorem follows at once from this. Note that the condition
on G in Lemma 1 is weaker than having finite Hirsch number as we have
defined it in the introduction above.

Proor. Now G has ¢-invariant normal subgroups A < Bwith A and G/
B finite and B/A abelian and inverted by ¢, see [5] Theorem 2. Also
[G, ¢, B] < A; this follows from [1] Lemma 1, but it also follows immediately
from simply expanding the commutator [g, ¢, b] for any g € G and b € B.
Then [G, ¢]A/A is centre-by-finite. Hence [G, $]'A/A and A are both finite.
Consequently [G, ¢]' is finite.

LEMMA 2. Let A be an additive torsion-free abelian group of finite
rank. If ¢ is an automorphism of A with Ca(¢) = (0), then AJA(p—1) is
finite.

Proor. Clearly ¢ — 1 extends to an automorphism 6 of V = Q @ A. In
particular det@ # 0. By the Cayley-Hamilton Theorem detf € Q[0]0 <
Endg V. Thus there is a positive integer e with e € Z[0]0 = Endg V. Hence
eA <AZ[0)0 < A0 = A(¢ — 1) and therefore A/A(¢p — 1) is finite.

For any group G denote the unique maximal locally finite normal
subgroup of G by 7(G).
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LEMMA 3.  Let G be a group with finite Hirsch number h and with t(G)
finite. If ¢ is an automorphism of G with Cg(@) finite, then G/|G, @] is
finite.

Proor. We induct on £; clearly if ~ = 0 the claim is vacuous. Sup-
pose i > 1. Then G has a non-trivial torsion-free abelian characteristic
subgroup A with G/A (torsion-free)-by-finite (e.g. see Lemmas 4 and 6
of [6]). Clearly Ca(¢) = (1), so by Lemma 2 we have (A:[A,¢]) =e
finite. Set B = A°. Then B is characteristic in G, B < [G,¢] and A/B is
finite. Further the map a+— a° is an isomorphism of A onto B com-
muting with ¢, so (B : [B,¢]) = (A: [A4,¢]) = e. By [4] Lemma 1 we have
|Cq/B(¢)| < e|Cq(¢)| < oco. By induction on % the group G/[G,¢|B is
finite. Since B < [G,¢] we have G/[G, ¢] finite.

LEMMA 4.  Let G be a finite extension of a soluble FAR group. If ¢ is an
automorphism of G with |Cg(¢| = n finite, then G /|G, §| is finite.

Part ii) of the Theorem follows at once from Lemma 4.

Proor. Setn = {primesp:p<n}andT = 7(G). By[2] 3.17 there is a
characteristic series

H=Ty<Th1 <..<T,<T<G

of G with each T;/T; 1 an abelian 7'-group for ¢ < s, Ts/Ts_1 a divisible
abelian 7-group and 7'/ T finite.

Suppose A =T, is a 7/-group. Clearly C4(¢) = (1). Then the map
7:a—a tag is an isomorphism of A into itself. If A, is the p-primary
component of A, then A, <A,y. If A, > A,y, then Apyi > Apyi+1 for all
1> 0. But A, satisfies the minimal condition (G satisfies min-p for all
primes p recall). Therefore A, = A,y for all p and A = Ay < [G, ¢]. Also if
K/A = Cg/a(¢), then Lemma 1 of [4] yields that (K : A) < n.

Now suppose the A = T is a divisible abelian z-group (the case s = 1).
Then Ay is divisible and hence is a direct summand of A. But
kery|, = C4(¢) is finite so A = Ay and also A is a direct product of a finite
(invariant) number of Priifer groups. Therefore Ay = A. Again we obtain
(K:A)<mn.

A simple induction on s shows that 7 < [G, ¢] and that the centralizer
of ¢ on G/T has order at most n. Further 7(G/T;) is finite. Therefore
G/|G,$|Ts is finite by Lemma 3. Consequently G/[G, ¢] is finite.
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LEMMA 5. Let G be a soluble-by-finite group with finite Hirsch number
and ¢ an automorphism of G of finite order m. Suppose G satisfies min-p
for every prime p dividing m. Then (G : [G, $|Cq(9)) is finite.

Part iii) of the Theorem follows from Lemma 5.

Proor. If N is a ¢-invariant subgroup of G of finite index with
(N : [N, ¢|Cn(¢)) finite, then (G : [G, ¢]Cs(¢)) is also finite. In particular we
may assume that G is soluble. Set C = Cg(¢).

Suppose first that 7 = 7(G) is finite. We prove this case by induction
on the Hirsch number of G. If G is finite the conclusion is vacuous. If
not G has a non-trivial torsion-free abelian characteristic subgroup A
with G/A (torsion-free)-by-finite ([6] Lemmas 4 and 6 again). Define the
map y:G—G by g—][g,¢] and let w denote the endomorphism
1+ @y + ()% + oo+ (8™ " of A. Clearly w(y[,) =0, so Ay <C.
Also if a € A, then a™ is congruent to ay modulo Ay. Therefore
A" < Ay Ay < [A,¢|(ANC).

Let A™ < K < G with K/A™ the centralizer in G/A™ of ¢. Now A/A™
is finite since A has finite rank, so induction applies to G/A,,. Conse-
quently we may assume that (G : [G, ¢]K) is finite. Also (AN K : A™) is
finite and K = (ANK)C, the latter by Lemma 15 of [6]. Therefore
(K : A™(C) is finite; thus (G : [G, ¢]A™C) is finite. But A™ < [A,¢](ANC).
Consequently (G : [G, ¢]C) is finite. This completes the proof of the 7-
finite case.

Let n denote the set of prime divisors of m. By [2] 3.17 there is a ¢-
invariant normal series (1) =Ty < T < ... <Ts < T of G as in the proof
of Lemma 4, with factors 7;/T; 1 abelian 7’-groups or divisible abelian z-
groups and 7'/7T finite. For each 7 the section {x € T; : ™ € T;_1}/T; is
finite. Hence by our initial remark we may assume that each of these
sections is central in G. By the T-finite case we may assume that G /T
satisfies the conclusion of the lemma. Thus by induction on s we may
assume that G has a periodic abelian characteristic subgroup A with
A" =A, B={a€A:a™ =1} finite and central in G and (G : [G,¢]|K)
finite, where K is given by K/A = Cg/4(9).

Letk € K. Thenky e A =A",say ky =a™ fora € A. Now a™ € ay Ay
and ayy = 1, w being as in the T-finite case. Thus a” = c.dy forc = ay € C
and some d € A. Hence ky = c.dy and

(kdY)y = dky.d ¢ =d.cdpd¢=ceANC.
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Note that the argument also implies that A=Ay ANC)=
[A, (AN C). Since the actions of k and ¢ on A commute, so k and kd !
normalize A N C. Then ¢ stabilizes the series

(1) <ANC < (kd™)(ANC)

and hence [kd!,¢]" =[kd1,¢"]=1. Thus kd'eL, where
L/B = Cg/p(¢). Hence K < LA = ALj; indeed K = AL. Also ¢ stabilizes
the series (1) < B <L and B is central in L. Therefore |, is a homo-
morphism of L into B with kernal C. Thus (L : C) < |B| < co. Consequently
(K : AC) is finite and hence (G : [G,¢|AC) is finite. As we saw above
A =1A,9|(ANC). Therefore (G : [G,¢|C) = (G : |G, ¢][A, $|C is finite, as
required.

REMARK 6. Suppose G and ¢ are asin Lemma 5. Then always G/[G, ¢| is
a finite extension of some section of C(¢). For if N denotes the intersection
of the conjugates in G of [G, $|Cs(¢), then G/N is finite by Lemma 5 and
[G,¢] < N.Thus N =[G, ¢|Cn(¢) and N/[G, ¢] = Cn(9)/([G,¢|NCn($)).

In particular if X is a subgroup and image closed class of groups
containing Cg(¢) and if F denotes the class of finite groups, then
G/|G, ¢ € XF. If G is polycyclic, this is Proposition 1 of [1].

REMARK 7. Let G be a soluble-by-finite group with finite Hirsch
number. If ¢ is an automorphism of G of finite order with C(¢) finite, then
G/[G, ¢]is finite.

Proor. Set T = t(G). Repeated use of [6] Lemmas 9 and 13a) yield
that 7/[T, ¢] and Cgr(¢) are both finite. Then G/[G, ¢|T is finite by Lemma
5 (or Lemma 3 if you prefer). Trivially [T, ¢] < [G, ¢]. Therefore G/[G, ¢] is
finite.

ExamMpPLE 8. Let wbe a primitive p-th root of unity in C for some prime
pand put R = Z[w] < C and G = Try(3, R). (Here Z denotes the integers,
C the complex numbers and Tr;(3, R) the lower unitriangular group of
degree 3 over the ring R; later @ will denote the rational numbers.) Then G
is a 2(p — 1)-generator nilpotent group of class 2 (and in particular is
polycyclic). If Z denotes the centre of G and {e;;} the standard set of matrix
units in C***, then Z =1+ Reg; = G’ and Z ~ R and G/Z 2 R & R.

Let ¢ denote the automorphism of G induced by conjugation by the
diagonal matrix diag(1,,1). Then ¢ has order p, centralizes Z and acts
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fixed-point freely on G/Z. If x =1+ aeg; and y =1+ begz for some a,
b € R, then a simple calculation shows that

[t ad,y  yd =1+ (w—1)°w 'abes € [G, 4.
Also 1+w+d?+..+aP1=0, so p= Y (1-0) € (w—1R.

1<i<
Therefore 1+ p?>Reg; <ZN[G,¢] and in particulgr (IG,¢Z : (G, ¢]) =
(Z : ZN|[G,¢]) divides p>P~V,

Suppose g = (9;;) € G. The map g +— (ga1,¢s2) is a homomorphism of G
onto B @ R with kernel Z that maps [G,¢] onto (w—1)(R & R). Thus
(G : [G,4]Z) also divides p*P~1). Consequently G/[G, ¢] is finite of order
dividing p*®~1). However Cg(¢) = Z, which is infinite. Thus the converse of
Part ii) of the Theorem does not hold, even for polycyclic groups and au-
tomorphisms of finite prime order.

Suppose instead of Tr; (3, B) we set G = Tr;(3, K), where K is the field
Qlw] < C, but with ¢ still given by conjugation by diag(1, w,1). Then here
G is torsion-free nilpotent of finite rank and class 2 and Z = Cg(¢) = K is
infinite, Z being the centre of G again. Our previous argument shows that
G/[G, ¢] has finite exponent (dividing p?). But G is divisible, so here we
have |¢| = p, G =[G, ¢] and Cg(¢p) infinite.

REFERENCES

[1] G. ENDIMIONTI - P. MORAVEC, On the centralizer and the commutator subgroup
of an automorphism, Monatsh. Math., to appear.

[2] O. H. KeGEL - B. A. F. WEHRFRITZ, Locally Finite Groups, North Holland
Pub. Co., Amsterdam 1973.

[3] D. J. S. ROBINSON, Finiteness Conditions and Generalized Soluble Groups
(2 vols.), Springer-Verlag, Berlin 1972.

[4] B. A. F. WEHRFRITZ, Almost fixed-point-free automorphisms of soluble
groups, J. Pure & Appl. Algebra, 215 (2011), pp. 1112-1115.

[6] B. A. F. WEHRFRITZ, Almost fixed-point-free automorphisms of order 2,
Rend. Cire. Mat. Palermo, 60 (2011), pp. 365—370.

[6] B. A.F. WEHRFRITZ, Almost fixed-point-free automorphisms of prime order,
Cent. Eur. J. Math. 9 (2011), pp. 616-626.

Manoscritto pervenuto in redazione il 5 settembre 2011.





